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We present a theoretical analysis of three-dimensional(3D) matter-wave solitons and their stability proper-
ties in coupled atomic and molecular Bose-Einstein condensates(BECs). The soliton solutions to the mean-
field equations are obtained in an approximate analytical form by means of a variational approach. We inves-
tigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the
atom-atoms-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary
optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium
modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility
of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically dem-
onstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-
order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The
stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical
simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for
demonstrating the ground state of the Schrödinger-Newton and related equations that describe Bose-Einstein
condensates with nonlocal interparticle forces.
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I. INTRODUCTION

Recent developments in Bose-Einstein condensation of
alkali-metal gases include the possibility of coherent mol-
ecule formation [1,2], or superchemistry[3] via Bose-
enhanced chemical reaction at ultracold temperatures. The
relevant parametric quantum field theories[1,2,4–6] and
their classical nonlinear optical analogs[6–9] are the subject
of much current attention, due to the possibility of stable,
bright, higher-dimensional solitons(also referred to as soli-
tary waves) [1,7,10,11]. Parametric solitons in nonlinear op-
tics with quadratic nonlinearity have now been observed ex-
perimentally in two transverse dimensions, as both spatial
and temporal solitons[12].

The dynamical equations for parametric solitons are an
example of a classically nonintegrable field theory which
generally needs to be treated numerically. The formation of
three-dimensional(3D) localized solitons is a subject of
much intrinsic interest in mathematical and nonlinear phys-
ics, and it is intriguing that no integrable models supporting
them appear to exist. Despite the absence of integrability, the
quadratically coupled equations of parametric nonlinear op-
tics and coherently coupled atomic-molecular Bose-Einstein
condensate(BEC) systems appear to be the simplest physi-
cally relevant Hamiltonian models having 3D localized soli-
tons [13].

They also provide an experimental route toward demon-
stration of the closely related ground state of the
Schrödinger-Newton(SN) equation[14] introduced to de-
scribe gravitationally bound Bose gases, and later revived by
Penrose and others[15,16] as a possible model of the col-
lapse of the quantum-mechanical wave function. We also
show that there are parallels with more general mean-field
models of Bose gases having a combination of short-distance
repulsion and finite-range Yukawa-like attractive interac-

tions. These more general models may also have astrophysi-
cal or quantum-mechanical significance.

The surprisingly close parallels to nonlinear optics, in the
related fields of quantum many-body theory and atom optics,
have now resulted in the emergence of a new field of
research—nonlinear atom optics with parametric nonlinear-
ity. The first step toward seeing molecular condensation was
recently undertaken in transient experiments with a Bose-
Einstein condensate of85Rb atoms[17], in which interfer-
ence measurements were indicative of coherent molecule
formation. More recent experiments with133Cs, 87Rb, and
23Na [18], as well as with degenerate Fermi gases of40K and
6Li atoms[19], have produced even larger fractions of ultra-
cold molecules, as well as Bose-Einstein condensates of
bosonic molecular dimers composed of fermionic atoms. All
these experiments have employed magnetic Feshbach reso-
nances, which appear to be more successful at present than
the alternative Raman photoassociation scheme[20].

In addition to this remarkable experimental progress, the
original effective quantum field theory[1–6] for coupled
atomic-molecular BECs has also been developed; it now in-
corporates renormalization, the treatment of intrinsic pair
correlations, quantum fluctuations, and thermal effects(see,
e.g., [21–29], as well as a recent review paper[30] for fur-
ther references).

In the near-classical limit of large numbers of atoms or
photons, the relevant equations for parametric solitons are
those of mean-field theory, which is a modified version of the
Gross-Pitaevskii(GP) equation(in the atomic BEC case) or
the nonlinear Schrödinger equation(in the photonic case).
These are in fact identical equations, except expressed in the
different languages of condensed matter physics and photo-
nics. The modification consists of the addition of a paramet-
ric nonlinear term analogous to a quadratic nonlinearity in
nonlinear optics. This couples the atomic and molecular
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fields together by means of a coherent interconversion pro-
cess. The parametric coupling acts as an energy-lowering
“glue,” which can permit stable mutually trapped BEC soli-
tons to form in 3D. In the absence of gravity, this would
imply the possibility of localized matter waves in free space
without external trapping potentials. Unlike the usual GP
equations, the existence of attractive forces in three dimen-
sions does not result in a catastrophic collapse, provided the
s-wave scattering length is non-negative.

In nonlinear optics, various aspects of the competition
between quadratic and cubic nonlinearities on soliton forma-
tion have been studied in Refs.[31], either in lower dimen-
sions(1D or 2D) or in cases of special relations between the
system parameters. Matter-wave solitons in 3D coupled
atomic-molecular BECs have been studied in Refs.[1,6,11]
and [32], but only for specific values of thes-wave cou-
plings.

