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We investigate the finite-temperature properties of an ultracold atomic Fermi gas with spin population
imbalance in a highly elongated harmonic trap. Previous studies at zero temperature showed that the gas stays
in an exotic spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluid state at the trap
center; while moving to the edge, the system changes into either a nonpolarized Bardeen-Cooper-Schrieffer
superfluid (P<P,) or a fully polarized normal gas (P> P.), depending on the smallness of the spin polariza-
tion P, relative to a critical value P,. In this work, we show how these two phase-separation phases evolve with
increasing temperature, and thereby construct a finite-temperature phase diagram. For typical interactions, we
find that the exotic FFLO phase survives below one-tenth of Fermi degeneracy temperature, which seems to be
accessible in the current experiment. The density profile, equation of state, and specific heat of the polarized
system have been calculated and discussed in detail. Our results are useful for the ongoing experiment at Rice
University on the search for FFLO states in quasi-one-dimensional polarized Fermi gases.
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I. INTRODUCTION

Impressive experimental progress has occurred recently in
the field of ultracold Fermi gases. In particular, experimental
realizations of the crossover from a Bardeen-Cooper-
Schrieffer (BCS) superfluid to Bose-Einstein condensate
(BEC) using a well-controlled Feshbach resonance [1-7]
have opened an intriguing opportunity to study long-standing
many-body problems in condensed matter physics, such as
high-temperature superconductivity. Most recently, two ex-
perimental groups at Rice University and MIT have success-
fully manipulated a two-component atomic Fermi gas of
lithium atoms with unequal spin populations [8-13]. This
type of matter is of great interest, and stimulates intense
efforts on studying an unsolved problem in condensed matter
and particle physics: what is the ground state of a spin-
polarized Fermi gas with attractive interactions?

Without spin polarization, the answer is known, given
fifty years ago by Bardeen, Cooper, and Schrieffer. Due to
attractions, atoms of different spin species at the same Fermi
surface with opposite momentum form Cooper pairs charac-
teristic of bosons, and thus undergo a BEC-like superfluid
phase transition at a sufficiently low temperature. This BCS
mean-field picture is very robust and is valid not only quan-
titatively at weak coupling, but also qualitatively in the
strongly interacting limit [7], where the fluctuations of Coo-
per pairs become important. The key ingredient of the BCS
pairing is the fully overlapped Fermi surfaces, which create a
maximum for the phase space. In the presence of spin polar-
ization, however, the two Fermi surfaces are no longer
aligned. The standard Cooper pairing scheme is thus not ap-
plicable. For a small number of unpaired atoms or a small
spin polarization, some nonstandard pairing scenarios have
to be developed. For a large spin polarization above thresh-
old, these unpaired atoms will eventually destroy the coher-
ence of pairs and hence the superfluidity.
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The determination of nonstandard pairing scenarios and
the related exotic superfluidity lies at the heart of polarized
Fermi gases. A number of pairing proposals have already
been suggested in the literature, including breached pairing
[14] or Sarma superfluidity [15,16], phase separation [17],
deformed Fermi surface [18], and spatially modulated Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) states [19,20]. At the
moment, a theoretical consensus on the true ground state of a
three-dimensional spin-polarized Fermi system is yet to be
reached [21-27]. Experimental observations near a Feshbach
resonance are not so helpful as one would expect, due to the
presence of the harmonic trap. To take it into account, the
local density approximation has been widely used [28-34],
as well as the mean-field Bogoliubov—de Gennes equation
[35-37].

Among various pairing schemes, the study of FFLO
phases has the longest history—more than four decades
[19,20]. In this scenario, the two mismatched Fermi surfaces
have been shifted by an amount in momentum space [19], in
order to have a small overlap of the surface. As a result,
Cooper pairs with a finite center-of-mass momentum may
form, and thereby support, a spatially inhomogeneous super-
fluidity [20]. However, due to the much reduced phase space
for pairing, the window for the appearance of FFLO states
turns out to be small in three dimensions [21,22]. This makes
the experimental search for the FFLO states extremely chal-
lenging. Up to now only indirect evidence has been observed
in the heavy fermion superconductor CeColns [38]. No
FFLO signal has been found in ultracold polarized atomic
Fermi gases.

