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Quantum phase-space analysis of the pendular cavity
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We perform a quantum-mechanical analysis of the pendular cavity, using the pésit@resentation,
showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the
dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of
small displacements of the mirror due to radiation pressure, for the production of states with entanglement
between the mirror and the field, and even for superposition states of the mirror. However, when we treat the
oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and
exhibits uncertainties in position and momentum which are typically larger than the mean values. This means
that previous linearized fluctuation analyses which have been used to predict these highly quantum states are
of limited use. We find that the achievable accuracy in measurement is far worse than the standard quantum
limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK
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[. INTRODUCTION light and condensed atomi21-23 as well as in Raman pho-
The pendular cavity, or Fabry-Perot cavity in which onetoassociation of atomic Bose—Elnsteln condens§ds-217.
of the mirrors is free to oscillate, has previously been inves N€ SPectra calculated via this method are also known to not
tigated by a number of researchers, both experimentall’® accurate near any critical points of the system, as has been
[1-3) and theoreticallj4—13. Closely related schemes have S1oWn with the optical parametric oscillatfit8,29. There
been theoretically proposed to entangle mirfd®j and cre- '€ two conditions which must be fulfilled for a linearized
ate superposition states of a mirfds5]. Common to almost analysis to be trustworthy. The first has to do with the sign of

all the theoretical treatments is a linearization of quantunfn€ real part of the eigenvalues of the drift matrix of the

Langevin equations around their classical steady-state soll(?_'quations written for the fluctuations; if these have the wrong

tions[16]. This then allows for the relatively simple calcula- sign the fluctuations can grow exponentially and the analysis

tion of spectral quantities which mav be measured outsid loses its validity. The second has to do with the size of the
P 9 Y fuctuations themselves, in relation to the classical steady-

the cavity. Result_s_ (_)btalned n this way have been used Qa0 yajues. As we will show, this second condition is not
analyze the sensitivity of gravity wave interferometetg],  fijled for this system, as the quantum state of the mirror, or
predict the suppression of quantum noiggS], propose more accurately, of the mirror phonons, is reasonably ex-
quantum nondemolition measurements of photon numbekected to be thermal. A characteristic of a thermal state is
[6], analyze the quantum limits to measurements with afhat the variance is larger than the mean value, which there-
atomic force microscopg7], analyze the quantum noise in fore makes any expression of the mirror phonons as having
position measurements of the oscillating mirf@}, calculate  some well-defined classical mean value plus small fluctua-
the phase noise in the cavity fieldll], predict the entangle- tions rather dubious. Even though cooling of the mirror via
ment of macroscopic oscillators via radiation presqi4, feedback mechanisms has been achig@&} and analyzed
and propose the quantum locking of interferometer mirrorgheoretically[31], due to the nature of the coupling between
[13]. Using the state-vector approach so common in quanturthe electromagnetic field and the mirror phonons, it seems
computing theory, it has been proposed that quantum supethat all that can be achieved is a thermal state at a lower
positions, entanglement, and near-number states of the cavitgmperature, so that the problem remains.
field, along with superposition states of the mirror, can be To treat the macroscopic mirror quantum mechanically we
produced with this systeriB]. Using a similar state-vector will begin with the Hamiltonian approach of Laj82], in the
approach, it has been proposed that quantum superpositioapproximation that only a single optical mode is important,
of a mirror may be created by the interaction with a singleand extended to include cavity pumping and damping. To
photon[15]. treat the fluctuations of the mirror which result from its cou-
It is well known that the linearized fluctuation analysis pling to a thermal reservoir, we will use the Brownian mo-
used in the majority of the theoretical papers cited above ision master equation developed by Di$38B], which is suit-
limited in its applicability. It has been shown, for example, able for the temperatures we will consider here. Following a
that the mean-field equations derived in this way can giveommon procedure in quantum opti&4], we will develop
misleading results for traveling-wave second harmonic gena Fokker-Planck equation in the positiPerepresentation
eration[18-2(Q and for the intracavity interaction between [35]. This Fokker-Planck equation allows us to write stochas-
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tic differential equations which are an exact mapping fromD,p represents the mirror damping, using the Brownian mo-
the system master equation, and which can be used to calctien master equation developed by Di$38],
late any desired normally ordered operator moments.

o e an B Ymen oo n iKym)\gBA a o~
We consider a system of a pumped Fabry-Perot cavity in (4)
which one of the mirrors is free to undergo oscillatory mo-

