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Multiple bifurcations in atom optics
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We report the observation of multiple bifurcations in a nonlinear Hamiltionian system: laser-cooled atoms in
a standing wave with single-frequency intensity modulation. We provide clear evidence of the occurrence of
bifurcations by analyzing the atomic momentum distributions.
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I. INTRODUCTION

Laser-cooled atoms moving in far off-resonant optic
dipole potentials have provided a clean and versatile exp
mental context for the investigation of the quantum dyna
ics of nonlinear Hamiltonian systems. Previous work@1,3–7#
has demonstrated the ability to achieve nondissipative
namics in the quantum domain~dimensionless Planck’s con
stant of the order of unity! with well-controlled time-
dependent potentials. Sinusoidal potentials with
periodically modulated phase were used@1,2# to achieve
quantum localization of the momentum. A detailed compa
son was made of the classical phase-space structure
quantum dynamics with experiments, as a function of
driving strength, in the work of Robinsonet al. @3#. Experi-
ments to test the resonance overlap criteria where at
were subjected to an amplitude-modulated standing wave
one modulation period@4# showed that the phase spa
changed from global stability to chaotic. This could be co
cluded from an analysis of the atomic momentum distrib
tion. Subsequently a close approximation to thed-kicked ro-
tor was implemented by using an amplitude-modula
standing wave@5#. The atoms were subjected to a period
sequence of short pulses of a standing wave, with the p
width much shorter than the repetition period. Effective
this corresponds to broad-band amplitude modulation c
tered on the pulse frequency. In contrast, in this paper
consider cold atoms moving in a sinusoidal optical-dip
potential with amplitude modulation at a single frequen
that corresponds to the classical driven pendulum, a textb
example for theoretical studies of nonlinear Hamiltonian s
tems. In earlier work we reported the observation and ini
theoretical analysis of phase-space resonances in this sy
and pathways to study quantum chaos and dynamical tun
ing @6,7#.

In this paper we present an experimental and theore
study of the classical phase-space structure, and its bifu
tions, as a function of the scaled well depthk of the
intensity-modulated standing wave. In our experiments,
observed the bifurcation sequence as distinct peaks in
atomic momentum distribution that appear and disapp
when one of the control parameters of the system is chan
We show that the observation of multiple bifurcations can
explained by classical Hamiltonian theory. For further d
1050-2947/2001/64~6!/063408~7!/$20.00 64 0634
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cussion of bifurcation theory, see, for example,@8,9#. Bifur-
cations have been observed in other Hamiltonian syst
such as the absorption spectra of atoms in electric and m
netic fields. Experimental measurements showed that
stable periodic electron-orbits bifurcated to new orbits
longer period@10,11#.

The phase space of the driven pendulum is two dim
sional, with position and momentum coordinates describ
the motion of the atoms along the direction of the stand
wave. When the standing wave is modulated a mixed pha
space results. In Fig. 1 we show Poincare´ sections with the
stroboscopic period equal to the modulation period. The t
islands of stability left and right of the center result fro
phase-space resonances and correspond to atoms that
late in phase with the standing-wave modulation. The in
island corresponds to atoms that are approximately statio
at the bottom of the well. The sea of chaotic motion
bounded in momentum by the region of regular unbou
motion that consists of atoms having enough kinetic ene
to hop from one standing-wave well to the next. The per
of a resonance determines how many periods of the mod
tion frequency it takes for the atoms to return to their origin
position in the phase space. For example, atoms in a peri
resonance need two periods of the modulation frequenc
return to their initial phase-space coordinate. The islands
regular motion near the region of unbound regular mot
are librations: atoms that take multiples of one modulat
period to hop from one well to another.

II. THE DRIVEN PENDULUM IN ATOM OPTICS AND ITS
EXPERIMENTAL IMPLEMENTATION

To observe these phase-space resonances we carrie
experiments using cold rubidium atoms that are positione
a far detuned optical standing wave. Single-frequency mo
lation of the intensity of the standing wave leads to an eff
tive Hamiltonian for the center-of-mass motion~by adiabati-
cally eliminating the excited state! @6,12# given by

H5
px

2

2m
1

\Veff

4
~122« sinvt !sin2~kx!, ~1!

