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We study atom-atom correlations and relative number squeezing in the dissociation of a Bose-Einstein
condensate �BEC� of molecular dimers made of either bosonic or fermionic atom pairs. Our treatment ad-
dresses the role of the spatial inhomogeneity of the molecular BEC on the strength of correlations in the short
time limit. We obtain explicit analytic results for the density-density correlation functions in momentum space,
and show that the correlation widths and the degree of relative number squeezing are determined merely by the
shape of the molecular condensate.
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Dissociation of a Bose-Einstein condensate �BEC� of mo-
lecular dimers �1� into pair-correlated atoms represents the
matter-wave analog of two-photon parametric down-
conversion. The latter process has been of crucial importance
to the development of quantum optics. Owing to this anal-
ogy, molecular dissociation currently represents one of the
“workhorses” of the new field of quantum-atom optics
�2–10� and offers promising opportunities for the generation
of strongly correlated atomic ensembles and fundamental
tests of quantum mechanics with macroscopic numbers of
massive particles. Examples include the demonstration of the
Einstein-Podolski-Rosen paradox and violation of a classical
Cauchy-Schwartz inequality �5,8,11�. A closely related pro-
cess is atomic four-wave mixing in a collision of two BECs
�12,13�, which produces a spherical halo of spontaneously
scattered atoms �14–20� with correlations very similar to
those in dissociation.

A recently emerged discussion topic—following the ex-
periments of Ref. �13� on BEC collisions—is the understand-
ing of the width and the strength of the observed correla-
tions, as well as the prospects of detecting relative number
squeezing in the halo of the s-wave scattered atoms
�17,19,20�. The same questions are relevant to atom-atom
correlations in molecular dissociation and have not been
fully addressed so far.

In this paper, we study atom-atom correlations and rela-
tive number squeezing in the dissociation of a molecular
BEC in the short time limit. Our analysis applies to mol-
ecules that may consist of pairs of either bosonic or fermi-
onic atoms, and takes into account the spatial inhomogeneity
of the molecular BEC. It has been argued before and shown
in the bosonic case �7,8� that the treatment of spatial inho-
mogeneity is crucial for obtaining quantitatively correct re-
sults for atom-atom correlations. In the fermionic case, the
treatments of dissociation have been so far restricted only to
uniform systems �6,9,21,22�. In all cases, however, the tech-
niques are numerical and do not give the transparency of
analytic understanding, in contrast to the results obtained
here.

The effective quantum field theory Hamiltonian describ-
ing our system in the undepleted molecular field approxima-
tion is given, in a rotating frame, by �23�

Ĥ =� dx� �
i=1,2

� �2

2m
	�x�̂i	2 + ���̂i

†�̂i

− i�g�x���̂1�̂2 − �̂2

†�̂1
†�� . �1�

The operators �̂1,2�x , t� describe the atoms in two different
spin states, which can be either bosonic or fermionic, and we
assume that they have the same mass. The effective coupling
g�x� is defined as g�x�=���0�x�, where � is the atom-
molecule coupling �see �22� for details� and �0�x� is the ini-
tial density of the molecular BEC in a harmonic trap. For
computational simplicity, we start by treating a one-
dimensional �1D� system; the analytic results will later be
generalized to three dimensions �3D�.

The key difference between the present and previous �uni-
form� treatments of dissociation in the undepleted molecular
approximation �4,6� is that we retain the spatial dependency
of the molecular BEC: the effective coupling g�x� absorbs
the molecular field, which is treated classically via the co-
herent mean-field amplitude �0�x�=��0�x�. The undepleted
molecular approximation is valid only for short dissociation
times, during which the converted fraction of molecules does
not exceed 
10% �7,22�. Accordingly, the coupling g�x� can
be kept constant in time, although the evolution of the atomic
field is taking place in free space. In this regime, the disso-
ciation typically creates low-density atomic clouds for which
the s-wave scattering interactions are a negligible effect too
�7�.

The detuning � in Eq. �1� corresponds to the energy mis-
match 2�� between the free two-atom state in the dissocia-
tion threshold and the bound molecular state. Molecules that
are unstable against spontaneous dissociation correspond
to ��0, with 2� 	�	 being the total dissociation energy that
is converted into kinetic energy of atom pairs primarily
populating the resonant momenta around �k0, with k0

=�2m	�	 /�.
Writing down the Heisenberg equations of motion for the

field operators and converting to Fourier space �̂ j�x , t�
=�dkâj�k , t�exp�ikx� /�2	, we arrive at the following
coupled equations for the operators âj�k , t�:
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dâ1�k,t�
dt

= − i�kâ1�k,t� �� dq
�2	

g̃�q + k�â2
†�q,t� ,

dâ2
†�k,t�
dt

= i�kâ2
†�k,t� +� dq

�2	
g̃�q − k�â1�− q,t� . �2�

Here and hereafter, the 
 ��� �in general, upper �lower��
sign stands for bosonic �fermionic� statistics of the atoms,
g̃�k�=�dxe−ikxg�x� /�2	 is the Fourier transform of the effec-
tive coupling g�x�, and �k��k2 / �2m1�+�.