. : .~ In the aboveyy,, is the mirror damping rate, which depends
tion due to both the light pressure and thermal fluctuations M . -
We use the standard annihilatiGrand creationa' operators on temperature through the mechanical quality facigp

for the electromagnetic field, and the operatorand p for =hlvamigT, the thermal de Broglie wavelength of the mir-

the displacement from the equilibrium position and the mo- " with kg Boltzmann's constant anfithe temperaturex is

mentum of the mirror, which will be treated as a harmonica numerical factor which must be greater than 1 for this
: . . : . master equation to be of the Lindblad form, but is not im-
oscillator. Neglecting the coupling of the mirror to its bath

for the moment, we can write the Hamiltonian as portapt here as it Iegds tq Ferms of the ortier,/keT, which
' we will show to be insignificant at the temperatures we con-
H= Hfree+ Hint + Hpump+ Hbathy (l) sider.
where IIl. EXPANSION OF THE MIRROR
R 1 1 IN COHERENT STATES
Hfree:thaTé-"' _ﬁz+_mw§1$(21 . . . .
2m 2 Rather than writing the Heisenberg equations of motion,
which are difficult to solve, we will make use of the original
|:|im: - hga'ax, definitiorj [34] Aof the annihilation and_ cr(_eation operators in
terms ofx andp and develop stochastic differential equations

in the positiveP representatiori35]. This allows us to use

Hpump= if1e(a'e ot — ae™'0"), c-number equations which describe all the quantum proper-
ties of the mirror dynamics contained in the original master
Hpu=TAal +TTa. (2)  equation. We will describe the operatérandp, in terms of

. . the operator® andb', where
In the aboveyy is the field frequencye represents the clas- P

sical real pumpm is the mass of the mirrogy,, is the mirror %= A(E) + B‘r)' = B(B _ E)T)’ (5)
oscillation frequency, and=w,/L is the coupling between

the mirror and the cavity field, with being the length of the With

cavity. Thel’s represent optical bath operators. The damping P P

of the mirror, which we will treat as Markovian, will be A=~/  Bz—jy/ MOm 6)
included at the next step. 2Mwp, 2

We now wish to write a master equation for the density ~ oy . . . . .
matrix of our combined system in a frame rotatingegt To and[b,b"]=1. Writing the equations using these variables is

do this, we will make two different, but consistent approxi- advantageousf because it aIIc_)WS us _to_automatically define a
mations for the damping of the cavity and the mirror. TheP_-rep_resentatl_on of the den5|t_y matrix in terms of an expan-
cavity reservoir will be considered to be at zero temperatureSion in the minimum uncertaintycoherent states|g), de-
which is consistent with the very high temperatures necesfined asb|g)=p|8). It also means that the mirror quadrature
sary to produce thermal photons at the frequencies involvediariances have a coherent state or vacuum value of 1, the
The mirror reservoir will be treated as being at a finite tem-same as for the electromagnetic field. In fa&tand|B| rep-
perature, which is necessary because of the number of theiesent the standard quantum [imgSQL’s) for measure-

mal phonons which will be present in the system. As thementof the mirror position and momentum, respectively. We
temperatures required to create these respective excitationste that these phonon annihilation and creation operators
differ by many orders of magnitude, these approximationdave previously been used to describe the mirror, but not in

are not contradictory. This process gives us the context of developing phase-space representation sto-
. chastic differential equations,36,37.
iﬁ@ - [I:|,;3] +2’3 In terms of th_ese_ new vari_ables, the master equation for
at the mirror damping is now written as
1., 1 . o R T 1 2 e A
= | 5P+ S menk’ - higalak—ife(@-a"),p Do = oABID + BT, (B - BT, ~ "2 [+ B, B+ B, 1)
2m 2 2)\§B
+ify(2apa’ - a'ap - pa'a) + Dy, 3 i VN2 A
- =Bl - b [b - B, p1]. (7)

wherevy represents the loss rate through the fixed mirror and
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IV. STOCHASTIC EQUATIONS

Using the well-known operator correspondences for Rheepresentatiori34], we may map the master equation onto a
partial differential equation for th® function of the system,

-tz

igAa* [B+B* ])+—( ionB+igAlal*— vl B-B* ]

(lwmﬂ* |gA|a|2 - 7m[ﬂ* - ,8]):|

B*
1] & & & &>
+21 ——(-igAa) + -igAa) + ————(igAa* ) + ———(igAa*
{& a,e( gAa) ﬁaa( gAx) &a*&ﬂ*(g a*) aﬂ*&a*(g a*)
2 2
+a—2<ym{1—2kBT+Khme+ &*2<7m[1_2kBT+Kﬁwm})
o hom kT B hog  AKgT
& ( 2kgT  khop ) P ( 2kgT  kfiwp ) )
+ ~ Y| 1- - + ~ Y| 1- Pla,a*,B,B*,1). 8
98B\ " T hom  akeT ) 98* 0B\ T iy 4keT (@a™, BB".1 ®
The diffusion matrix of the above equation is
0 0 -igAa 0
0 0 0 igAa*
_ 2ksT Kﬁwm> ( 2ksT Kﬁwm)
D =] -igA 0 1- - 1- 9
19 7”’( fom  dkaT) ™\ ey dkgT ©
, 2ksT Kﬁwm> ( 2ksT Khwm>
0 Aa* - 1-
9Ae 7““( fiom  dkaT) "™ G | akeT

We note here that this drift matrix has diverging term3asO0, but this is not a problem as the Didsi master equation is valid
in the limit wherekgT>%w,,. As a physical example, in Ref2], we find w,=1.6xX 10° s, so thathw,=1.72x1072° ],
whereaskgT=5.8x 10723 J at 4.2 K, the temperature which we will mainly use in our investigations.

