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Multiple bifurcations in atom optics

W. K. Hensinger: B. Upcroft! C. A. Holmes? N. R. Heckenberd,G. J. Milburn? and H. Rubinsztein-Dunidp
ICentre for Laser Science, Department of Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
’Department of Mathematics, The University of Queensland, Brisbane, Queensland 4072, Australia
3Centre for Quantum Computer Technology, Department of Physics, The University of Queensland,
Brisbane, Queensland 4072, Australia
(Received 7 July 2001; published 16 November 2001

We report the observation of multiple bifurcations in a nonlinear Hamiltionian system: laser-cooled atoms in
a standing wave with single-frequency intensity modulation. We provide clear evidence of the occurrence of
bifurcations by analyzing the atomic momentum distributions.
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I. INTRODUCTION cussion of bifurcation theory, see, for examgi®,9]. Bifur-
cations have been observed in other Hamiltonian systems
Laser-cooled atoms moving in far off-resonant optical-such as the absorption spectra of atoms in electric and mag-
dipole potentials have provided a clean and versatile experietic fields. Experimental measurements showed that the
mental context for the investigation of the quantum dynam-stable periodic electron-orbits bifurcated to new orbits of
ics of nonlinear Hamiltonian systems. Previous wik}3—7]  longer period 10,11
has demonstrated the ability to achieve nondissipative dy- The phase space of the driven pendulum is two dimen-

namics in the quantum domaidimensionless Planck’s con- sional, with position and momentum coordinates describing
stant of the order of unily with well-controlled time- the motion of the atoms along the direction of the standing

dependent potentials. Sinusoidal potentials with awave. When the standing wave is modulated a mixed phase-

periodically modulated phase were usgd?] to achieve Space results. In Fig. 1 we show Poincaestions with the
quantum localization of the momentum. A detailed compari-Stroboscopic period equal to the modulation period. The two
son was made of the classical phase-space structure affdands of stability left and right of the center result from
quantum dynamics with experiments, as a function of thé?hase-space resonances and correspond to atoms that oscil-
driving strength, in the work of Robinscet al.[3]. Experi-  late in phase with the standing-wave modulation. The inner
ments to test the resonance overlap criteria where atonisland corresponds to atoms that are approximately stationary
were subjected to an amplitude-modulated standing wave fait the bottom of the well. The sea of chaotic motion is
one modulation period4] showed that the phase spacebounded in momentum by the region of regular unbound
changed from global stability to chaotic. This could be con-motion that consists of atoms having enough kinetic energy
cluded from an analysis of the atomic momentum distributo hop from one standing-wave well to the next. The period
tion. Subsequently a close approximation to &hkicked ro-  of a resonance determines how many periods of the modula-
tor was implemented by using an amplitude-modulatedion frequency it takes for the atoms to return to their original
standing wave5]. The atoms were subjected to a periodic POsition in the phase space. For example, atoms in a period 2
sequence of short pulses of a standing wave, with the puls&sonance need two periods of the modulation frequency to
width much shorter than the repetition period. Effectivelyreturn to their initial phase-space coordinate. The islands of
this corresponds to broad-band amplitude modulation cerfegular motion near the region of unbound regular motion
tered on the pu|Se frequency_ In contrast, in this paper ware librations: atoms that take multiples of one modulation
consider cold atoms moving in a sinusoidal optical-dipolePeriod to hop from one well to another.
potential with amplitude modulation at a single frequency
that corresponds to the classical driven pendulum, a textbook. THE DRIVEN PENDULUM IN ATOM OPTICS AND ITS
example for theoretical studies of nonlinear Hamiltonian sys- EXPERIMENTAL IMPLEMENTATION
tems. In earlier work we reported the observation and initial )
theoretical analysis of phase-space resonances in this system 10 Observe these phase-space resonances we carried out
and pathways to study quantum chaos and dynamical tunnefXperiments using cold rup|d|um atoms that are positioned in
ing [6,7]. a f_ar detune(_:i optlc_al standing wave. Single-frequency modu-
In this paper we present an experimental and theoreticaftion of the intensity of the standing wave leads to an effec-
study of the classical phase-space structure, and its bifurc4¥e Hamiltonian for the center-of-mass motidy adiabati-
tions, as a function of the scaled well depih of the Cally eliminating the excited stat¢6,12] given by
intensity-modulgted st_anding wave. In our gxperiments_, we 2 10
observed the b|furcat.|on. sequence as distinct peaI_<s in the _ &Jr eff(l_zs sinwt)sir2(kx), 1)
atomic momentum distribution that appear and disappear 2m 4
when one of the control parameters of the system is changed.
We show that the observation of multiple bifurcations can bevhere the effective Rabi frequency iQ.4=Q%/5, Q
explained by classical Hamiltonian theory. For further dis-=T"y1/l¢4is the resonant Rabi frequeneay,is the modula-
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No. of atoms [arb. units]