where the effective Rabi frequency isVeff5V2/d, V
5GAI /I sat is the resonant Rabi frequency,« is the modula-
©2001 The American Physical Society08-1
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FIG. 1. Bifurcation sequence
The upper pictures are the exper
mentally measured momentum
distributions. The corresponding
classical Poincare´ sections are
shown below where thex axis is
the momentum coordinate in re
coils and they axis is the position
coordinate along the standin
wave. The resonances appear
distinct peaks in the momentum
distribution. When the scaled wel
depthk is increased several bifur
cations occur in this mixed phas
space.
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the

rror
tion parameter,v is the modulation angular frequency,G is
the inverse spontaneous lifetime,d is the detuning of the
standing wave,t is the time,px the momentum component o
the atom along the standing wave, andk is the wave number
HereI is the spatial mean of the intensity of the unmodula
standing wave~which is half of the peak intensity! so V
5GAI peak/2I satandI sat5hcG/l3 is the saturation intensity.l
is the wavelength of the standing wave. Using scaled v
ables@5,6# the Hamiltonian is given by

H5p2/212k~122« sint!sin2~q/2!, ~2!

whereH5(4k2/mv2)H, q52kx, andp5(2k/mv)px . The
driving amplitude is given by

k5
\k2Veff

2v2m
~3!

andt5tv is the scaled time variable. A thorough theoretic
derivation along with the relevant classical and quant
simulation methods can be found in Ref.@6#.

Our experimental setup consists of a standard magn
optic trap ~MOT! for rubidium atoms. A titanium sapphir
laser is used to produce an optical standing wave. The st
ing wave is modulated using an acousto-optic modulator.
06340
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load resonances experimentally we choose the starting p
of the modulation in such a way that the resonances
located on the position axis where they overlap with t
initial atomic momentum distribution. To observe phas
space resonances we choose the endphase of the inte
modulation so that the resonances are located on the mom
tum axis having equal but oppositely directed nonzero m
mentum. After approximately 10 ms ballistic expansion tim
a picture of the atomic distribution is taken using a freez
molasses method. Resonances can be observed as di
peaks in the atomic momentum distribution~atomic position
distribution after ballistic expansion! resulting in experimen-
tal data as shown in Fig. 1. Details of the experimental se
may be found in Refs.@6,7#.

To illustrate this bifurcation sequence we use the sca
well depthk as the control parameter. The driving amplitu
k and the momentum coordinatep are scaled with modula
tion frequencyv. For the experiments we have present
here we have kept the modulation frequency constant at
kHz, so that experiments with different values ofk can be
compared using real momentum coordinates. To change
value ofk we have adjusted the detuningd of the modulated
standing wave while we left the intensityI constant. The
intensity measurement error was18% 25% and it is a
systematic error that is the same for all of our data. The e
8-2
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MULTIPLE BIFURCATIONS IN ATOM OPTICS PHYSICAL REVIEW A64 063408
in the detuning of the standing wave was smaller than
and it is a random error given by the accuracy of the wa
meter we have used.

The modulation frequency used in our experiments co
sponds to a scaled Planck’s constant of 0.1. The sc
Planck’s constant@6,7# is the ratio of Planck’s constant to th
typical action of a particle in our system.

III. THE BIFURCATION SEQUENCE

Figure 1 shows the bifurcation sequence in terms of
Poincare´ sections along with the corresponding experimen
momentum distributions. All the observed resonances bi
cate from the origin, where the oscillation frequency isAk.
Since a period-(n/m) resonance occurs when the period
the oscillation isn/m times the period of the driving, a
period-(n/m) resonance bifurcates whenk5(m2/n2)
1O(e), wheren andm are integers. Here the particular pe
turbation implies that only resonances withn>2 and even,
m>1 occur. Those withn52 can be easily seen in Poinca´
sections in Fig. 1, appearing as two symmetrically plac
resonance islands. They are also of particular interest exp
mentally as they can be easily identified in the experime
momentum distribution as two peaks, on either side of
center.

To obtain the dependence of the bifurcation one we use
classical perturbation theory about the origin. We assu
that the state variables (p,q) are of orderAe. For k close to
resonance (k'm2/n2), we can use canonical perturbatio
theory to give us a fairly accurate picture of the emerg
resonances. We expandk as a series ine about the resonanc

k5k01ek11e2k21•••, ~4!

wherek0 is the value at resonance withk05 1
4 , 1, and9

4 for
the resonances that we see experimentally. Near the origq
is small and on the orderAe so that @sin(q/2)#2 may be
approximated by the first-few terms in its Taylor series ab
zero.

Then to zeroth order ine

H5H05
p2

2
1k0

q2

2
, ~5!

which has action-angle variables (I ,u) where

p5k0
1/4A2I cosu, q5

A2I

k0
1/4

sinu. ~6!

Hence the Hamiltonian becomes

H~ I ,u,t!5Ak0I 1H1~ I ,u,t!1H2~ I ,u,t!1•••, ~7!

whereHm is (m11)th order ine. Hm has resonant oscilla
tory terms, cos(mt2nu) wheren is even, implyingmth-order
resonances at the origin whennAk05m.