If we wish to treat Eq(8) as a genuine Fokker-Planck equation which we may map onto stochastic differential equations,
the matrixD must be positive-definite. Numerical investigations using typical parameters show that this is not the case,
therefore for quantum calculations we will have to use the posRiwepresentatiorf35]. The positiveP representation
equations in a doubled phase space can be found by the simple change of variables’, 3* — 8%, so that(noting that
a"=a* only in the mean and similarly fo3"), we now have four independent stochastic variables. Ignoring the terms
proportional tohw,,/ksT due to their small relative size, one possible factorization of the diffusion matsNNT, of Eq.(9)

is
0 \/— igAa \/IgAa 0 0
2 2
0 0 0 \/lgAa B \/— igAa
2
_ _ : (10
2kgT - igAa igAa
-\ Yl 17— - 0 0
hwm 2 2
m(l j 2kBT> 0 0 \/ igAa* \/ —igAa*
hown 2 2

which allows us to write a set of four stochastic differential da _ ) A _
equationg(note that the It form and the Stratonovich form ~ ~ =€~ ya+ igAa(B+ ") + (172 +173),
of these equations are identigal
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da* _ . ) igAa’* _ pansion, beginning with the result for fixed mirrors,
gt € T v TigAd (BB * > (m=i7),
€

ad= > (16)
dag . . 2kgT . . . .
— =—ionB- vm(B-F) tigAa"Ta— \/ yml L - 7 and substitute this into the solution B, This can then be

dt hom substituted into the solution fowg, the process being re-
—igAa _ peated until we attain the required degree of convergence.
5 (72— 173), We note here that there are parameter regimes for which this

expansion does not converge and that these are regions
where we do not find classical steady-state solutions, but
dg* w8+ y(B- B) - igAata+ (1 _ ) rather a limit-cycle, self-pulsing behavip4].
dt Ym Ym fiom, n Although we will demonstrate below that the classical
- - steady-state solutions, especially fomndp, are not accurate
[19Aa (74 +ims). (11)  inany parameter regime, they do allow for some insight into
which property of the electromagnetic field outside the cav-
In the above, the real Gaussian noise terms have the corriety i.s. most likely to aIIovy for an infere_nce OT the mirror
lations ' position. The usual candidates are the intensity, which may
be measured by photodetection, and the quadratures, which
7 =0, pOnt)=t-t). (120  may be measured by homodyne detection. Defining the int-
racavity quadratures a¥,=a+a’ and Y,=-i(a—a"), with
eir classical equivalents written in termsaf; and a;s, we

2kgT

The set of coupled equatioisl) may be integrated numeri-
cally, with averages taken over a large number of stochasti

trajectories, which allows for the probabilistic calculation of L
any desired normally ordered operator moments. As an ex- o 2ey _ 2gex
ample, withN trajectories, we have a= P+l a= VI
1 N
@man = lim = a™a", (13) &
N-eNjo |af?= P+ gl (17)

wherej labels the results from thgh trajectory. where we have setas real and usex=2Ag3, with B real. As

is typically much larger thag®?, we may make a series
yp Yy g g y

V. CLASSICAL ANALYSIS expansion of these expressions. We find that
A. Steady-state solutions ¢ ( gZXZ)
. . . Xy = 1-=—1,
Before we return to the full stochastic equations, which a a
we will solve numerically, we will investigate some of the
classical properties of the system, which allow for analytical 2gex g2
insights. From the drift part of Eq8), we can immediately Ya= 7 —7 ,

write the mean-field equations using the notafiofor the
classical mean-field value af 5 5
, € g’
da - o laf %? 1-=—/. (18
ik ya+igAa(B+ B*),
It is immediately obvious thaY, depends o to first order,
_ while the other two exhibit only a second-order dependence.
d .= — . This shows that homodyne measurements offtheuadra-
= - - — % 2
dt ~ lomB = yn(B = B*) +igAlal’, (14) ture will be more sensitive to variations in the position of the
) ) . .~ mirror than will be the other two measurements, as previ-
from whlch we may find the classical steady—:?‘tate SO|l.JtIOI’ISOUS|y noted by Vitaliet al. [31], although theX, quadrature
Solving Eqs(14) for the steady states, we find th8is  \yjjl show a weaker dependence rather than being totally in-
real, which means that the steady-state momentum is Zergependent ok as in the linearized analysis of R¢81].
(Note that this will not be the prediction of stochastic inte-