FIG. 1. Bifurcation sequence.
The upper pictures are the experi-
mentally measured momentum
distributions. The corresponding
classical Poincaresections are

Momentum [recoils] shown below where th& axis is
(a) k=0.23 (b) x=0.30 (c) k=0.32 (d) k= 0.40 the momentum coordinate in re-

coils and they axis is the position

coordinate along the standing
wave. The resonances appear as
distinct peaks in the momentum
distribution. When the scaled well
depthk is increased several bifur-
cations occur in this mixed phase
space.

Position

No. of atoms [arb. units]

Position

-40 0 40
Momentum [recoils]

(f) k= 1.20 (g) k= 1.36 (h) x=3.30

tion parameterw is the modulation angular frequendy,is  load resonances experimentally we choose the starting phase
the inverse spontaneous lifetimé,is the detuning of the of the modulation in such a way that the resonances are
standing wavet is the time,p, the momentum component of located on the position axis where they overlap with the
the atom along the standing wave, doid the wave number. initial atomic momentum distribution. To observe phase-
Herel is the spatial mean of the intensity of the unmodulatedspace resonances we choose the endphase of the intensity
standing wave(which is half of the peak intensityso !  modulation so that the resonances are located on the momen-
=T VI peall szrandl so= hcl'/N2 is the saturation intensity. ~ tum axis having equal but oppositely directed nonzero mo-
is the wavelength of the standing wave. Using scaled varimentum. After approximately 10 ms ballistic expansion time

ables[5,6] the Hamiltonian is given by a picture of the atomic distribution is taken using a freezing
molasses method. Resonances can be observed as distinct
H=p?2+2k(1—2¢ sinT)sir?(q/2), (2)  peaks in the atomic momentum distributitatomic position

) ) distribution after ballistic expansiomesulting in experimen-
whereH=(4k“/mw?)H, q=2kx, andp=(2k/mw)py. The  ta] data as shown in Fig. 1. Details of the experimental setup

driving amplitude is given by may be found in Refd6,7].
5 To illustrate this bifurcation sequence we use the scaled
= AK Qe 3) well depthk as the control parameter. The driving amplitude
2w2m x and the momentum coordinapeare scaled with modula-

tion frequencyw. For the experiments we have presented

andr=tw is the scaled time variable. A thorough theoreticalhere we have kept the modulation frequency constant at 300
derivation along with the relevant classical and quantunkHz, so that experiments with different values mofcan be
simulation methods can be found in RES]. compared using real momentum coordinates. To change the

Our experimental setup consists of a standard magnetaalue ofk we have adjusted the detunidggf the modulated
optic trap (MOT) for rubidium atoms. A titanium sapphire standing wave while we left the intensityconstant. The
laser is used to produce an optical standing wave. The stanifitensity measurement error was8% —5% and it is a
ing wave is modulated using an acousto-optic modulator. Teystematic error that is the same for all of our data. The error
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in the detuning of the standing wave was smaller than 3%ion |'=1+0(€), 68’ =60+ O(e) that removes all the oscil-
and it is a random error given by the accuracy of the wavdating terms, except those that are resonant. The transformed
meter we have used. Hamiltonian is then