To investigate the resonance atk05 1
4 we use two canoni-

cal transformations. The first is a near-identity transform
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tion I 85I 1O(e), u85u1O(e) that removes all the oscil
lating terms, except those that are resonant. The transfor
Hamiltonian is then

H5Ak0I 82
I 8 2

16
1e

Ak0

2
I 8cos~t22u8!2e

k1

2Ak0

I 81•••.

~8!

The second transformation consists of moving to a rotat
frame I 85J, f5u82(t/2). In this rotating frame the
Hamiltonian is

K5ek1J2
1

16
J21

e

4
J cos~2f!1•••. ~9!

If we now let p̄5AJ sin(f) and q̄52AJ cos(f), the system
of equations forp̄ andq̄ has stable fixed points on the~trans-
formed! momentum axis that correspond to period-2 re
nances of the original system. Since at a fixed point,f is a
constant so thatu5t/21const, the period ofu is twice the
forcing period (f5t22u implies a period-2 resonance!.
Thus they rotate with half the modulation frequency. By i
cluding higher-order terms in the Hamiltonian we can sh
that these fixed points only exist fork. 1

4 (12e1e22e3),
and that they destabilize the origin. They are just apparen
the Poincare´ Map ~a! in Fig. 1. Ask is increased the island
move apart and become separated by a sea of chaos as s
in ~b!. Then for k. 1

4 (11e1e21e3) two unstable fixed
points bifurcate into the~transformed! position axis, stabiliz-
ing the origin once again. Between these two curves, wh
are shown in Fig. 2, the momentum distribution is clea
depressed in the center as shown in Fig. 1~b!, whereas for
k. 1

4 (11e1e21e3), at ~c! the three distinct islands o
regular motion appear clearly as three peaks in the mom
tum distribution. Ask increases further, the period-2 island
move out, breaking up as they do so and eventually beco
indistinguishable from the chaotic sea@Figs. 1~d! and 1~e!#.
In Fig. 1 many of the Poincare´ sections also show librationa
resonances. As they do not rotate they will not cross
position axis and therefore they are not loaded by the ini
atomic momentum distribution in our current experimen
setup. Thus they do not appear in the experimentally m
sured momentum distribution.

The resonance atk051 is of second order, meaning tha
it is only apparent once the first-order oscillatory terms ha
been removed via a near-identity transformation. This int
duces further resonant terms of the form cos(2t22u) giving
rise to period-1 resonances as shown in Fig. 1~f! and 1~g!.
Once again to investigate them further two canonical tra
formations must be made. The second, as before, transfo
to a rotating frame, but heref5u82t. What follows is
similar to thek5 1

4 case. Two similar bifurcations stabilizin
and then destabilizing the origin take place for

k511
5e2

3
and k512

5e2

3
. ~10!
8-3
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FIG. 2. The bifurcation dia-
gram for the driven pendulum in
atom optics. When the scaled we
depthk is changed the system un
dergoes multiple bifurcations. The
values ofk where bifurcations oc-
cur depend on the modulation pa
rametere. Three Poincare´ sections
are plotted. The arrows indicate t
which part of the bifurcation dia-
gram they correspond. Thex axis
in the Poincare´ sections is the po-
sition coordinate and they axis is
the momentum coordinate. Sym
bols illustrating the corresponding
parts of Fig. 1 are shown:L as
~a!, h ~b!, s ~c!, l ~d!, j ~e!, d

~f!, n ~g!, andm ~h!.
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They are now of the order ofe2 apart, which makes the
individual bifurcations difficult to see experimentally. In Fi
2, the bifurcation curves have been plotted in (e,k) space.

The pattern is repeated again for the third-order resona

at k5 9
4 , due to the presence of cos(3t22u) terms. The bi-

furcation curves are of the order ofe3 apart and they are
given by

k5
9

4
1

81e2

64
1

81e3

256
and k5

9

4
1

81e2

64
2

81e3

256
~11!

(f53t22u implies a period-2/3 resonance!. As one ex-
pects the momentum separation between regions of unbo
regular motion becomes larger when the value ofk is in-
creased. This is due to the wells becoming effectively dee
Figure 2 represents the experimental regime where we w
able to map the bifurcation sequence. The bifurcation cur
shown, fork'1/4, 1, and 9/4, are of the order ofe3. For a
deeper understanding of the bifurcation diagram we h
plotted three Poincare´ sections for thek51 bifurcation. The
arrows indicate that part of the bifurcation diagram that th
represent. The symbols in Fig. 2 indicate the correspond
parts of Fig. 1.