Luckily, the FFLO states are theoretically found to be
favorable in low dimensions, which can be realized experi-
mentally using an optical lattice [39]. In one dimension (1D),
where the whole Fermi surface shrinks to two Fermi points,
the reduction of pairing phase space is less significant. Con-
sequently, at zero temperature the FFLO phase becomes
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much more robust [40-42], compared to its 3D counterpart
[22]. This expectation was indeed found in recent works
[43-48]. Further, the presence of a harmonic trap will not
change the essential picture, as first shown by Orso [45] and
the present authors [46,47]. Nonetheless, the trap leads to
phase separation [45,46]: While the system remains always
in the FFLO phase at the trap center, at the trap edge, it can
be either a fully nonpolarized BCS state or a fully polarized
normal state, for small or large spin polarization, respec-
tively. Most recently, the spatial distribution of pair correla-
tion functions and the momentum distribution of a spin-
polarized 1D Fermi gas in lattices have been investigated by
using numerically accurate density-matrix renormalization-
group methods [49-51] and quantum Monte Carlo simula-
tions [52].

Inspired by theoretical suggestions, an experiment with
polarized Fermi gases in a highly elongated harmonic trap is
now underway at Rice University [53]. However, the experi-
ment will necessarily be carried out at finite temperature. It is
then desirable to understand how the two phase separation
phases found at zero temperature evolve as temperature in-
creases and, in particular, what is the temperature window
for the presence of FFLO states, compared to the lowest
experimentally attainable temperature.

In a previous study [47], we presented a systematic study
of zero-temperature quantum phases in a one-dimensional
spin-polarized Fermi gas. Three theoretical methods have
been comparatively used: mean-field theory with either
an order parameter in a single-plane-wave form or a
self-consistently determined order parameter using the
Bogoliubov—-de Gennes equations [35-37,54-58], as well as
the exact Bethe ansatz method [59]. We have found that a
spatially inhomogeneous FFLO, which lies between the fully
paired BCS state and the fully polarized normal state, domi-
nates most of the phase diagram of a uniform gas. The phase
transition from the BCS state to the FFLO phase is of second
order. We have also investigated the effect of a harmonic
trapping potential on the phase diagram, and find that in this
case the trap generally leads to phase separation as men-
tioned above. We finally investigate the local fermionic den-
sity of states of the FFLO phase. A two-energy-gap structure
is shown up, which may be used as an experimental probe of
the FFLO states.

In this work, we address the urgent finite-temperature
problem by extending our previous zero-temperature analy-
sis. In particular, we focus on the use of weak-coupling
Bogoliubov—de Gennes (BdG) theory [35,54,56]. Based on
this mean-field approach we are able to obtain the density
profiles of the system at finite temperatures, as well as its
thermodynamic properties, including the entropy, energy, and
specific heat.

Our main result, a finite temperature phase diagram, is
shown in Fig. 1 for a typical interaction strength. At a finite
but low temperature, in addition to the two phase separation
states mentioned earlier, two new phases—a pure BCS state
and a partially polarized normal state—enter the phase dia-
gram, respectively, at lower and higher spin polarizations.
The space for the phase separation states shrinks with in-
creasing temperature and vanishes completely at one-fifth of
the Fermi temperature 7. Therefore, even at a temperature
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FIG. 1. (Color online) Finite temperature phase diagram of a 1D
trapped spin-polarized Fermi gas at a given coupling constant 7,
=1.6 as a function of the spin polarization P=(N;=N,)/(N+N)),
where N; and N| are the number of spin-up and spin-down atoms,
respectively. T is the Fermi temperature of an ideal, noninteracting
Fermi gas in a harmonic trap. The solid line gives the boundary of
the second-order phase transition from a superfluid to a normal
state. The dashed and dot-dashed lines distinguish the different su-
perfluid phases: a pure BCS phase, a phase separation with a FFLO
at center, and a BCS outside (FFLO-BCS), and a phase separation
with FFLO and normal components (FFLO-N). Due to the presence
of harmonic traps, these boundaries may be better understood as
crossover, rather than phase transition lines.

as high as 0.17%, it is still possible to observe the long-sought
FFLO state at the center of the harmonic trap. This suggests
that the FFLO state in 1D polarized Fermi gases is indeed
attainable with current experimental techniques [7].

In the following section, we briefly review the mean-field
BdG theory of the 1D spin-polarized Fermi gas. The appli-
cability of the mean-field theory in the weakly coupling or
intermediate coupling regimes will be commented. In Sec.
III, we will discuss in detail how the density profiles and the
order parameters evolve with increasing temperatures. To-
gether with the analysis of the entropy, energy, and specific
heat, we obtain a phase diagram at finite temperatures. Fi-
nally, Sec. IV is devoted to the conclusions and remarks.