The modulation frequency used in our experiments corre-
sponds to a scaled Planck’s constant of 0.1. The scaled )2 Jro «
Planck’s constar(i6, 7] is the ratio of Planck’s constantto the H= /eI’ — — + e~—21"cog7—260")—e——1"+-- .
typical action of a particle in our system. 16 2 2\ko

8

Ill. THE BIFURCATION SEQUENCE
) ) . i The second transformation consists of moving to a rotating
Figure 1 shows the bifurcation sequence in terms of thgrame |'=J, $=6'—(7/2). In this rotating frame the

Poincaresections along with the corresponding experimentalyamiitonian is

momentum distributions. All the observed resonances bifur-

cate from the origin, where the oscillation frequency/is. 1
Since a period4f/m) resonance occurs when the period of K=exyd— =2+
the oscillation isn/m times the period of the driving, a 16
period-(/m) resonance bifurcates whenk=(m?/n?)

+O(e€), wheren andm are integers. Here the particular per- | we now Ietﬁ= V3 sin(¢) anda=2\/jcos(¢), the system

turbation implies that only resonances witkz2 and even, of equations foﬁandahas stable fixed points on tifgans-

gitiloggc#]r';hoie \g"th"e:aﬁncag:et\:gsgynfﬁ;?r;gaio'n(lz:é: cIorme@ momentum axis that correspond to period-2 reso-
9. L, app 9 Y : yp nances of the original system. Since at a fixed pajnts a
resonance islands. They are also of particular interest experi-

mentally as they can be easily identified in the experiment onstant so tha= r/2-+ const, the period of) is twice the

R : . orcing period @=7—26 implies a period-2 resonance
(r?e%rpeerntum distribution as two peaks, on either side of theI'hus they rotate with half the modulation frequency. By in-

To obtain the dependence of the bifurcation owe use cluding higher-order terms in the Hamiltonian we can show

. ] - that these fixed points only exist far>3(1— e+ > €°),
classical perturbation theory about the origin. We assume . - i .

) and that they destabilize the origin. They are just apparent in
that the state variablep(q) are of order/e. For « close to

. . the Poincar in Fig. 1. As« is incr he islan
resonance #~m?/n?), we can use canonical perturbaﬂont e Poincaréap (2) g S« is increased the islands

. : : -~ move apart and become separated by a sea of chaos as shown
theory to give us a fairly accurate picture of the emerging

resonan We expanda fies i about the resonan in (b). Then for k>2(1+e+e’+€%) two unstable fixed
esonances. VVe exparaas a Series 1a about the resonance points bifurcate into thétransformed position axis, stabiliz-

ing the origin once again. Between these two curves, which
are shown in Fig. 2, the momentum distribution is clearly
depressed in the center as shown in Fig),lwhereas for
k>1(1+e+e®+ €%, at (c) the three distinct islands of
regular motion appear clearly as three peaks in the momen-
tum distribution. Ask increases further, the period-2 islands
hove out, breaking up as they do so and eventually become
indistinguishable from the chaotic sgigs. 1d) and Xe)].

In Fig. 1 many of the Poincargections also show librational

€

77 coq2¢p)+---. 9

K= Ko+ €k, + €2 kpt - -, (4)

wherek, is the value at resonance wity= %, 1, and$ for
the resonances that we see experimentally. Near the arigin
is small and on the ordet/e so that[sin(@/2)]> may be
approximated by the first-few terms in its Taylor series abou
zero.