In the present paper, we extend these results to the case of
arbitrary interaction strengths for the atom-molecule cou-
pling and for the repulsive atom-atoms-wave scattering, as
well as for arbitrary energy mismatch between the atoms and
molecules. We analyze the superchemistry equations in the
mean-field limit, to obtain the precise conditions under
which 3D atomic-molecular BEC solitons can form. Ap-
proximate soliton solutions are found analytically, by means
of a variational approach with a Gaussian and an exponential
ansatz. We then numerically study the dynamical stability of
the resulting solitons on a 3D lattice, together with compar-
ing the results with exact numerical solutions.

We find that there are large regions of stability in param-
eter space, depending on the energy difference between the
atomic and molecular condensates, the numbers of atoms
involved, and the coupling strengths. For simplicity, the
analysis only includes repulsives-wave scattering between
the atoms, and assumes no others-wave interactions. While
more generals-wave interactions are simple enough to in-
clude, we have focused on a relatively simple case here in
the interest of keeping the parameter space manageable.

II. THE MODEL

We start with an effective field theory model for a coher-
ently coupled atomic-molecular system[1]. The model and
the obtained results can easily be adopted to describe certain
cases of nonlinear optical interactions of second- and subhar-
monic waves in a nonlinear crystal[2,6]. In the atom-
molecular case, the model refers to a type of superchemistry
[3], in which an atomic condensate is able to coherently and
reversibly interconvert with a condensate of diatomic mol-
ecules.

There are several possible experimental routes for provid-
ing this type of coherent coupling, including a Feshbach
resonance(employing a tuned external dc magnetic field),
Raman photoassociation(involving two external lasers with
a well-defined frequency difference), and direct single-
photon photoassociation(this would require an external mi-
crowave or infrared field) [1–5,21–30]. The first two cases
have been experimentally demonstrated[17,20], although
not yet the last. In practical terms, the main limitation of the

model and corresponding experiments is the need to mini-
mize incoherent processes like inelastic collisions and other
loss processes.

A. Hamiltonian

In the model, we suppose that each condensate has the
usual kinetic energy term, atom-atoms-wave scattering in-
teractions, and a number-conserving coherent coupling of the

form F̂†F̂†Ĉ, whereF̂ represents the atomic field, andĈ is
the field operator for the molecular dimers. InD sD
=1,2,3d spatial dimensions, this leads to a model Hamil-
tonian of the following form:

Ĥ =E dDxF "2

2m1
u = F̂sxdu2 +

"2

2m2
u = Ĉsxdu2 + VCĈ†sxdĈsxd

+
"k11

2
F̂†sxdF̂†sxdF̂sxdF̂sxd −

"x

2
fF̂†sxdF̂†sxdĈsxd

+ Ĉ†sxdF̂sxdF̂sxdgG . s1d

Here,m1 andm2 are the masses of the atoms and molecules,
respectively,VC is the internal molecular energy relative to
free atoms, and the couplingx (which we assume is positive)
describes coherent conversion of pairs of atoms into di-
atomic molecules, and vice versa. The atomic self-interaction
strengthk11 is proportional to thes-wave scattering length.
For example, in 3D,k11=4p"a11/m1, wherea11 is the atom-
atom scattering length, which is assumed positive, as is usu-
ally needed to form a stable BEC in the first place.

To allow comparisons with the Schrödinger-Newton
[14–16] equation, we will also consider a related model in

which the interaction term −"xfF̂†F̂†Ĉ+Ĉ†F̂F̂g /2 is re-

placed by −"xF̂†F̂fĈ+Ĉ†g /2. This models a Bose-Einstein

condensateF̂sxd with short-range interactions, together with
a long-range attractive force caused by the exchange of a

mesonlike particleĈsxd. In the mean-field theory limit, we
call this model the Gross-Pitaevskii-Yukawa(GPY) model; it
is more general than the Schrödinger-Newton model.

In astrophysical situations, the GPY mean-field theory re-
duces to the SN model in the combined limit of zeros-wave
scattering, and an infinitely long-range gravitational interac-
tion with m2→0, leading to an inverse-square law[14]. The
presence of a short-range interactions-wave scattering term
makes the GPY model more realistic than the usual SN
model. The SN model is used to describe a degenerate Bose
gas with gravitational self-interaction, and has also been sug-
gested as a possible mechanism for wave-packet collapse in
quantum mechanics[15,16]. In the one-dimensional case, the
GPY theory is similar to the nonlinear interactions in an
optical fiber caused by couplings of photons to phonons[33].
At the same time, the GPY model allows one to investigate
attractive interactions with more general behavior than a
simple inverse-square law.