II. SELF-CONSISTENT BOGOLIUBOV-DE GENNES
THEORY

Fermi gases of ®Li atoms near a broad Feshbach reso-
nance can be well described using a single channel model, as
confirmed both experimentally [60] and theoretically
[61,62]. To obtain the phase diagram in Fig. 1, we use the
self-consistent BAG theory [54-56], by assuming a pairing
order parameter A(x) that breaks the U(1) symmetry of the
number conservation of total neutral atoms. This weak-
coupling theory has been previously applied to discuss the
zero-temperature properties of 1D polarized Fermi gases by
the present authors. We refer to Ref. [47] for the detailed
description of the model and the BAG formalism. We outline
below some essential ingredients of the theory.

The BdG equations describing the quasiparticle wave
functions u,(x) and v,(r), with excitation energies E, are
[54]
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t(x) } =E,,{M”(x) ] (1)

v ,(x) v ,(x)

{H;—m ~ A(x) ]
-A%x) —H]+p

where the single particle Hamiltonian H{=-%V?/2m
+81ph5(x)+ Ve (x) and V. (x)=mw?x*/2 is the harmonic
trap potential. The interaction is a short-range potential
g1pS(x), resulting in a diagonal Hartree term g,pnz(x) and an
off-diagonal order parameter potential in the mean-field de-
coupling. To account for the unequal spin population N,, for
the pseudospins o= T, |, the chemical potentials are shifted
as uy=p* Su. This leads to different quasiparticle wave
functions for the two spin components. However, there is a
symmetry of the BdG equations under the replacement
u*l(x)—w,ﬁ(x), vz(x)—>—u,ﬂ(x), E, —-E,. Thus, in Eq.
(I) we have kept only the spin-up part, and obtained the
solutions with both positive and negative excitation energies.

The order parameter and the particle density of each com-
ponent that appears in the BdG equations can be written as

A®) == gip X uy(x)v, (AE,), 2)
ny(x) = 2w (Duy(WAE,), (3)
n
ny(x) = 2 v, (Do, Wf(- E,), )
7

where f(E,)=1/(exp[E,/kpT]+1) is the Fermi distribution
function. The particle density of each component is subjected
to the constraint [dxn,(x)=N,, which eventually determines
the chemical potentials. Equation (1), together with the defi-
nitions of the order parameter and particle densities (2)—(4),
form a closed set of equations, which has to be solved self-
consistently. We have done so via a hybrid procedure, in
which the high-lying excitation levels above an energy cutoff
E_ has been solved approximately using a local density ap-
proximation. This procedure is very efficient. We refer to
Refs. [47,55] for further details. Note that the final numerical
results are independent of the cutoff energy E,, provided that
it is large enough.

Once the BAG equations are solved, it is straightforward
to calculate the total entropy and total energy of the system.
The expression for the entropy is given by

S=—kg2 [AE)nf(E,) +f(-E)In f(—=E)],  (5)
E"]

where the summation can be restricted to energy levels with
energy |E,7|$EC. Other high-lying branches have an expo-
nentially small contribution because of the large value of
E.(>kgT). This has been neglected. In contrast, the total en-
ergy includes two parts E=FEg.+E_.,. The discrete contri-
bution E ;. takes the form
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while the high-lying levels contribute

Econt = f dx[el ()C) + ez(x)], (7)
where ¢,(x) and e,(x) are given by
_em [ crou }
e(x) = Amh . ede{ er o 20 1
1
- [ = Vext(x) + V(€ + 0) = A2(x) ] ®
and
_ (Zm)mf>o { €- Su }
er)(x)=— amh ), ede o -2 -1
1
)

: [ = Ve(x) + V(€= Su)? = A2(x)]"?

respectively. An important self-consistency check of the cal-
culations of the entropy and of the energy is given by the
thermodynamic relation

T

dT’T’(a—S), (10)

E(T)=Ey+ f p

0

where E is the ground-state energy at zero temperature.