gration of the full equations.However, using this fact we

may write the solutions as B. Bistability
. OA L, € It has been predicted that, with a nonzero detuning be-
Bss= Bss= ~—lasd?,  ags= ————. tween the field and the cavity resonance, this system can
W Y= 29ABss

exhibit bistability in the optical intensity5]. To find the
Although the solutions above are not clogétk solution for  condition for bistability, we start with the classical equations
ass IS a function of Bsg etc), we can make an iterative ex- with detuningA included,
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da o =1 cm, with cavity finesseF=15x10% which gives y
Pl (y+id)a+igAa(p + B*), =mc/2FL=3.14x 10° s1. We consider an optical wave-
length of A\=1064 nm, which givess,=1.77xX 10° s™%, and
i a couplinognbet\l/vefn the light and the mirror gEwgy/L
B_ . = A AR L ATT2 =1.77X10"" m™* s The optical pumping of the cavity is
dat o = Yl B = B*) + igAlaf". (19 €=\ yPltiwy, whereP is the laser power in W.
, In stochastic integration of the equations which describe
These have the steady-state solutions, an intracavity optical system, the standard approach is to
. gA begin with the state inside the cavity as vacuum so that, with
Bss= Bes= | asd?, a continuous pump, the system enters the steady &atts
@m limit cycle behavior in the case of self-pulsingfter a few
cavity lifetimes. In the present case the situation is somewhat
lagd?= € (20) different, as not only the electromagnetic field, but also the
S Y+ (A - 2gAB9?’ oscillating mirror, has to reach the steady state. As the relax-
ation time of the mirror can be orders of magnitude larger
than that of the intracavity field, and we need to average over

which immediately leads to the cubic equationl il agd?,

4g°A% . AgPAZA a large number of trajectories to obtain reliable results, it is
13- 12+ (#+A)1-=0.  (21)  not practical to begin the integration with an arbitrary initial
©m ©m condition for the mirror. Naively beginning with3(0)
We find the condition for bistability by differentiating this =37(0)=0, the ground state of the mirror, leads to extremely
expression with respect 19 which gives long-lived transients, as this is far from the equilibrium state
and 52 at finite temperature. To give some idea, even at 4.2 K,
1292A 12— 8g°A AI +(¥2+A2)=0. (22) which is perhaps thelowest easily achievable temperature,
W Om the average number of mirror quanta becomga?
The condition for bistability is that this quadratic equation =KeT/%wm=3.36X 106-, For purposes of comparison, we will
has two positive real roots. The roots are written as therefore choose the initial mirror state in two different ways
and integrate the equations without any pumping of the cav-
_ Aoy L @m m 23 ity. First, as areal coherent state, which has uncertainties in
Fe= 3g2A2 ~ 6g2A2\ ' (23 position and momentum at the SQL, with tRefunction
giving the inequality P(B) = 8(B - VkgT/hoy,), (25)
A+ E\f'm> 0 (24) and, second from the thermal distribution
1 2=
A necessary, but not sufficient, condition is thate posi- P(B) = w_ﬁe A, (26)

tive, asl must be positive. This immediately contradicts the
condition given by Mancini and Tombe$b], |A|> 3y, wheren=kgT/%w,, Note that, at the beginning of each tra-
which allows for negative intensities. Asmust also be real, jectory, 3=(8%)* and the phase is completely random for the
we find the condition for bistability ad > 3y. thermal distribution. We stress here that the variance in the
number of mirror phonons for a thermal stateMig)=n?

V1. STOCHASTIC RESULTS +_n_, which is very much larger than. Using the Planck
distribution,
A. Initial conditions

"= 1w /kgT _ 1)-1
To numerically integrate Eq11), we make use of the fact n=(e" v @7
that the [t6 and Stratonovich forms are identical so that wawve find that to achievea=1, we would need=1.8 uK, and
may use a standard three-step predictor-corrector methodven then the variance would be 2, or twice the mean value.
The convergence of the algorithm was checked by compari- It is important to note here that the number of phonons
son with a four-step method, and also by halving the timedoes not enter into the equations, but rather the quadratures

step. In all the quantities shown, the sampling errors ar§ anqdy,. In a linearized approach using our equations, it is
comparable to the thickness of the plotted lines. the uncertainties in these which are important. We can easily

We will use the published experimental parameters ofgicylate these for a thermal state of the mirror with an un-
Ref. [2], and make comparisons with the theoretical predlc—pumped cavity. A simple integration gives

tions reported elsewhere. The oscillating mirror is considered

as being perfectly reflecting, with a mass o107 kg, a ~ - —( kgT \%7?