At the quantum field level, either model Hamiltonian im-
plicitly involves a d-function effective interaction between
the atoms, and so requires the use of a momentum cutoff
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kmax!1/a11 for self-consistency. More rigorous regulariza-
tion consists of renormalization of the theory[26] as kmax
→`. In the present paper, however, we employ a mean-field
approximation, and restrict ourselves to the study of solitons
that have spatial widths much larger thankmax

−1 so that the
cutoff dependencies are negligible, while the relevant param-
eters are theobservedcouplings. The mean-field theory is
also a high-density approximation, since quantum fluctua-
tions and correlations are expected to cause a quite different
ground state to appear at low density[1,2,23,25].

A more complete model Hamiltonian should also incorpo-
rate atom-molecule and molecule-molecules-wave scattering
interactions. However, these greatly complicate the analysis,
without adding much qualitatively new physics to the 3D
soliton properties studied here. In addition, the respective
scattering lengths are not known yet in most cases. For this
reason, we assume that the atom-atom scattering is the domi-
nant s-wave interaction and simply omit all others-wave
scattering processes, in the interest of simplicity.

B. Mean-field equations

The corresponding equations of motion for the mean
fields in the atom-molecular model, following from the
Hamiltonian(1) and valid at high densities, are

i
]fsx,td

]t
= −

"

2m1
¹x

2f − xf * c + k11ufu2f,

i
]csx,td

]t
= −

"

2m2
¹x

2c + Dvc −
1

2
xf2, s2d

where"Dv=Vc is the energy mismatch on converting atoms
to molecules, andm2=2m1.

In this model, the total number of particlesN (i.e., the
total number of atomic particles, including pairs of atoms
inside the diatomic molecules) here is conserved:

N = N1 + 2N2 =E dDxfufsx,tdu2 + 2ucsx,tdu2g. s3d

For completeness, we include the mean-field equations for
the related GPY equations. These have the structure

i
]fsx,td

]t
= −

"

2m1
¹x

2f −
x

2
fsc + c * d + k11ufu2f,

i
]csx,td

]t
= −

"

2m2
¹x

2c + Dvc −
1

2
xufu2. s4d

In the limit of m2→0, x→`, so that Dvm2→0 and
x2m2=4pGm1

2, and assuming thatc is real, we introduce a
gravitational field potentialVg=−xc. In this long-range force
limit, one can apply an adiabatic approximation to the sec-
ond equation, which leads to the Poisson equation:

i"
]fsx,td

]t
= −

"2

2m1
¹x

2f + Vgf + "k11ufu2f,

¹x
2Vg = 4pGm1

2ufu2. s5d

This can be recognized as the mean-field equation for a
BEC having an additional self-gravitational force with the
gravitational potential energyVg and gravitational constant
G, as well as the usual GP short-range interaction. Here, the
conserved particle number is given byN=ed3xufsx ,tdu2. In
the additional limit ofk11→0, the equations correspond to
the time-dependent version of the SN equation[14–16] in
which there is no short-range self-interaction.

C. Dimensionless variables

1. Atom-molecular system

In general, atom-molecular solitons may exist with peri-
odic phase and frequencyv, so that i]f /]t=vf and
i]c /]t=2vc.

We introduce a characteristic time scalet0 and a charac-
teristic length scaled0=Î"t0/2m1. We also transform to di-
mensionless time and position variables,

t = t/t0,

ji = xi/d0 s6d

and dimensionless fields,

u = xt0feivt,

v = xt0ce2ivt. s7d

This gives the corresponding equations of motion in di-
mensionless form, with no reduction in parameter space:

i
]u

]t
= − ¹j

2u + guu − u * v + a11uuu2u,

i
]v
]t

= −
1

2
¹j

2v +
g

2
v −

1

2
u2. s8d

Here we have introduced new dimensionless parameters
according to

a11 =
k11

x2t0
,

gu = − vt0,

g = s2Dv − 4vdt0. s9d

To make the scaling definite, we can setgu=1 with no
loss in generality, providedv,0. This corresponds to a lo-
calized bound state with negative energyE="v; we do not
investigate the unbound solutions here. The choicegu=1
also gives a simple relationship between the dimensionless
parameterg and the detuningDv,

g = 4 + 2Dvt0, s10d

corresponding to a shifted energy mismatch.
For a11=0 (and with an additional scaling ofu→u/Î2),

Eqs.(8) are equivalent to Eqs.(1) and(2) of Ref. [10], with
the value of the coefficientd=1. This corresponds to optical
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parametric interaction in a quadratically nonlinear medium,
in which the dispersion coefficients for the fundamental and
second-harmonic fields are equal to each other.