Before closing the section, we discuss briefly the applica-
blity of mean-field Bogoliubov—de Gennes theory in one di-
mension. It is well known that with decreasing dimensional-
ity, the pair fluctuation becomes increasingly important.
Specifically to 1D, the true long-range order is completely
destroyed by fluctuations. Thus, strictly speaking, there is no
a priori justification for the use of mean-field BdG theory for
a uniform spin-polarized Fermi gases. Nevertheless, we
found in the previous study that at zero temperature and at a
coupling constant y~ 1, the mean-field BAG calculation pro-
vides reasonable description for the energy and chemical po-
tential of a uniform spin-polarized Fermi gas, as compared to
the exact Bethe ansatz solutions (see, for example, Figs. 12
and 13 in Ref. [47]).

On the other hand, the presence of a harmonic trap effec-
tively increases the dimensionality of the system. For in-
stance, the density of state of the trapped 1D system is a
constant, exhibiting the same behavior as a uniform Fermi
gas in two dimensions. Thus, in a harmonic trap, we antici-
pate that the pair fluctuations should be much suppressed,
and thus the use of the mean-field BdG theory may be justi-
fied. We have checked in the previous work the validity of
BdG theory for a trapped spin-polarized Fermi gas and found
that indeed, at y~ 1 the density profile of a trapped gas ob-
tained from the zero-temperature BdG calculations agrees
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well with that from the asymptotically exact Gaudin solu-
tions (see, for example, Fig. 18 in Ref. [47]).

III. RESULTS AND DISCUSSIONS

For concreteness, we consider a trapped polarized gas
with a number of total atoms N=N;+N, = 100. In traps, it is
convenient to take trap units with m=h=w=kg=1 so that the
length and energy will be measured in units of the harmonic
oscillator length ay,=VAi/mw and of the level spacing fiw,
respectively. The characteristic energy scale may be given
by the Fermi energy of an unpolarized ideal gas at zero tem-
perature Ep=Nhw/2, which also provides a characteristic
temperature scale Tp=E;/kg. On the other hand, the length
scale is set by a Thomas-Fermi radius xp=N"?ay,. To char-
acterize the interaction, we use a dimensionless coupling
constant at the trap center [47] yy=ay,/(7N"?a,p), where
a;p=-mgp/(nh?) is the 1D scattering length and 7, is
roughly the ratio of the interaction energy density at the trap
center to the kinetic energy density. Thus, y,<<1 corresponds
to the weakly interacting limit, while the strong-coupling re-
gime is realized when ,> 1. Throughout the paper, we use a
coupling constant y,=1.6, comparable to the estimates for a
real experimental setup [47].

A. Density profiles and order parameter

Figures 2 and 3 give BdG results for the density profiles
of each component, as well as the density difference &n(x)
=n4(x)—n (x) and the order parameter A(x), at different tem-
peratures as indicated and at two spin polarizations P=(N;
—-N|)/N=0.075 (Fig. 2) and 0.175 (Fig. 3). In the work by
Orso [45] and our previous studies [46,47], it was shown that
at zero temperature there are two phase separation states: For
a small spin polarization the system stays in the spatially
inhomogeneous FFLO superfluid state at the trap center and
in a BCS superfluid state at the edge (referred to as FFLO-
BCS later). For a large spin polarization, the gas still remains
in the FFLO state at the trap center, but becomes a fully
polarized normal state towards the edge of the trap (referred
to as FFLO-N later). We refer to the Secs. VI and VII A of
Ref. [47] for further details. The two spin polarizations in
Figs. 2 and 3 are selected in such a way that initially (at low
temperature) the cloud is in different phase separation
ground state. We then trace how these two phase separation
states develop as the temperature increases.

For a small spin polarization below a critical value P, the
FFLO-BCS phase separation state at low temperature is
clearly characterized by the spatial profile of the order pa-
rameter [Fig. 2(a)]. It shows oscillations at the trap center,
characteristic of FFLO states, and two shoulders at the trap
edge, characteristic of a 1D BCS state. Naively, the FFLO
state is much more easily disturbed by thermal fluctuations
than the BCS state, due to a reduced pairing phase space.
Therefore, as shown in Figs. 2(b) and 2(c), with increasing
temperature the FFLO superfluid is suppressed faster than
the BCS shoulders at the edge. This leads to a pure BCS state
above a certain temperature about 0.107. Further increase
of the temperature will destroy the superfluid state eventually
at around 0.207.
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FIG. 2. (Color online) Spin-up and spin-down density profiles
(thick solid lines), the density difference (thin solid lines), and the
order parameter (dot-dashed lines) of a trapped 1D Fermi gas for a
spin polarization P=0.075, at several temperatures 7=0.017 (up-
per panel), T7=0.08Ty (middle panel), and T=0.15Ty (bottom
panel). For a better illustration, the scale of the density difference
has been doubled. At zero temperature, the system stays in a phase
separation phase with a FFLO state at center and an outside BCS
shell. The FFLO phase at the trap center, signaled by the oscilla-
tions in the order parameter, suppresses with increasing tempera-
ture, and leaves out a pure BCS state throughout the trap at about
0.10T. At a higher temperature around 0.207, the system becomes
fully normal through a second-order superfluid phase transition.