mechanical quality factor d@=4x 10° at 4.2 K, decreasing V(Xp) = V(Yp) =1+ 2Vm P (29

to 2.25x10° at 70 K, and a resonance frequeney,/2m m

=26 kHz. The damping rate of the mirror i8,=0.50,,/Q  equal to 2.2 10 at T=4.2 K for our system. This is in
=0.0363s ! at 4.2 K. We consider a cavity length af  stark contrast to a coherent state of the mirror, sometimes
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FIG. 1. Mean values fax at T=4.2 K andT=70 K for an initial FIG. 2. Standard deviations forat T=4.2 K andT=70 K for

coherent state of the mirror and no optical pumping. These resultgn initial coherent state of the mirror and no optical pumping. Note

are the averages of 7:610° and 2.7x 10’ trajectories, respectively. that these quantities were still increasing at twice the time shown
Note that, unless otherwise stated, the values plotted here and fere and would be expected to eventually attain the thermal values.
subsequent graphs are dimensionless.

. , ) . _[8]), it is not at all obvious how this particular state may be
used to facilitate the mathematics of a linearized analysisgonstructed experimentally. A thermal state arises naturally,
and for whichV(X,)=V(Y,)=1. and will be equal to a coherent state fior 0 K, but absolute

We have calculated the stochastic results for the meargero cannot be reached experimentally. In optics, a coherent
and standard deviations of the mirror position, without anystate can be described theoretically as a displacement of the
optical pumping and for initial thermal and coherent states offacuum by the displacement operat@(a)=expaa’
the mirror at temperatures of 4.2 and 70 K. In Fig. 1 we—-q*3), which we can see has some relation to the optical
show the stochastic results for the positiorf the mirror,  pumping term of the Hamiltoniart ,,m,, Therefore an ideal
with initial coherent states at these two temperatures. Corempty cavity with this pumping term will naturally develop
sidering only these mean values could give the erroneougn intracavity coherent state. We are not aware of any similar
impression that the mirror is in a nonstationary steady statesandidate for the mirror, even if it could begin in tie0
which we can immediately see is not the case when we lookacuum state. Therefore we will use an initial thermal state
at Fig. 2, which shows the standard deviatier(®) for the  in our investigations.
same parameters. Although we have shown the standard de- When we examine the stochastic results for the intracavity
viations here, the variances for the initial coherent state confield intensity, for an input poweP=5 mW, we find that the
tinue to increase linearly for more than twice the time shownfield exhibits a self-pulsing behavior at approximately the
which was as far as we continued the integration. In contrastesonance frequency of the mirror, as previously predicted
for an initial thermal state, the mean value of the mirror[4]. However, the oscillations are of very small relative am-
displacement is, by definition, zero as can be seen from thglitude, at approximately 0.2% of the average mean intensity.
equation for theP function (26). We note here that our sto- With increasing input power, the oscillations become larger
chastic results over more thanx2(0° trajectories still until, for a power of 100 mW, for example, they are more
showed oscillations of the order of 6 m, but that we are than half the maximum intensity. At the lower power, the
confident that this small, but nonzero, value is due to theanean motion of the mirror is an oscillation between 0 and
difficulty of sampling the distribution with a finite number of 1.2x 1072 m, while at the higher power oscillates between
trajectories. By comparison with the coherent state values;1 and 3< 107! m. Even though these displacements are
for an initial thermal stater(x)~1x10m at T=4.2 K,  truly microscopic, they have a noticeable effect on the mean
and is almost constant, indicating that this is a good choicéntensity, which should be easily detectable experimentally.
of initial condition. This value agrees well with the expres- Interestingly enough, these results are almost identical to
sion given in Ref. [2] for the thermal noise,o(x)  what we find by numerical integration of the classical equa-

| —— . .

:V'kBT/mem, which gives a value of 1.4710*m. Note tions(14), although these can tell us nothing about the quan-
that, over the time scales shown in Fig. 1 we do not see anfum correlations which we wish to investigate. Among these
decay in the oscillations towards the thermal state values, eguantum correlations are the variances of the intracavity field
this would be expected to happen on a time scale of,1/ and the Fano factor, defined B$N,)=V(N,)/N,. These re-

which is approximately 50 s for the parameters used here. laults, which we averaged over 6.X10° trajectories, are

fact, although an initial coherent state of the mirror has beeshown in Fig. 3. For a coherent state, all three values are 1,
used in theoretical analysésee, for example, Boset al. ~ which would be zero on the logarithmic vertical scale used
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FIG. 3. The variances of the intracavity electromagnetic field for £ 4. The standard deviations in the mirror position and mo-
a laser power of 5 mW. The solid line ¥&X,), the dash-dotted line  mentum for a laser power of 5 mW. The standard S.I. units for

is V(\A(a), and the dotted line is the Fano factor. position and momentum are used. Note that a minimum uncertainty
state of the mirror hasr(x)=5.6824x 10 m and o(p)=9.283
; 1% 108 kg ms™.
here. As all three correlations are greater than or equal to 1,

we do not see any squeezing of the field in the time domain,
but do see excess noise in all three quantities. As is commgagertainly underestimated, due to the difficulties of simulating

with Kerr media, there is more excess noise inYheguadra- the_ large/3 value; with small probabilities in the initial con-
ditions used. This result also shows that, when the likely

ture than in either th&, quadrature or in the intensity. thermal state of the mirror is taken into account, the back-
. action noise of the field on the mirror has very little effect at
B. Position measurements the laser power considered here. At an increased power of