We seek stationary solutionss]u/]t=]v /]t=0d to the
equations of motion(8), i.e., those that have

¹j
2u = u − u * v + a11uuu2u,

¹j
2v = gv − u2. s11d

These correspond to extrema of the following dimensionless
atom-molecular Hamiltonian:

Hsu,vd =E dDjFu ¹ uu2 +
1

2
u ¹ vu2 + uuu2 +

g

2
uvu2 −

1

2
fsu * d2v

+ c.c.g +
a11

2
uuu4G , s12d

where the expression for the original Hamiltonian energy in
terms of the dimensionless variables is

H = S "

2m1t0
DD/2 "

x2Hsu,vd. s13d

A conserved quantity for thesu,vd system, which is pro-
portional to the total number of particlesN, is

N8 =E dDjfuusj,tdu2 + 2uvsj,tdu2g. s14d

2. Schrödinger-Newton system

Similarly, stationary solutions to the time-dependent SN
equation (5) may also exist with frequencyv, so that
i]f /]t=vf, with Vg following adiabatically. This translates
Eq. (5) directly to the time-independent SN equation appear-
ing in Refs.[14,16], for fs=f expsivtd:

"2

2m1
¹x

2fs = − Efs + Vgfs,

¹x
2Vg = 4pGm1

2ufsu2, s15d

whereE="v.
By introducing characteristic time and length scales, as in

Eqs.(6), and transforming to dimensionless fields

u = t0Î2pGm1fs,

v = −
t0
"

Vg, s16d

we obtain the dimensionless time-independent SN equations:

¹j
2u = u − vu,

¹j
2v = − u2. s17d

The normalization is now given byedDj u2= uEu−1/2. HereE
=E/E0 is the dimensionless energysE,0d, and the energy
scaleE0 is defined viaE0=32p2m1

5N2G2/"2.

Note that Eqs.(17) are identical to Eqs.(11) for real sta-
tionary solutions to the atom-molecular system wheng
=a11=0.

III. VARIATIONAL ANALYSIS

A. Gaussian variational ansatz

To analyze the localized soliton solutions to Eqs.(8),
wheregu=1, we introduce an approximate Gaussian varia-
tional ansatz(GVA). This permits an analytic treatment of
the problem of minimizing the Hamiltonian energy. The sta-
bility of the GVA solutions will be checked numerically by
dynamical evolution of the equations of motion where the
GVA serves as the initial condition.

The GVA solutions are introduced according to

usj,t = 0d = Ae−aj2
,

vsj,t = 0d = Be−bj2
, s18d

wherej= uju. Here, the parametersa andb must both be real
and positive for localized solitons, and we assume that both
the amplitudesA and B are also real and positive. This
choice in fact already takes care of the optimum relative
phase between the atomic and molecular fields, where we
can without loss of generality takeB to be real, while the
optimum relative phase will dictate the phase ofA. This im-
mediately leads us to the conclusion thatA2 must be real and
positive too, in order that the atom-molecule interaction term
remains negative(for positive x as assumed here) and per-
mits a minimum in the Hamiltonian energy. The sign ofA is
in fact irrelevant, since the corresponding equations of mo-
tion (8) are invariant under the sign change ofA.

Substituting the GVA into Eqs.(14) and (12) for N8 and
the Hamiltonian energyHsu,vd and taking the integrals we
obtain, inD=1, 2, or 3 space dimensions:

N8 = Sp

2
DD/2F A2

aD/2 +
2B2

bD/2G , s19d

Hsu,vd =
D

2
Sp

2
DD/2F 2A2

aD/2−1 +
B2

bD/2−1 +
2A2

DaD/2 +
gB2

DbD/2

−
21+D/2A2B

Ds2a + bdD/2 +
a11A

4

Ds2adD/2G . s20d

Minimizing Hsu,vd with respect toa, b, A, andB (for given
a11 andg) gives the following solution:

a =
b

2
F 2sDb + gd

sD − 2db + g
− 1G , s21d

a11s2a + bd1+DsDb + gdfs4 − Dda − 1g − 21+Ds2abdD/2f4a2

− sD − 2dab− bg = 0, s22d

B =
s2a + bdD/2sDa + 1d

s2adD/2 F1 −
a11s2a + bdDsDb + gd

2Ds2abdD/2 G−1

,

s23d
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A2 =
s2a + bdD/2sDb + gd

s2bdD/2 B. s24d

In Eq. (22), the parametera is to be substituted using Eq.
(21), so that Eq.(22) (to be solved first) reads as a polyno-
mial equation with respect tob, for given values ofa11 and
g. Alternatively, b can be regarded as a free parameter and
Eq. (22) be viewed and easily solved with respect toa11, for
giveng andb. In doing so, only positiveb values have to be
considered for physically meaningful(localized) soliton so-
lutions.

For certain values ofa11 andg this system has a unique
solution (see Sec. IV A, giving the soliton parametersA, B,
a, and b. The soliton parameters give in turn the resulting
value of the conserved quantityN8, Eq. (19), and the Hamil-
tonian energy(20).

B. Exponential variational ansatz

It can be shown that any localized stationary solution to
the equations of motion(8) (with gu=1) must possess tails
decaying according to

usj @ 1,td ~ e−j/j,

vsj @ 1,td ~ e−Îgj/j, s25d

where j= uju. This result can be obtained by neglecting all
nonlinear terms in Eqs.(8) at largej, and solving the result-
ing decoupled equations for the stationary states.