Equations �2� can be solved numerically using standard
methods of linear operator algebra. One can show that, for
vacuum initial conditions, the only nonzero second-order
moments are the normal and anomalous atomic
densities, nj�k ,k� , t���âj

†�k , t�âj�k� , t�� and m12�k ,k� , t�
��â1�k , t�â2�k� , t��. From Eqs. �2� we can see that the finite
width of g̃�k�—due to the inhomogeneity of the source—
implies that â1�k� couples not only to the partner spin com-
ponent at exactly opposite momentum â2

†�−k� �as is the case
in the homogeneous system�, but also to a range of momenta
around −k, within −k��k. The spread in �k determines the
width of atom-atom correlations and is ultimately related to
the width of the molecular BEC.

We now turn to the quantitative analysis of atom-atom
correlations expected to be present between the different
spin-state atoms with equal but opposite momenta due to
momentum conservation, and between the same spin-state
atoms in the collinear direction due to quantum statistical
effects. We quantify these correlations via Glauber’s second-
order correlation function,

gij
�2��k,k�,t� =

�âi
†�k,t�âj

†�k�,t�âj�k�,t�âi�k,t��
ni�k,t�nj�k�,t�

. �3�

The normalization with respect to the product of densities
ni�k , t� and nj�k� , t� �with nj�k , t��nj�k ,k , t�� ensures that
gij

�2��k ,k� , t�=1 for uncorrelated states. Due to obvious
symmetry considerations, g12

�2��k ,k� , t�=g21
�2��k ,k� , t� and

g11
�2��k ,k� , t�=g22

�2��k ,k� , t�.
Since the effective Hamiltonian corresponding to Eqs. �2�

is quadratic in the field operators, we can apply Wick’s
theorem to factorize the fourth-order moment in Eq. �3�. Not-
ing that �â1

†�k , t�â2�k� , t��= �âj�k , t�âj�k� , t��=0 in the present
model, we obtain

g12
�2��k,k�,t� = 1 + 	m12�k,k�,t�	2/�n1�k,t�n2�k�,t�� , �4�

gjj
�2��k,k�,t� = 1 � 	nj�k,k�,t�	2/�nj�k,t�nj�k�,t�� . �5�

Before presenting the results based on numerical solutions
of Eqs. �2�, we now develop simple analytic approaches that
give approximate predictions for these observables, valid for
short times. More specifically, we treat the short time dynam-
ics of dissociation via the Taylor expansion in time, up to
terms of order t2 �26�,

âj�k,t� = âj�k,0� + � �âj�k,t�
�t

�
t=0

t + � �2âj�k,t�
�t2 �

t=0

t2

2
+ ¯

valid for t� t0, where t0=1 /���0�0� is the time scale. Using
the rhs of Eqs. �2�, this gives, up to the lowest-order terms,
nj�k ,k� , t�� t2�dqg̃*�q+k�g̃�q+k�� /2	 and 	m12�k ,k� , t�	
� t	g̃�k+k��	 /�2	, or equivalently

nj�k,k�,t� � t2� dxe−i�k−k��x�g�x��2/2	 , �6�

	m12�k,k�,t�	 � t�� dxe−i�k+k��xg�x�/2	� . �7�

These results show that the width of the collinear �CL� cor-
relation between the same-spin atoms with nearly the same
momenta, Eq. �5�, will be determined by the square of the
Fourier transform of the square of the effective coupling
g�x�. On the other hand, the width of the back-to-back �BB�
correlation, Eq. �4�, between the different spin-state atoms
with nearly opposite momenta will be determined by the
square of the Fourier transform of g�x�. Therefore, the CL
correlation is generally broader than the BB correlation.
These conclusions are true for any shape of the source and
apply to both bosonic and fermionic statistics in the short
time limit.