Much of the theoretical and experimental interest in this100 mW the standard deviations in both position and mo-
system has been in indirectly measuring small displacementaentum both increase due to this back-action noise, reaching
or small forces which act on the oscillating mirror, by meansoscillatory values around means &f1x 10°%3, while the
of measurements on the optical field. Generally theoreticainean momentum oscillates between>¢30™1" kg ms™.
results are presented in terms of output spectra which allow We next investigate the degree of correlation between the
for an inferred value of the mirror position at various fre- position of the mirror, the intracavity optical intensity, and
quencies. These spectra are simple to calculate in a linearizegle X, and Y, quadratures. This correlation function between
analysis which treats the system as an Ornstein-Uhlenbealyo quantitiesw andz is defined as
procesg16], but we do not consider linearization valid here,
for the reasons we have stated. To calculate spectra from the w2 = (Wz) = (w)2) 29
results of stochastic integration is also possible in many WW\V(2)
cases, but here is made difficult by the stiffness of our equa- ) )
tions, where the field and the mirror oscillate on vastly dif-Where a perfect correlation gives a value of 1, a perfect an-
ferent time scales. The length of time needed to integrate Hcorrelation gives a value of -1, and zero signifies no cor-
large enough number of trajectories over a sufficient time tdelation at all. In Fig. 5 we see that, as predicted by &8),
give reliable results upon Fourier transformation is prohibi-the strongest correlation is betwe&g and the mirror posi-
tive. Hence we will show results which were obtained in thetion, these two being almost perfectly correlated. The corre-
time domain. lation functionsC(xX,) andC(xN,) oscillate at the frequency

The first results we show for the mirror, in Fig. 4, are for w,, between a value of almost -1 and a value of approxi-
the uncertainties in the mirror position and momentum, demately O, ranging from being almost perfectly anticorrelated
fined aso(x)=A\V(X,) and a(p)=|B|\V(Yy,). The interac- to almost perfectly uncorrelated. This behavior is quite dif-
tion with the field has not noticeably changed these quantiferent from that shown in a linearized fluctuation analysis,
ties from the values we found via stochastic integration inwhere we found that all three of these functions showed an-
the unpumped thermal state case, but has given the mometieorrelation around the mirror frequency and were zero at
tum a mean value which oscillates between approximatelpther frequencies. The difference between our fully quantum
+1x 101 kg ms?, whereas it was stable at zero in the un-nonlinear results and the usual linearized predictions is dra-
pumped case. It is readily seen that the fluctuations in momatically demonstrated when we consi¢i&ix,Y,)|?, used to
mentum are several orders of magnitude larger than the meamalyze a possible quantum nondemolition measurement by
value. We also note here that the uncertainties shown argacobset al. [6]. Their prediction[see their Eq(31)] is for a

043815-7



OLSENet al. PHYSICAL REVIEW A 70, 043815(2004)

_14

08|

06F 1 1F

ok}
»

0 1
e L T L TN P L
»

-

»

04}
02} ] 08

T e i i s
Y e T T T

correlations functions
o

&"(x) (m)

0.4}

3
i

i

3

It

1

¥

13
06t
3

¥

I

1

I

V

(S o
021V A VS G-
A

t(s) x 107 0 0.5 1 1.5 2 25 3 35

FIG. 5. The intracavity correlation function(xX,) (solid line),
C(xY,) (dash-dotted ling and C(xN,) (dashed ling for an input FIG. 6. The inferred uncertainties in the mirror position,

power of 5 mW. A\VINf(X,), calculated as in Eq32). The solid line is the estimate

using \A(a, the dash-dotted line usé@1 and the dotted line usds,.

maximum spectral value of 0.9757 for the parameters we use
in this work, whereas our stochastic prediction in the time . . . _ - .
domain oscillates between 0 and<@0~3, showing almost previous discussion, using the, quadrature gives better re-
no correlation at all. We think that it is unlikely that this Sults than using eithex, or N,, which give oscillatory infer-
difference can be explained by the difference between &nces. As it is, all of these give inferred uncertainties well
spectral measurement and a time-domain measurement, bjgove the SQL oA=5.68x 10"'® m for the parameters used.
that it is due to the inappropriateness of the linearization/Ve note here that the actual calculated valug-ef), which
procedure for this system. oscillates between 1.02510“m and 1.0X 10 m, is