Due to the singularity at origin, direct employment of this
variational trial function would be problematic. However,
since it indicates that the soliton tails should decay more
slowly than those of the Gaussian trial functions, we are
motivated to also consider an alternative exponential varia-
tional ansatz(EVA):

usj,t = 0d = Pe−pÎj2+«,

vsj,t = 0d = Qe−qÎj2+«. s26d

As in the case of the GVA, here too we assume thatp, q, P,
andQ are all real and positive. For analytic simplicity, we let
e be an infinitely small length scale, which is formally in-
cluded to ensure thatu andv are differentiable atj=0. We
then proceed and evaluate the integrals inN8 and Hsu,vd to
find that, ase→0:

N8 = KDFP2

pD +
2Q2

qD G , s27d

Hsu,vd = KDF P2

pD−2 +
Q2

2qD−2 +
P2

pD + g
Q2

2qD −
2DP2Q

s2p + qdD

+ a11
P4

2D+1pDG . s28d

Here,KD=1, p /2, p for D=1, 2, 3, respectively.
Variational stationary points are then given by the solution

to the following set of algebraic equations:

p =
q

2
F 2Dsq2 + gd

sD − 2dq2 + Dg
− 1G , s29d

23D+1spqdDhfsD − 2dp2 + Dgs2p + qd − 2Dpsp2 + 1dj

− a11s2p + qd2D+1sq2 + gdfD − s4 − Ddp2g = 0, s30d

Q =
fsD − 2dp2 + Dgs2p + qdD+1

Ds2pdD+1

3F1 − a11
sq2 + gds2p + qd2D+1

23D+2pD+1qD G−1

, s31d

P2 =
sq2 + gds2p + qdD

s2qdD Q. s32d

To compare the EVA solutions with those of the GVA, it is
necessary to ensure that both have identicalN8 for a given
pair of the parametersa11 and g. As the solutions given
above result from(unconstrained) variational minimization
with respect to all parameters, this requirement will not in
general be met. We thus perform a constrained minimization
with respect top, q, andQ, leavingP to be fixed by N8 of
the associated GVA solution[34]. The constrained EVA so-
lution for D=3 is then given by

3

8
a11pF −

48pqQ

s2p + qd4 + 4 = 0, s33d

FF3

2
a11p

3Q + 48
p3q4

s2p + qd4G + 12QF1 + p2 −
8p3Q

s2p + qd3G
− Qs3g + q2d = 0, s34d

FFa11
p3

q3 +
16p3

s2p + qd3G +
8Q

q3 F1 + p2 −
8p3Q

s2p + qd3G
−

2Q

b
F1 +

g

q2G = 0, s35d

where we have definedF;N8 /p−2Q2/q3.
We note that a similar exponential variational solution for

the “atomic” u field (though not for the “molecular”v field)
has been used previously for the Schrödinger-Newton equa-
tion [16].

IV. 3D SOLITON PROPERTIES

A. Existence and properties of GVA solutions

In order to analyze the properties of the GVA solutions
Eqs. (21)–(24), for a given pair ofg and a11, we first note
that our analysis is restricted to the case ofa11ù0, i.e., re-
pulsive atom-atom interactions including a noninteracting
limit of a11=0. In addition, we restrict ourselves to the three-
dimensional casesD=3d only.

Next, any localized physical solutions requirea andb to
be both real and positive. The existence of the minimum for
the Hamiltonian energy, Eq.(20), requires that the product
A2B is real and positive too, so that the atom-molecule con-
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version term gives a negative contribution to the energy. As
we mentioned earlier, this is achieved by taking bothA andB
to be positive.

To investigate the consequences of these requirements in
terms of the soliton existence domain in the parameter space
sa11,gd, one has to start from solving numerically the poly-
nomial Eq.(22). However, a simpler route that allows us to
obtain analytical results is to viewb as a free positive-valued
parameter and solve Eq.(22) for a11 in terms ofb andg. In
this case, the GVA solutions can be rewritten(for D=3) in a
simpler form:

a =
bs5b + gd
2sb + gd

, s36d

a11 =
24+3/2a3/2b3/2s4a2 − ab− bd

s2a + bd4s3b + gdsa − 1d
, s37d

B =
s2a + bd5/2sa − 1d
23/2a3/2sb − 2ad

, s38d

A2 =
s2a + bd3/2s3b + gd

23/2b3/2 B, s39d

where we have substituted the solution fora11 into the ex-
pression forB, and the parametera in Eqs.(37)–(39) is to be
substituted using Eq.(36).

In Appendix A, we analyze the above set of equations for
possible solutions. Restricting ourselves to the physically in-
teresting subspace ofg.0, we find that the soliton existence
domain for the GVA is given by 0øa11,1/g. The param-
eter space identifying this in thesg ,a11d plane is shown in
Fig. 1. Here, the vertical lines atg=0.5, 2, 3.8, 4.2, 6, and 8
serve as test lines for mapping purposes discussed in subse-
quent sections. The dotted line gives the upper bound ona11
corresponding to the boundarya11,1/g.