Experimentally, the change from FFLO-BCS phase sepa-
ration state to the pure BCS state and finally to the normal
state may be monitored by measuring the density difference.
At low temperature in the FFLO-BCS separation phase, the
local spin polarization or density difference is fully carried
by the FFLO state and thus is restricted to the trap center
[Fig. 2(a)]. Here, we have neglected the single peak of den-
sity difference exactly at the trap edge that is caused by
breakdown of the mean-field approach, see Ref. [47] for de-
tailed discussions. At a higher temperature, the BCS state
starts to contribute to the spin polarization, due to the ther-
mal excitations. As a result, the density difference leaks out
gradually to the trap edge [Fig. 2(b)]. When the FFLO state
fully disappears, the difference in density becomes very flat
throughout the trap [Fig. 2(c)].

The temperature evolution for a FFLO-N phase separation
state with large spin polarizations is simpler, as shown in Fig.
3. In this case, the FFLO state at the trap center is destroyed
gradually by increasing temperature, and one ends up with a
fully normal cloud around 7=0.15T. The shape of density
difference profiles is nearly independent of temperature.
Thus, the distinct temperature dependence of the density dif-
ference in the FFLO-BCS and FFLO-N states provides a
useful way to distinguish these two phase separation phases.

At the end of this subsection, we emphasize that in Figs.
2(a) and 2(b) it is the oscillation of the order parameter that
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FIG. 3. (Color online) Same plots as in Fig. 2, but for a larger
spin polarization P=0.175. With this value of spin polarizations, at
zero temperature the atoms at the trap edge stay in a normal state.
With increasing temperature, the FFLO phase at the trap center
vanishes gradually, which eventually leads to a normal phase
throughout the trap at 7=0.15T.

is the unambiguous signature of the FFLO state. There is
also a related oscillation in the density profiles with doubling
periodicity. However, these density oscillations are presum-
ably due to finite size effect. We have checked this point by
varying the number of total atoms. In Figs. 4 and 5, we show
the density difference and the order parameter at a spin po-
larization P=0.175 and at a low temperature 7=0.017 for
particle numbers in the range 50-200. With increasing num-
ber of total atoms, the amplitude of the density oscillation at
the trap center becomes smaller. In contrast, the amplitude of
the order parameter A(x=0) stays nearly constant. Note that
in Fig. 5 we find a Larkin-Ovchinnikov (LO) state in the
center region, i.e., the order parameter behaves as A(x)
=A(x=0)cos(g; ox) with a center-of-mass momentum gy
proportional to the Fermi wave-vector difference, gy o=kp;
—kp| = (N"2P)ay,.. Thus, in units of (N"2ay,) the periodicity
of the density oscillation [Fig. 4(c)] and of the order param-
eter are inversely proportional to the number of total atoms.

B. Equation of state

Figures 6 and 7 show the equation of state as a function of
temperature. The total entropy and total energy increase
monotonically with increasing temperature and spin polar-
ization. In particular, at a finite spin polarization, the entropy
increases linearly with temperature, as compared to the ex-
ponential temperature dependence for a BCS superfluid (i.e.,
P=0). This linear dependence arises from having gapless
single-particle excitations located at the node of FFLO states
at the trap center, and in case of the FFLO-N phase, from the
normal cloud at the edge of the trap. As the temperature
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FIG. 4. (Color online) (a) Density difference of a spin-polarized
Fermi gas at P=0.175 and T=0.017 for different numbers of total
atoms as indicated. (b) The number dependence of the amplitude of
the density oscillations A at the trap center. The amplitude A de-
creases slowly with increasing the number of atoms. (c) The num-
ber dependence of the periodicity of the density oscillations d at the
trap center.

increases, nontrivial kinks are visible in both chemical po-
tentials and entropy, reflecting the smooth transitions be-
tween different states as mentioned earlier.