Another way to infer the mirror position is by linear esti- greater than the value inferred through measurement of the

mation following measurements of th_e optical field. We fol-\?a quadrature, which has a steady-state value of approxi-
low a method proposed by Rei@®8] in the context of a mately 5< 1076 m. This is also the case with the inferred

demonstration of the Einstein-Podolsky-Rosen paradoXx, angheasurements of Reff38], and is due to the almost perfect

also outlined |nADechourBt al. [39]. We assume that a mea- correlation between the position of the mirror and fﬁ?

surement of ther, quadrature allows for a linear estimate of quadrature.

Xp, XE=cY,+d. This is consistent with the expansion 6
given above, in Eq(18). After optimizing for d, the RMS

error in this estimate is given by VII. NONCLASSICAL STATE PREPARATION
V(%) = (X = €Y.)2) = (Xo = cY.)2, 30 The pendular cavity and variations on the theme have
(%) = (X 27 =% & (30) been proposed as useful devices for the preparation of non-
which we may minimize as a function @f finding classical states of the cavity field and also of the mirror or

o mirrors. In this section we will give a brief review of some of
V(Xp,Ya) these proposals, in chronological order, and explain why our
C=—""-_ results lead us to believe that they may not be as practical as

V(Ya) the original authors suggest.

We may then write Boseet al. [8] suggest that this system may be used to
prepare multicomponent quantum superpositions of states

[V()”(b,{(a)]Z (Schrodinger cat statgsf the field, near number states, and
I — (32 entangled states when two or more modes interact with the

) mirror, as well as Schrodinger-cat-like states of the mirror

a quantity which we may calculate via stochastic integration.p_mparfEd via quadraturg measurements of the f|eld. ng'n'
The inferred uncertainty in a measurementafill then be ~ NiNg With a simple Hamiltonian without any pumping or dis-

. \W ) i sipation terms, they develop a time evolution operator which
o) =AVV™M(Xp), which will be equal to the standard j5'seen to have a Kerr-like term, which leads them to believe

quantum limit when the mirror is inferred to be in a mini- {hat this system may exhibit some of the nonclassical fea-
mum uncertainty state. We have also calculated the inferreg e of a Kerr interaction. They then assume that both the
position uncertainty using measurement<gfandN, in the  cavity field and the mirror are initially in coherent states.

same manner. As shown in Fig. 6, and expected from th&Vhile this simplifies the mathematics, and is reasonably ac-

(31)

VM (Xo) = V(Xp)
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curate for the cavity field, our calculations have shown that acoth% w,,/2kgT) is the mean thermal phonon number. This
coherent state is not a reasonable initial condition for theoise term seems to be the quadrature variance assuming a
mirror. As the nonclassical features predicted depend on thisumber statény), of the mirror. For the parameters we use,
initial condition, which at one stage of the paper is taken tothis expression gives a value ¥=6.7x 1(f, several orders

be a vacuum statéfor simplicity), and interaction of the of magnitude lower than our estimate in E@8), which
mirror with the environment is considered to be equivalent toyjyes\, =2.2x 10°. Due to the issues we have raised here,
that of a cavity field with a zero-temperature reservoir, oUnye gre led to believe that the EPR state of the two mirrors

results lead us to believe that these predicted nonclassicmay not be as easily demonstrated as indicated by the au-
states will be, at the very least, extremely difficult to observethors_ Manciniet al. [40] have also put forward a proposal to

i erabsequent arclac he same sulhorsProRose 1 epvangie two movatle mirors which o part of  fou.
P y may P Rlirror ring cavity. This work has the advantage of a descrip-

a macroscopic object, namely the mirror. In this work theti n for the Brownian motion that i nsistent with ntum
authors accept that the mirror will begin in a thermal state on for the brownian motion that 1S consiste quantu

and note that a mixture of Schrodinger cat states of the miréchanics at all temperatures, but the results presented are
ror can therefore be produced by the interaction with the?!SC obtained following a linearization process, which we
field. It is assumed that a superposition of the Fock st@les have shown to not bg valid for reasongble temperatures. The
and|n) can be prepared inside the cavity, with the most sim{inal proposal we will consider here is by Marshal al.