Then to zeroth order i

5 2 resonances. As they do not rotate they will not cross the
H= H0=p— + Koq_’ (5)  position axis and therefore they are not loaded by the initial
2 2 atomic momentum distribution in our current experimental
setup. Thus they do not appear in the experimentally mea-
which has action-angle variablek, §) where sured momentum distribution.
a The resonance aty=1 is of second order, meaning that
I it is only apparent once the first-order oscillatory terms have
p= Kém\/ﬁ cosd, g= @sm 0. 6) been reymg)vped via a near-identity transformatio)r/L This intro-

duces further resonant terms of the form cas(26) giving

rise to period-1 resonances as shown in Fid) and 1g).
Once again to investigate them further two canonical trans-
formations must be made. The second, as before, transforms
to a rotating frame, but heré=6'— 7. What follows is
similar to thex=; case. Two similar bifurcations stabilizing
and then destabilizing the origin take place for

Hence the Hamiltonian becomes
H(1,6,7)= kol +Hy(1,6,7)+Hy(1,0,7)+ -+, (7)

whereH,, is (m+1)th order ine. H,, has resonant oscilla-

tory terms, costir—né) wheren is even, implyingmth-order

resonances at the origin whenr/x,=m. , X
To investigate the resonancesai=; we use two canoni- Se Se€ (10

) A . . =1+— an =1-—.
cal transformations. The first is a near-identity transforma- K 3 and « 3

063408-3



W. K. HENSINGEREet al. PHYSICAL REVIEW A 64 063408

FIG. 2. The bifurcation dia-
gram for the driven pendulum in
atom optics. When the scaled well
depthk is changed the system un-
dergoes multiple bifurcations. The
values ofx where bifurcations oc-
cur depend on the modulation pa-
rametere. Three Poincarsections
are plotted. The arrows indicate to
which part of the bifurcation dia-
gram they correspond. Theaxis
in the Poincaresections is the po-
sition coordinate and thg axis is
the momentum coordinate. Sym-
bols illustrating the corresponding
parts of Fig. 1 are shownd as
@,0 (b),O (c), ¢ (d),H (e), ®
(), A (g), and A (h).
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They are now of the order oé? apart, which makes the larger volume(filling the entire chaotic regionthat leads to
individual bifurcations difficult to see experimentally. In Fig. a smaller atomic density in the chaotic region. This results in
2, the bifurcation curves have been plotted &) space. a significant atomic number signal-to-noise ratio between the
The pattern is repeated again for the third-order resonanaggular region and the chaotic region in the atomic momen-
at k=7, due to the presence of cos(326) terms. The bi- tum distribution. For values ok far below 0.2 our initial
furcation curves are of the order ef apart and they are atomic momentum distribution even extends past the reso-

given by nances, over the chaotic region and into the region of regular
unbound motion. This problem could be overcome by pre-

9 8le? 81éd 9 8le? 81ed paring atoms with a lower kinetic temperature as that would

k= Z+ 64 + 256 and k= Z+ 64 256 (12) imply a decrease in the momentum width. Alternatively one