Thomas-Fermi (TF) parabolic density profile. We
now give explicit analytic results for the case of a
TF inverted parabola for the molecular BEC density,
�0�x�=�0�1−x2 /RTF

2 � �	x	
RTF�, in which case g�x�
=���0�1−x2 /RTF

2 �1/2. Using the integral representation of
Bessel functions J��z� �27�, Eqs. �6� and �7� yield

nj�k,k�,t� �
2t2�2�0RTF

�2	

J3/2„�k − k��RTF…

��k − k��RTF�3/2 , �8�

	m12�k,k�,t�	 �
t���0RTF

2

J1„�k + k��RTF…

�k + k��RTF
. �9�

Since J��z���z /2�� /���+1� for z�1, the atomic momen-
tum distribution nj�k , t� and the diagonal anomalous
density m12�k ,−k , t� are nj�k , t��2t2�2�0RTF /3	 and
	m12�k ,−k , t�	� t���0RTF /4. Despite the fact that the atomic
momentum distribution in the lowest order in t is uniform,
the momentum cutoff kmax �23�—which must be assumed
when using a �-function interaction in Eq. �1�—prevents the
total atom number from diverging.

Substituting Eqs. �8� and �9� into Eqs. �4� and �5�, we
obtain the following explicit results for the atom-atom corre-
lations, valid for t� t0:

g12
�2��k,k�,t� � 1 +

9	2

16t2�2�0

�J1„�k + k��RTF…�2

��k + k��RTF�2 , �10�

gjj
�2��k,k�,t� � 1 �

9	

2

�J3/2„�k − k��RTF…�2

��k − k��RTF�3 . �11�

The pair correlations gij
�2��k ,k0 , t=0.5t0�, where the mo-

mentum of one of the atomic components is fixed to k0,
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while the partner momentum k is varied, is plotted in Figs.
1�a� and 1�b�. The dashed lines are the analytic results of
Eqs. �10� and �11�, whereas the solid lines are the numerical
results from Eqs. �2�. In Fig. 1�b�, the dashed lines are almost
indistinguishable from the respective solid lines, even though
the ratio t / t0=0.5 is not very small. For earlier times, the
agreement between the analytic and numerical results is even
better.

In the case of different spin states, g12
�2��k ,k0 , t�, with either

bosonic or fermionic atoms, we see a strong BB correlation
signal between atom pairs with equal but opposite momenta,
centered at k=−k0. The same-spin CL correlation function
gjj

�2��k ,k0 , t�, on the other hand, shows the Hanbury Brown
and Twiss bunching peak for bosons and an antibunching dip
for fermions due to Pauli blocking �25�, both centered at
k=k0.

In Fig. 2�a�, we plot the widths of the BB and CL corre-
lations as a function of time. For simplicity, we define them
as the half-width at half-maximum. The widths in the
bosonic and fermionic cases �with the solid lines correspond-
ing to the numerical results� have universal asymptotics
in the limit t→0, when the quantum statistical effects are
irrelevant due to low mode occupancies. The asymptotic
values �dashed lines� are found from Eqs. �10� and �11�:
wcorr

�BB�=ws and wcorr
�CL��1.12ws, where ws�1.62 /RTF is

the width of the momentum distribution �̃0�k�= 	g̃�k�	2 /�2

= 	��0	 /2J1�kRTF� /k	2 of the actual source—the molecular
BEC.

As an alternative measure of the strength of atom-atom
correlations �7�, we also calculate the normalized variance of
number-difference fluctuations for atoms in different spin
states and with equal but opposite momenta �k0,

Vk0,−k0
�t� = ����N̂1,k0

− N̂2,−k0
��2�/NS, �12�

where NS is the shot-noise level that originates from uncor-
related states. The number operators are defined by

N̂j,�k0
�t�=�Kdkn̂j�k , t� �with n̂j�k , t�= âj

†�k , t�âj�k , t��, where K
is the counting length around �k0. On a computational
lattice, the simplest choice that does not require explicit
binning of the signal is K=�k, where �k is the lattice spac-

ing, and therefore N̂j,�k0
�t�= n̂j��k0 , t��k. We emphasize that

NS is different for bosons and fermions. For the bosonic case,
NS is given by the sum of variances of the individual
mode occupancies with Poissonian statistics �as in the

coherent state�, implying that NS= �N̂1,k0
�+ �N̂2,−k0

�. For the
fermionic case, the sum of individual variances gives NS

= �N̂1,k0
��1− �N̂1,k0

��+ �N̂2,−k0
��1− �N̂2,−k0

�� �6�. The variance
�12� can be rewritten as

Vk0,−k0
�t� = 1 −

�kn1�k0,t�
1 − s�kn1�k0,t�

��g12
�2��k0,− k0,t� − g11

�2��k0,k0,t�� , �13�

where s=0�1� for bosons �fermions�, and we have taken

into account that �N̂1,k0
�= �N̂2,−k0

� and g11
�2��k0 ,k0 , t�

=g22
�2��−k0 ,−k0 , t�. Variance Vk0,−k0

�t��1 implies squeezing of
fluctuations below the shot-noise level and corresponds to a
violation of the classical Cauchy-Schwartz inequality with
g12

�2��k0 ,−k0 , t��g11
�2��k0 ,k0 , t� �8�.