The lower experimental limit of the scaled well depthk
for this sequence is determined by the momentum width
our initial atomic cloud. The kinetic temperature of our clo
was approximately 10mK. If the initial momentum spread o
the atomic cloud is much wider than the momentum width
the resonances, resonances cannot be resolved anymo
the experimentally measured position distribution. This is
cause the resonance features then become submerged
chaotic background. Immediately after the loading ph
when the atomic density inside the chaotic region is equa
the density inside the islands of regular motion~both equal to
the initial atomic density!, resonances do not constitute
feature in the atomic momentum distribution. However, af
sufficient time, atoms in the chaotic region can spread ov
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larger volume~filling the entire chaotic region! that leads to
a smaller atomic density in the chaotic region. This results
a significant atomic number signal-to-noise ratio between
regular region and the chaotic region in the atomic mom
tum distribution. For values ofk far below 0.2 our initial
atomic momentum distribution even extends past the re
nances, over the chaotic region and into the region of reg
unbound motion. This problem could be overcome by p
paring atoms with a lower kinetic temperature as that wo
imply a decrease in the momentum width. Alternatively o
could increase the modulation frequency. The upper limit
k is determined by the laser intensity and the detuning of
standing wave. When the detuning of the standing wave
comes too small, incoherent transitions need to be consid
and the adiabatic elimination of the excited state in o
theory breaks down. The dynamics can no longer be
scribed by the Hamiltonian that is presented here. Furth
more spontaneous emission will act as a source of diss
tion.

To perform an accurate mapping of the experimental
sults to the bifurcation sequence we measured the rota
frequency of the resonances. This measurement determ
the period of the resonances. To conduct these measurem
we vary the length of the standing-wave modulation~which
is equivalent to a variation of the endphase of modulati!
measured in cycles and record the resulting atomic mom
tum distribution. Figure 3 shows the rotation-frequency m
surements for the resonances bifurcating atk50.25. We plot
atomic momentum distributions and the length of the mo
lation in cycles is given for each momentum distributio
Resonances can be observed clearly when they are loc
on the momentum axis when the standing wave is turned
and will disappear when located on the position axis at t
time. At 7.5 modulation period one can see two distinct re
nances. These have completely disappeared after e
modulation period~cycles!. The resonances can again b
seen as distinct peaks in the momentum distribution after
8-4
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FIG. 3. Verification of the value of the period
for the resonances at thek50.25 bifurcation.
Atomic momentum distributions are shown fo
different modulation lengths measured in cycle
One can see that resonances return to their ini
phase-space position after two periods of t
standing-wave modulation.
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periods of the standing-wave modulation. Therefore it f
lows that the resonances needed one modulation perio
rotate by 180° in phase space. After two modulation peri
the resonances appear again at their initial position. He
they are period-2 resonances.

Figure 4 shows the rotation frequency measurements
the resonances bifurcating atk'1, which exhibits different
features compared to Fig. 3. This allows us to distingu
between different bifurcation regimes. After 7.2 cycles o
can see two distinct resonances and the center island of
bility. A quarter period later, the resonances have rotated
the position axis and therefore no longer visible. Anoth
quarter period later the resonances have rotated by 180°
are now located on the momentum axis. Note that the re
nances have become wider and that their intensity has
creased as compared to the distribution at 7.2 periods o
standing-wave modulation. To understand this phenome
one needs to consider the corresponding Poincare´ sections as
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illustrated in Fig. 5. The left-hand side shows the phase sp
after 7.7 cycles, while the phase space after 7.2 cycle
shown on the right-hand side. Phase-space volume is
served in Hamiltonian systems. However, the shape of
resonances has changed significantly. The momentum w
of the resonance after 7.7 periods is larger compared to
one at 7.2 cycles. This results in the experimentally obser
broadening of the resonances. From the discussion abo
follows that these resonances need one modulation perio
return to their initial position atk'1 making them period-1
resonances.

We have also measured the rotational frequency for
period-2/3 resonances shown in Fig. 1~h!. We were able to
successfully confirm their period.