Figure 2 represents the GVA soliton widthssa=1/Î2a
andsb=1/Î2b as a function ofa11 s0øa11,1/gd, for dif-
ferent values ofg. Similarly, Fig. 3 represents the fraction of
the number of particles in the atomic fieldNa8 /N8 versusa11,
where Na8=ed3j u2 is proportional to the total number of
atoms, whileN8=ed3jsu2+2v2d is proportional to the total
number of atomic particles including pairs of atoms in the
molecular component. Due to the conserved total particle
number, the fraction of molecules is found fromNmol8 /N8
=0.5s1−Na8 /N8d.

As we can see, for large negative detuningDv, corre-
sponding tog!4 sg.0d, and for vanishing atom-atom re-
pulsion sa11.0d, the atomic fraction is relatively small and
increases monotonically with increasingg. In all cases, the
atomic fraction decreases rapidly asa11 increases, due to the
increased energy penalty resulting from interatomic interac-
tions. The graphs for the soliton widths show that the atomic
density profiles are in general wider than the corresponding
molecular density profiles, and that the atomic component
becomes wider and lower in the amplitude in the limit of
strong interatomic repulsion,a11→1/g. In this limit, it is
energetically preferable for atom pairs to populate the mo-
lecular component so that the stable configuration of the sys-
tem is a pure molecular condensate. We note that this is a
consequence of the fact that our model neglects the
molecule-molecule self-interaction completely.

B. Existence and properties of EVA solutions

Almost identical arguments relating to the soliton exis-
tence domain can be made for the EVA solutions. We again

FIG. 1. GVA solutions existence domain in thesg ,a11d plane,
for g.0. The dotted line gives the upper bound ona11 correspond-
ing to the boundarya11,1/g. The set of vertical lines in the region
g,4 (g=0.5, full line; g=2, dashed line; andg=3.8, dash-dotted
line), and in the regiong.4 (g=4.2, full line; g=6, dashed line;
and g=8, dash-dotted line) are to serve for mapping purposes as
discussed in the text and explained in the captions to subsequent
figures.

FIG. 2. GVA solution widthssa=1/Î2a andsb=1/Î2b as func-
tions of a11, for different values ofg corresponding to different
vertical lines in Fig. 1.

FIG. 3. Fraction of the number of particles in the atomic field
Na8 /N8 for GVA solutions as a function ofa11, along the lines of
fixed g values as shown in Fig. 1.
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simplify the analysis by rewriting Eqs.(29)–(32) in the fol-
lowing form (for D=3):

p =
q

2
S5q2 + 3g

q2 + 3g
D , s40d

a11 =
210p3q3f4p3 − qsp2 + 3dg
s2p + qd7sq2 + gdsp2 − 3d

, s41d

Q =
s2p + qd4sp2 − 3d
3 3 23p3sq − 2pd

, s42d

P2 =
s2p + qd3sq2 + gd

23q3 Q. s43d

Here, the expression(41) for a11 is obtained from Eq.(30)
and has been further substituted into Eq.(31) to obtain Eq.
(42). The parameterp in Eqs. (41)–(43) is to be substituted
using Eq.(40). By treatingq as a free parameter instead of
a11 (assumingq.0 for localized solutions), we can first
solve forp in terms of two independent parametersq andg,
and then proceed to find the remaining parameters,a11, Q,
andP.

In Appendix B, we analyze the above set of algebraic
equations and conclude that forg.0 the existence domain
for the EVA solutions is identical to that of the GVA solu-
tions, and is given by 0øa11,1/g.

Figure 4 shows the dependence of the atomic number
fractionNa8 /N8 for the EVA solution as a function ofa11, for
variousg. As we see, the salient features of these curves, as
well as the behavior of the EVA soliton widths, are similar to
those of the GVA solutions discussed in the previous subsec-
tion.

V. DYNAMICAL STABILITY

In order for these variational solutions to prove useful, it
is necessary to identify some correlation between their dy-
namical behavior and the existence of actual(exact) stable
soliton solutions. To this end, we have identified the exact
stationary solutions numerically, by means of the numerical
relaxation method, and have checked their stability under
dynamical evolution for a large number of test points in the
sa11-gd parameter space within the GVA/EVA solutions ex-
istence domain, 0øa11,1/g for g.0. What follows is an
account of the dynamical behavior of the variational approxi-
mations, together with comparisons between this behavior
and the existence of stable stationary points.

A. Stability of the GVA solutions

We have conducted a numerical analysis of the dynamics
of the GVA solution for varioussa11,gd pairs lying within
the existence domain 0øa11,1/g, for g.0. The details of
this analysis are as follows.