The short time asymptotics for the variance can be found
using Eqs. �10� and �11�, yielding

Vk0,−k0
�t � t0� = 1 − 3	�kRTF/32. �14�

The small geometric prefactor in the second term, together
with the resolution requirement �k�1 /RTF, ensures that
Vk0,−k0

�0. We see that the squeezing is stronger for larger
condensates and counting lengths.

In Fig. 2�b� we plot the variance Vk0,−k0
�t� for three dif-

ferent sizes of the molecular condensate. The solid lines
are the numerical results from Eqs. �2�, whereas the horizon-
tal dashed lines are the short time asymptotic results of Eq.
�14� matching precisely the numerical results in the limit
t→0. As we can see, the squeezing of the relative number
fluctuations �from the numerical curves� does not change
significantly with time for bosons, while for fermions its
dynamics is affected by a stronger dependence of the fermi-
onic shot noise on the mode occupancy. The squeezing is
stronger for larger condensates, but is still far from perfect
squeezing, Vk0,−k0

�t�=0, which follows from the idealized
uniform models �6,7�.
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FIG. 1. �Color online� Back-to-back �a� and collinear �b� corre-
lation gij

�2��k ,k0 , t� as a function of k at t / t0=0.5. The dimensionless

detuning is �=�t0=−9, where t0=1 /���0�0��5 ms is the time
scale; the Thomas-Fermi radius of the molecular BEC is
RTF=250 �m; for other parameters, see Ref. �24�.
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Gaussian density profile. For comparison, we also give
the analytic results for a Gaussian density profile
�0�x�=�0 exp�−x2 /2�x

2� of the molecular BEC, giving the
momentum distribution of �̃0�k��exp�−k2 /2�k

2�, where
�x and �k=1 /2�x are the rms widths. In this case, the atom-
atom correlations are

g12
�2��k,k�,t � t0� � 1 + 2e−�k + k��2/2�k

2
/�t2�2�0� , �15�

gjj
�2��k,k�,t � t0� � 1 � e−�k − k��2/4�k

2
. �16�

The respective rms widths are given by �corr
�BB�=�k and

�corr
�CL�=�2�k, resulting in the ratio �corr

�CL� /�corr
�BB�=�2. The rela-

tive number squeezing is Vk0,−k0
�t� t0�=1−�2 /	�k�x,

with �k�1 /2�x ensuring Vk0,−k0
�0.

Results in 3D. For a nonisotropic TF parabolic density
profile of the molecular BEC, performing the integrals in 3D
versions of Eqs. �6� and �7� is more cumbersome and we
only give the final results for correlations corresponding
to the displacement between the pairs of momenta along
one of the Cartesian coordinates �=x ,y ,z. The BB and
CL correlation widths obtained here are wcorr,�

�BB� =ws,� and
wcorr,�

�CL� �1.08ws,�, where ws,��1.99 /RTF,�. The relative
number variance is Vk0,−k0

�t� t0��1−15��kRTF�3 /210,

where �k= ��kx�ky�kz�1/3 and RTF= �RTF,xRTF,yRTF,z�1/3

are the geometric means. The much smaller �than in 1D�
geometric prefactor in the second term, together with
�k��1 /RTF,�, explains why the “raw” �unbinned� squeezing
is much weaker in 3D �7,8� than in 1D. Therefore, the pre-
scription of Ref. �8� to perform binning for obtaining stron-
ger squeezing is more crucial in 3D.

For a Gaussian density profile, the generalization to 3D
is straightforward. In particular, the BB and CL correlation
widths for a displacement along x, y, or z are as in 1D,
while the relative number variance is Vk0,−k0

�t� t0�
=1− ��2 /	 �k�̄�3, where �̄= ��x�y�z�1/3.

In summary, we have studied the dissociation of a BEC of
molecular dimers into correlated fermionic and bosonic atom
pairs. We have obtained explicit analytic results for the width
and strength of the atom-atom correlations and for the rela-
tive number squeezing in the short time limit, using realistic
density profiles of the molecular BEC. The results show how
the squeezing improves with the larger size of the molecular
condensate, and how it can degrade in strongly inhomoge-
neous systems. Our approach can be easily generalized to
describe similar effects in atomic four-wave mixing via BEC
collisions �13,19,20�.
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