could increase the modulation frequency. The upper limit of

(¢=37—26 implies a period-2/3 resonanceAs one ex- K is determined by the laser intensity and the detuning of the
pects the momentum separation between regions of unbouridanding wave. When the detuning of the standing wave be-
regular motion becomes larger when the valuexois in- ~ comes too small, incoherent transitions need to be considered
creased. This is due to the wells becoming effectively deepeand the adiabatic elimination of the excited state in our
Figure 2 represents the experimental regime where we weit@eory breaks down. The dynamics can no longer be de-
able to map the bifurcation sequence. The bifurcation curvescribed by the Hamiltonian that is presented here. Further-
shown, fork~1/4, 1, and 9/4, are of the order ef. For a  more spontaneous emission will act as a source of dissipa-
deeper understanding of the bifurcation diagram we havéion.
plotted three Poincarsections for thec=1 bifurcation. The To perform an accurate mapping of the experimental re-
arrows indicate that part of the bifurcation diagram that theysults to the bifurcation sequence we measured the rotation
represent. The symbols in Fig. 2 indicate the correspondinfrequency of the resonances. This measurement determines
parts of Fig. 1. the period of the resonances. To conduct these measurements
The lower experimental limit of the scaled well depth  we vary the length of the standing-wave modulat{arich
for this sequence is determined by the momentum width ofs equivalent to a variation of the endphase of modulation
our initial atomic cloud. The kinetic temperature of our cloud measured in cycles and record the resulting atomic momen-
was approximately 1@ K. If the initial momentum spread of tum distribution. Figure 3 shows the rotation-frequency mea-
the atomic cloud is much wider than the momentum width ofsurements for the resonances bifurcating &t0.25. We plot
the resonances, resonances cannot be resolved anymoreatomic momentum distributions and the length of the modu-
the experimentally measured position distribution. This is befation in cycles is given for each momentum distribution.
cause the resonance features then become submerged in fesonances can be observed clearly when they are located
chaotic background. Immediately after the loading phas@n the momentum axis when the standing wave is turned off
when the atomic density inside the chaotic region is equal t@and will disappear when located on the position axis at that
the density inside the islands of regular motiboth equal to  time. At 7.5 modulation period one can see two distinct reso-
the initial atomic density resonances do not constitute a nances. These have completely disappeared after eight
feature in the atomic momentum distribution. However, aftermodulation period(cycleg. The resonances can again be
sufficient time, atoms in the chaotic region can spread over aeen as distinct peaks in the momentum distribution after 8.5
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0.015\,,......,,,..2... Ny :

.: 0.01 ' TR FIG. 3. Verification of the value of the period
8 "’,i/ N for the resonances at the=0.25 bifurcation.
2 o~ 5 Atomic momentum distributions are shown for
%0_005\ different modulation lengths measured in cycles.
%5 One can see that resonances return to their initial
o] phase-space position after two periods of the
= 04 standing-wave modulation.
95
40
9
85
8
Number of cycles s 40 Momentum [recoils]

periods of the standing-wave modulation. Therefore it fol-illustrated in Fig. 5. The left-hand side shows the phase space
lows that the resonances needed one modulation period tfter 7.7 cycles, while the phase space after 7.2 cycles is
rotate by 180° in phase space. After two modulation periodshown on the right-hand side. Phase-space volume is pre-
the resonances appear again at their initial position. Henceerved in Hamiltonian systems. However, the shape of the
they are period-2 resonances. resonances has changed significantly. The momentum width
Figure 4 shows the rotation frequency measurements foof the resonance after 7.7 periods is larger compared to the
the resonances bifurcating at=1, which exhibits different one at 7.2 cycles. This results in the experimentally observed
features compared to Fig. 3. This allows us to distinguishbroadening of the resonances. From the discussion above it
between different bifurcation regimes. After 7.2 cycles onefollows that these resonances need one modulation period to
can see two distinct resonances and the center island of steeturn to their initial position ak~1 making them period-1
bility. A quarter period later, the resonances have rotated oresonances.
the position axis and therefore no longer visible. Another We have also measured the rotational frequency for the
guarter period later the resonances have rotated by 180° ameriod-2/3 resonances shown in Figh)lL We were able to
are now located on the momentum axis. Note that the ressuccessfully confirm their period.
nances have become wider and that their intensity has de- Figure 6 compares our experimental results with predic-
creased as compared to the distribution at 7.2 periods of thi#gons from quantum trajectory simulatiof@] and the classi-
standing-wave modulation. To understand this phenomenoeal description. We have measured the momentum of the
one needs to consider the corresponding Poinsecions as center of the peak in the atomic momentum distributions

FIG. 4. Verification of the value of the period

0_015\_.-""' for the resonances at th&=1 bifurcation.