Figure 6 compares our experimental results with pred
tions from quantum trajectory simulations@6# and the classi-
cal description. We have measured the momentum of
center of the peak in the atomic momentum distributio
r
s.
tial
he
es

al
FIG. 4. Verification of the value of the period
for the resonances at thek51 bifurcation.
Atomic momentum distributions are shown fo
different modulation lengths measured in cycle
One can see that resonances return to their ini
phase-space position after 1 period of t
standing-wave modulation. When the resonanc
have rotated by 180°~7.7 cycles! with respect to
their initial phase-space position~7.2 cycles! they
have become wider compared to their initi
width at 7.2 cycles.
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W. K. HENSINGERet al. PHYSICAL REVIEW A 64 063408
both for the experimental data and the quantum simulatio
The error bars for the experimental data result from the re
out uncertainty due to asymmetries in the experiment
measured momentum distribution. These asymmetries
most likely due to nonuniformities in the initial spatial di
tribution of the MOT. Other possible error sources include
imperfectly zeroed magnetic field in the interaction regio
The momenta of resonances in the quantum simulation
hibit some readout uncertainty because the peaks in the
mentum distribution do not necessarily have a symme
Gaussian shape. This readout uncertainty is reflected in
error bars for the quantum simulations.

We compare these results with the momentum of the re
nances when they are located on the momentum axis
calculated from numerical solutions of the equations desc
ing the classical system and from classical perturba
theory. To zeroth order in«, the momentump of the period-
(n/m) resonances is found by setting the nonlinear f
quencyv(H) of the unperturbed system equal tom/n so that
the momentum is given by

FIG. 5. A Poincare´ section is shown fork51.2. While the left-
hand side corresponds to 7.7 cycles, the right-hand side show
corresponding phase space after a 180° rotation at 7.2 cycles.
can see that the momentum width of the resonances has sig
cantly decreased.
06340
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m

n
. ~12!

Herev(H) is given by

v~H !5
pAk

2FS p/2,AH

2k
D , ~13!

whereF(p/2,k) is the complete elliptic integral of the firs
kind. Canonical perturbation theory, here performed to ord
«2 and including the first three Fourier coefficients of th
perturbation can be used to refine the result. As can be s
in Fig. 6 there is satisfactory agreement between the exp
mental results and the quantum simulations. The res
taken from the Poincare´ sections ~numerical solution of
Hamilton’s equations! and the analytical classical result
from perturbation theory are in good agreement. Howev
the classical predictions show a larger resonance momen
than the quantum simulations and the findings of our expe
ment. While the classical theory predicts the momentum
the fixed point~when positioned on the momentum axis!, the
quantum simulations directly predict the full momentum di
tribution as expected from the experiment. Part of the abo
discrepancy could result from the fact that the fixed poin
are positioned asymmetrically towards the faster side of
region of regular motion that in turn gives rise to the peak
the experimentally measured momentum distribution. Ho
ever, if one assumes the mean of maximum and minim
momenta occupied by the region of regular motion~when
positioned on the momentum axis! as a classical momentum
approximation for the experimentally observed momentu
peak, the classical resonance momenta are still significa
faster than the experimentally measured values. These re
suggest a possible explanation in terms of the theory
quantum slow motion@13#, but more rigorous and detailed
investigation will be needed to confirm this.
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FIG. 6. Momenta of reso-
nances in different bifurcation re
gimes. The momentum of differ-
ent resonances is plotted as
function of the scaled well depth
k. These are compared with pre
dictions from the quantum simula
tion, momentum of the fixed poin
in the Poincare´ section ~classical
numerical simulation! when posi-
tioned on the momentum axis an
results from classical perturbatio
theory. Furthermore we plot the
mean of minimum and maximum
momentum of the island of regu
lar motion when positioned on the
momentum axis obtained from th
classical numerical simulation.
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IV. CONCLUSION

For the first time we have been able to map a multi
bifurcation sequence in atom optics and explain their occ
rence using classical perturbation theory for the relevant n
linear Hamiltonian. Our experimental results are in go
agreement with the theoretical predictions of classical per
bation theory highlighting the dynamics of cold atoms a
model system for truly nonlinear Hamiltonian dynamics. W
have also succeeded in confirming the mapping of the ato
momentum distributions to the bifurcation diagram by me
suring the rotation frequency of the resonant islands fr
which the distinct peaks in the atomic momentum distrib
tion result. With the appropriate experimental conditions i
possible to extend the bifurcation sequence that was
sented in this paper. With our current experimental setup
could extend it at the higher end by decreasing the mod
am
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tion frequency and at the lower end by increasing the mo
lation frequency. By decreasing temperature and increa
laser intensity the range could also be substantially exten
The experimental system that was described here can be
scribed by a truly two-dimensional phase space spanned
position and momentum along the standing wave makin
an ideal testbed for experimental studies of nonlinear dyn
ics. When the scaled Planck’s constant of the system
comes sufficiently large, one can use the dynamics of
driven pendulum in atom optics to study quantum tunnel
phenomena@14#, decoherence in nonlinear systems, a
quantum chaos@7,12#.
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