C. Specific heat and finite-temperature phase diagram

The analysis of the profiles of the density distributions
and of the order parameter has already given some qualita-
tive features for the phase diagram at finite temperatures. To
quantify it, we calculate the specific heat, using the definition

JE as
Cy=—=T—

. 11
Jar  JdT (1

Figure 8 displays the temperature dependence of the specific
heat at three spin polarizations. Different transitions are well
characterized by the apparent kinks in the specific heat. For a
small polarization, two kinks are clearly visible, correspond-
ing to the transition from a FFLO-BCS phase separation state
to a pure BCS state, and in turn to a normal state. In contrast,
for large polarization, typically only one kink is identifiable,
which should be attributed to the transition from a FFLO-N
phase separation state to a completely normal state.
Gathering the position (temperature) of the kinks for dif-
ferent spin polarizations, we obtain the solid and dashed
lines in the phase diagram, as shown in Fig. 1. The former
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FIG. 5. (Color online) Order parameters of a spin-polarized
Fermi gas at P=0.175 and 7=0.017 for different numbers of total
atoms: (a) N=50, (b) N=100, and (c) N=200. The two dashed lines
indicate the value of the order parameter at the trap center.

line corresponds to the second-order phase transition from
either a BCS or FFLO-N to the normal state; while the later
distinguishes a high-T pure BCS state from a low-T FFLO-
BCS phase separation state. The determination of the bound-
ary between FFLO-BCS and FFLO-N phase separation
phases, for example, the critical spin polarization P.(T), is
more difficult from numerics. As discussed in our previous
works [46,47], the critical spin polarization is calculated
from a critical chemical potential difference, i.e., half of the
binding energy of the 1D molecule pairs. From Fig. 6(b), for
a large spin polarization the chemical potential difference is
temperature insensitive. On quite general grounds, we thus

0.58 T T

FIG. 6. (Color online) Temperature dependence of the chemical
potential [panel (a)] and of the chemical potential difference [panel
(b)] at three spin polarizations: P=0 (solid lines), 0.075 (dashed
lines), and 0.175 (dash-dotted lines).
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FIG. 7. (Color online) Temperature dependence of the total en-
tropy per particle [panel (a)] and of the total energy per particle
[panel (b)] at three spin polarizations: P=0 (solid lines), 0.075
(dashed lines), and 0.175 (dash-dotted lines).

assume that the critical spin polarization P,.(T) is nearly tem-
perature independent. This gives the dash-dotted line in the
phase diagram (Fig. 1).

It is evident from Fig. 1 that there is a wide temperature
window for the presence of FFLO states at the trap center.
The typical temperature for observing the FFLO state would
be one-tenth of the Fermi temperature, corresponding to an
entropy S~ 0.2Nkg. Such a temperature or entropy is within
the reach of present-day techniques [7].

IV. CONCLUDING REMARKS

In conclusion, based on a mean-field Bogoliubov—de
Gennes theory, we calculate the thermodynamic properties of
a polarized atomic Fermi gas in a highly elongated harmonic
trap. The profiles of the density distributions and of order
parameter, the equation of state, as well as the specific heat
have been analyzed in detail. We have then established a
finite temperature phase diagram. Our results are useful for

1.0 T T

A~
- =)} =)
T T T

C,, (units of Nk)
S
N~

FIG. 8. (Color online) Temperature dependence of the specific
heat at three spin polarizations: P=0 (solid line), 0.075 (dashed
line), and 0.175 (dash-dotted line). For P=0.075, the dashed arrow
indicates the transition from a FFLO-BCS phase separation phase to
a pure BCS state, while the solid arrow marks the second-order
phase transition from a BCS superfluid to a normal gas.
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experiments at Rice University [53], in which a search for
the exotic FFLO states in 1D polarized Fermi gases is under-
taken. Our estimated temperature and entropy for the realiza-
tion of FFLO states are about 0.17 and 0.2Nkp, respectively.
These values are experimentally attainable [7].

While our weak-coupling Bogoliubov—de Gennes study
provides a semiquantitative finite-temperature phase diagram
of the 1D polarized Fermi gas, an improved description
could be obtained by solving the exact thermodynamic Bethe
ansatz solutions of the 1D gas [59], with the trap effect

PHYSICAL REVIEW A 78, 023601 (2008)

treated using a local density approximation [45,46]. We plan
on doing this in future work.
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