"ZE, Atomic momentum distributions are shown for
; oo different modulation lengths measured in cycles.
3 One can see that resonances return to their initial
g L phase-space position after 1 period of the
.30-005\-" standing-wave modulation. When the resonances
5 have rotated by 180¢7.7 cycle$ with respect to

2’ oL their initial phase-space positidii.2 cycle$ they

have become wider compared to their initial
width at 7.2 cycles.

8.2

Number of cycles 72 680 Momentum [recoils]
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w(p?l2)= ; (12)

Here w(H) is given by

m\k
ZF( w/z,\/g) |

Momentum whereF (7/2,«) is the complete elliptic integral of the first
i kind. Canonical perturbation theory, here performed to order
o, o ) ¢2 and including the first three Fourier coefficients of the
FIG. 5. A Poincaresection is shown fok=1.2. While the left-  hatyrhation can be used to refine the result. As can be seen
hand side corresponds to 7.7 cycles, the right-hand side shows thg riq 6 there is satisfactory agreement between the experi-
corresponding phase space after a 180° rotation at 7.2 cycles. O.%‘ﬁental results and the quantum simulations. The results
2225?&?2;;23 momentum width of the resonances has signi aken from the Poincarsections (numerical solution of
Y ' Hamilton’s equations and the analytical classical results
both for the experimental data and the quantum simulationdrom perturbation theory are in good agreement. However,
The error bars for the experimental data result from the readthe classical predictions show a larger resonance momentum
out uncertainty due to asymmetries in the experimentallythan the quantum simulations and the findings of our experi-
measured momentum distribution. These asymmetries ament. While the classical theory predicts the momentum of
most likely due to nonuniformities in the initial spatial dis- the fixed pointwhen positioned on the momentum axihe
tribution of the MOT. Other possible error sources include amguantum simulations directly predict the full momentum dis-
imperfectly zeroed magnetic field in the interaction region.tribution as expected from the experiment. Part of the above
The momenta of resonances in the quantum simulation exdiscrepancy could result from the fact that the fixed points
hibit some readout uncertainty because the peaks in the mase positioned asymmetrically towards the faster side of the
mentum distribution do not necessarily have a symmetricegion of regular motion that in turn gives rise to the peak in
Gaussian shape. This readout uncertainty is reflected in thibe experimentally measured momentum distribution. How-
error bars for the quantum simulations. ever, if one assumes the mean of maximum and minimum
We compare these results with the momentum of the resanomenta occupied by the region of regular motievhen
nances when they are located on the momentum axis, gmsitioned on the momentum akiss a classical momentum
calculated from numerical solutions of the equations describapproximation for the experimentally observed momentum
ing the classical system and from classical perturbatiorpeak, the classical resonance momenta are still significantly
theory. To zeroth order ia, the momentunp of the period- faster than the experimentally measured values. These results
(n/m) resonances is found by setting the nonlinear fresuggest a possible explanation in terms of the theory of
quencyw(H) of the unperturbed system equaltén so that  quantum slow motiorf13], but more rigorous and detailed
the momentum is given by investigation will be needed to confirm this.

w(H)=

(13

4 Quantum simulation
FIG. 6. Momenta of reso-

nances in different bifurcation re-
4. Bxpariment gimes. The momentum of differ-
— Classical perturbation theory ent resonances is plotted as a
x Classical numerical simulation function of the scaled well depth
(mean of max. and min. momenta) .
k. These are compared with pre-
? dictions from the quantum simula-

43 | e Classical numerical simulation

w
o
L

W
@
|

tion, momentum of the fixed point
in the Poincaresection (classical
numerical simulationwhen posi-

tioned on the momentum axis and

- results from classical perturbation

1 theory. Furthermore we plot the

mean of minimum and maximum

13 1 momentum of the island of regu-

# lar motion when positioned on the

T w T momentum axis obtained from the

0 0.5 1 1.5 2 25 3 3.5 classical numerical simulation.
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IV. CONCLUSION tion frequency and at the lower end by increasing the modu-

For the first time we have been able to map a multi IeIation frequency. By decreasing temperature and increasing
bifurcation sequence in atom optics and ex Iainptheir 0Cfurl_aser intensity the range could also be substantially extended.