We first used Eqs.(36)–(39) to obtain the parameters
characterizing the GVA solution for eachsa11,gd pair in
question. These solutions were then used, in conjunction
with the dimensionless equations of motion(8), to form a set
of initial value problems. The dynamical behavior of each
Gaussian solution was then determined through numerical
integration using a spherically symmetric[35] semi-implicit
algorithm.

In Figs. 5–7 we show typical examples of the dynamical
evolution of the atomic and molecular fields.

Figure 8 summarizes the results of our dynamical stability
analysis, applied to manysa11,gd pairs satisfying a11

ù0.01, gù0.01, anda11,1/g. Here, the points marked
with squares, circles, or crosses represent dynamics of the
GVA solutions, which have been classified as stable, “oscil-
latory,” or unstable in nature.(This necessarily involves a
certain degree of ambiguity when distinguishing between the
stable and oscillatory cases.) Here, the term oscillatory is
used in a broad sense, and does not mean to imply true
periodic oscillations around the original GVA solution or the
exact stationary solution. The term unstable, on the other
hand, refers to delocalization of the GVA solution over short
time scales[36].

Remarkably, the GVA solutions display primarily stable
dynamics within the 0øa11,1/g parameter space. Excep-
tions to this are two regions close to theg=0.01 axis. The
lower of these regions(the shaded region in Fig. 8 containing
circles) contains GVA solutions which, although remaining

FIG. 4. Fraction of the number of particles in the atomic field
Na8 /N8 for the EVA solutions as a function ofa11, along the lines of
fixed g values as shown in Fig. 1.

FIG. 5. Example of stable dynamical evolution of the GVA soli-
ton. Shown are the particle number densities for the atomic(a) and
molecular(b) fields for a11=0.1 andg=1, with the GVA solution
taken as the initial condition.
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localized, display highly oscillatory dynamics. Here, the
EVA solutions have lower energy and give a better approxi-
mation to the exact solutions(see Sec. V C for further dis-
cussion). The other region contains unstable GVA solutions
(marked by crosses) which delocalize rapidly under dynami-
cal evolution.

We point out, however, that these regions are rather small
in the physical parameter space(notice the logarithmic scale
in Fig. 8). The most interesting area in this sense is about the
g=4 axis, corresponding to a minimum energy mismatch
between the atomic and molecular fields,"Dv.0. For ex-
ample, even for the detunings as large asDv.−104 s−1,
which gives an energy mismatch comparable in magnitude
with typical mean-field energies in atomic Bose-Einstein
condensates, the corresponding value ofg is of the order of
g.2, for typical values ofN.105 andx.10−6 m3/2/s (see
also Sec. VI). In this physically interesting region, the GVA
solutions are a good approximation to the exact solitons and
maintain excellent dynamical stability.

B. Existence of numerical exact solutions

By using the approximate GVA solution as an initial guess
in the numerical relaxation algorithm, we have investigated
the shape of the exact stationary solution having the same
particle number as the GVA. This constraint is used to ensure
that the numerically found exact solution corresponds to the
same set of physical parameters as the GVA. The stability of
each exact solution was determined in the same manner as
that of the GVA, i.e., via real-time dynamical evolution gov-
erned by Eqs.(8). In all cases where a stationary solution
was identified but found to be unstable, a modified initial
guess was found that converged to astablestationary solu-
tion. The modified Gaussian used in these cases was typi-
cally narrower and of higher peak density, while having the
same total particle number. In a small subset of cases, no
exact stationary solution was obtained(see below).

Figure 9 illustrates the time evolution of one such solu-
tion. This demonstrates the stability of the exact soliton so-
lution, in contrast to those corresponding to energy maxima
which become delocalized due to the buildup of small nu-
merical inaccuracies such as rounding errors.

FIG. 6. Dynamical evolution of the atomic(a) and molecular(b)
field densities fora11=0.01 andg=0.01. This is an example repre-
senting strongly “oscillatory” behavior of the GVA solution.

FIG. 7. Dynamical evolution of the GVA solution fora11=3 and
g=0.01 representing an example of unstable behavior. Shown is the
particle number density for the atomic field, with similar behavior
observed for the molecular field.

FIG. 8. Summary of the dynamical behavior of the GVA solu-
tions for differentsa11,gd pairs. The squares, circles, and crosses
indicate stable, strongly oscillatory, and unstable behavior, respec-
tively. For discussion of the shaded region withEEVA,EGVA, see
text in Sec. V C.

FIG. 9. Exact soliton dynamics with the exact solitary solution
(found numerically) as the initial condition, fora11=0.1,g=1, and
N8 being fixed to the same value as in the respective GVA solution.
Shown is the particle number density for the atomic field, with
similar behavior found for the molecular field.
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In Fig. 10, we summarize the results of the stability analy-
sis for the exact solutions and compare them with those of
the GVA. Stable exact soliton solutions were identified for all
sa11,gd pairs used in the GVA dynamical analysis(see Fig.
8), except those lying within the shaded region. The bound-
ary of this region was found using an extra set of test points
for higher accuracy. Distorting the initial guess input to the
relaxation algorithm did not help in finding exact stable so-
lutions in the shaded region. Note that, apart from a small
number of exceptions near the boundary, all unstable GVA
solutions in Fig. 8 which delocalized under dynamical evo-
lution (as for the example in Fig. 7) are contained within the
shaded region in Fig. 10. The physical origin of this instabil-
ity is yet to be understood.