ply prepared value ofi=1. Using theP-representation ex- [13], which treats the creation of superposition states of a
pansion of the density matrix in terms of coherent states, afacroscopic mirrot~10'* atomg via the interaction with a
expression is found for the time development of this densitysingle photon. This work again uses a Hamiltonian approach
matrix. The field can then be measured via the interactiovithout dissipation and assumes that the mirror can be pre-
with a ground-state two-level atom which is passed througtPared in its ground staté) which then allows for analytical

the cavity. The probability of the atom being excited can pesolutions. The inclusion of decoherence and finite tempera-
related to the decoherence rate of the spatially separated siyre follow the approach of Ref36] and we therefore have
perposed coherent states of the mirror’s motion. Examiningh€ same doubts about the physical viability of this proposal.
this scheme with our parameters, we find that, withl, the

spatial separation between two of the superposed coherent

states has a maximum A= 1.4X 1022 m, which is less VIil. COOLING BY FEEDBACK

than the thermal de Broglie wavelengthhyz=2.19

: - . It may be thought that to reduce the thermal noise of the
21
X 10 m, so that it becomes difficult to claim we have & mirror it is sufficient to cool to a lower temperature and

spatially separated ;_uperposition. When we takg ir!to accouri}Inpressive reductions in thermal noise, of the order of, 10
that the decomposition of the thermal state will include & ave been achievefl0,30. However ,it seems that {he
huge number of coherent states, all with different phases, o '

fhethod of feedback cooling leads to a thermal equilibrium of

seems that the practical realization of this scheme may bfﬁe mirror at a lower temperature. For our system, using Eq.

more demanding technologically than the authors had sup- , , ° -
posed. (28), a reduction by this factor leads ¥(X,)=V(Y,) =10,
Another proposal uses radiation pressure to entangle twyyhig:h is still far abqve the coherent state level where linear-
macroscopic mirror§14], but relies on Langevin equations iZation of the equations may be expected to work. Reference
which are linearized around their classical steady-state solud5] suggests that a mirror may be cooled to as low as 2 mK

tions. As we have shown above, this process is of ratheby dilution refrigeration, which would give us/(f(b)

doubtful validity when the mirrors are coupled to thermaI:V(\}b)gz_yx 10°, which, if we assume that feedback
reservoirs. Afurther_ ideais to pfoduce an Einstein—PodoIskyCOO”ng from this temperature is as efficient as at room tem-
Rosen(EPR state in the position and momentum of twWo perature, would allow the variances to be further reduced to
spatially separated_oscnlatlng mirrors using the output of &omething of the order of 20This is now actually smaller
nondegenerate optical parametricoscillagoPO) [37). We  than the mean number of quani@?, equal to 1.6¢10°,
note here that, although the authors call the oscillator anihough the variance in the number will now be of the order
optical parametric amplifier, the nonlinear crystal is inside ay¢ 10P, so that linearization will still not be reliable.

pumped cavity, so we will follow the usual terminologsee Standard cooling by feedback depends on the interaction

their Fig. 2. Unlike most other treatments, this work uses angs the electromagnetic field with the mirror phonons, which

effective linear coupling between the light and the mirror. . proportional toéfég(b, which will not drive the mirror

L_ike most of the _others, the authors I_inearise Lange\(in equa . ' a coherent state. A coupling term proportional to
tions around their steady-state solutions. The OPO is treate;iA '

via two-mode equations which do not describe the normaf b—ab" may be expected to do this, while squeezing of the
well-known threshold behavior of such a device at all, andMirror position would conceivably be possible with a cou-
lead to the prediction of an entangled state of two combinegbling of the typeat?n-ab’ or bT?a—-b?a". It is interesting to
quadratures, which is said to demonstrate an EPR correlarote that an effective coupling of the type required to drive
tion. The two output fields of the OPO are used to drive thethe mirror toward a coherent state was used by Zhetray.

two mirrors, which drives them into an EPR state of position[37], although the physical parameters used to develop the
and momentum. The mechanical damping of the mirrors incoupling Hamiltonian are far from those we have used in our
troduces a noise term V,=1+2n;, where n; analysis. As an example in that work,,> v, whereas we
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have used the valuesv,=1.63x10°s* and y=3.14 state of the mirror in respect to the thermal excitations, we
X 10° s71. Zhanget al. also consider that the mirror damping expect that the nonclassical states predicted in a number of
is of the amplitude form, which is not what we find using the theoretical analyses will not be able to be demonstrated ex-
Di6si master equation. Manciet al. [41] have actually pre- perimentally. Feedback cooling techniques, while able to
sented a feedback scheme based on an effective Hamiltonidmwer the effective temperature to an impressive degree,
which couples a light quadrature wiky, later proposing that serve merely to produce another thermal state of the mirror at
this method, which they call stochastic cooling, could bea lower temperature. The noise is still overwhelming if we
used to beat the SQL by achieving steady-state positiowish to reach the SQL, or even beat it, which would be
squeezing of the mirrof31]. The effective coupling used necessary for the detection of gravity waves. This is also the
again depends on the linearization of the equations of moease if we wish to observe some of the quantum superposi-
tion. We feel that whether feedback can be used to cool #ions and entanglement which have been theoretically pre-
macroscopic oscillator towards, or even beyond, the SQldicted.
remains an open question and subject to further research.
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