. quer P P The experimental system that was described here can be de-
rence using classical perturbation theory for the relevant non-

linear Hamiltonian. Our experimental results are in goodScrIbEd by a truly two-dimensional phase space spanned by

agreement with the theoretical predictions of classical ertur‘-)OSition and momentum along the standing wave making it
9 P P an ideal testbed for experimental studies of nonlinear dynam-

bation theory highlighting the dynamics of cold atoms as a

model system for truly nonlinear Hamiltonian dynamics. We -~ When the scaled Planck’s constant of the system be-
y y y " “"~comes sufficiently large, one can use the dynamics of the

have also succeeded in confirming the mapping of the atomig - . : .
momentum distributions to the bifurcation diagram by mea-&rlven pendulum in atom optics to study quantum tunneling

. . . henomena[14], decoherence in nonlinear systems, and
suring the rotation frequency of the resonant islands fronguantum chao§7,12]
which the distinct peaks in the atomic momentum distribu- e

tion (esult. With the appropriate gxperlmental conditions it is ACKNOWLEDGMENT

possible to extend the bifurcation sequence that was pre-

sented in this paper. With our current experimental setup we This work was supported by the Australian Research
could extend it at the higher end by decreasing the modula€ouncil.

[1] FL. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundaram,  Opt. 2, 659 (2000.

and M.G. Raizen, Phys. Rev. Let5, 4598(1995. [8] A. J. Lichtenberg and M. A. LiebermanRegular Stochastic
[2] R. Graham, M. Schlautmann, and P. Zoller, Phys. Red45A Motion, Applied Mathematical Sciences Vol. 3&pringer-
R19(1992. Verlag, New York, 1988

[3] J.C. Robinson, C. Bharucha, F.L. Moore, R. Jahnke, G.A. [9] M.A.M de Aguiar, C.P. Malta, M. Baranger, and K.T.R.
Georgakis, Q. Niu, M.G. Raizen, and Bala Sundaram, Phys.  Davises, Ann. PhygPari9 180 167 (1987).
Rev. Lett.74, 3963(1995. [10] J.-M. Mao, K.A. Rapelje, S.J. Blodgett-Ford, J.B. Delos, A.
[4] J.C. Robinson, C.F. Bharucha, K.W. Madison, F.L. Moore, Konig, and H. Rinneberg, Phys. Rev.48, 2117(1993.
Bala Sundaram, S.R. Wilkinson, and M.G. Raizen, Phys. Rev[11] J. Main, G. Wiebusch, K. Welge, J. Shaw, and J.B. Delos,

Lett. 76, 3304(1996. Phys. Rev. A49, 847 (1994.
[5] F.L. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundaram[12] S. Dyrting, G.J. Milburn, and C.A. Holmes, Phys. Rev4§
and M.G. Raizen, Phys. Rev. Le#5, 4598(1995. 969 (1993.

[6] W.K. Hensinger, A.G. Truscott, B. Upcroft, M. Hug, H.M. [13] M. Hug and G.J. Milburn, Phys. Rev. 83, 023413(200J).
Wiseman, N.R. Heckenberg, and H. Rubinsztein-Dunlop,[14] W.K. Hensinger, H. Hfiner, A. Browaeys, N.R. Heckenberg,
Phys. Rev. A64, 033407(2002). K. Helmerson, C. McKenzie, G.J. Milburn, W.D. Phillips, S.L.

[7] W.K. Hensinger, A.G. Truscott, B. Upcroft, N.R. Heckenberg, Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nat(cen-
and H. Rubinsztein-Dunlop, J. Opt. B Quantum Semiclassical don) 412, 52 (2001).

063408-7