Thus, one can make the statement that the existenceand
dynamical stability of the GVA solution is strongly indicative
of the existence of a true stationary soliton solution. This
applies even to the case of strongly oscillatory GVA dynam-
ics, in the sense that we were able to find a stable exact
soliton solution whenever the oscillatory behavior of the
GVA persisted for long evolution time.

C. Oscillatory dynamics and EVA solutions

Stationary solitons forsa11,gd pairs in the lower left cor-
ner of Fig. 8 are poorly approximated by the Gaussian ansatz

solutions—a fact revealed by the oscillatory GVA dynamics
prevalent in this area. Examining the profiles of the corre-
sponding numerically-obtained exact solutions suggests that
the EVA solutions may provide a better approximation in this
region.

In order to test this for a givensa11,gd pair, we need to
ensure that the GVA and EVA solutions in question are being
compared for the same value of the parameterN8 corre-
sponding to the total number of particles. Thus, we first iden-
tified the value ofN8 for the GVA solution, and then solved
Eqs.(33)–(35) for the parameters of the correspondingcon-
strainedEVA solution.

Figure 11 illustrates the improvement in the fit of the pro-
file of the EVA solution to that of the exact stationary solu-
tion, for a11=g=0.01. The corresponding GVA solution is
also shown for comparison. The resulting reduced amplitude
of oscillation in the dynamics of the EVA is shown in Fig.
12.

In order to understand and quantify this improvement, the
total Hamiltonian energy corresponding to both ansatz solu-
tions has been calculated for a collection of points spanning
the parameter space under consideration. The shaded area
with EEVA,EGVA in Fig. 8 represents the region of parameter
space where the constrained EVA solutions have lower en-
ergy than that of the GVA. This analysis shows that the EVA
indeed provides a better approximation to the exact solitons
in cases when the dynamics of the GVA is strongly oscilla-
tory.

Previous investigations of the SN equation[16], which
has a stationary solution exactly equivalent to ours withg
=a11=0, have come to the same conclusion that over a class
of trial functions the exponential ansatz for the “atomic”
field provides the best upper bound to the ground state
energy. The fact that the upper bound provided by our
solution, −0.108m5G2N2/"2, is higher than the value

FIG. 10. (a) Comparison of stable soliton existence domain with
the dynamical behavior of GVA solutions. Stable exact solutions
were found for all marked points outside of the shaded region. The
precise boundary of the shaded region, where no exact solutions
were found, was identified by approaching it from below and from
above along the vertical lines shown in(b). The lines themselves
consist of points, of spacing 0.01 ina11, for which the exact solu-
tions were identified, while the interrupted part of each line corre-
sponds to having no exact solutions.

FIG. 11. Comparison of the density profiles for the atomic(a)
and the molecular(b) fields described by the GVA, EVA, and exact
stationary solutions, fora11=0.01 andg=0.01. Note the dramatic
failure of the GVA to approximate the exact solution in this case.
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−0.146m5G2N2/"2 quoted in[16] is due to the fact that we
have used variational solutions for bothu andv fields, rather
than just foru. These upper bounds can be contrasted with
the exact ground state energy of −0.163m5G2N2/"2 [14]
which we have verified using our numerical relaxation code.

The SN helps to also understand the dramatic failure of
the GVA solutions to approximate the exact solitons in the
region of smallg anda. Here, the tails of the density distri-
butions become increasingly important, and according to Eq.
(25) the v field with g→0 decays much slower than the tail
of any Gaussian. In terms of the SN equation, this corre-
sponds to evolution of the wave function in a very long-
range potentialv.

D. Energy surface topography

In order to better understand the nature of the instability
marked by the shaded region in Fig. 10, it would be instruc-
tive to examine the topographical variations in the energy
surface while approaching and crossing the boundary be-
tween the stable and the unstable regions. By tracing a
single-dimensional trajectory between known critical points
in the infinite dimensional coordinate space we can learn
something of the higher-dimensional structure.

Figure 13 illustrates the topographical variation in the en-
ergy surface when the unstable region is approached from
below asa11 is increased along theg=0.01 line. Here, the
critical points (including the unstable or delocalized solu-
tions) for eachsa11,gd pair were evaluated, and linear inter-
polation was used to generate a continuous path between
stablesSd, unstablesUd and delocalizedsDd solutions, along
a contour of constantN8 [37].

It is clear from this illustration that, asa11 approaches the
unstable region, the soliton solution becomes metastable as it
corresponds to a local rather than absolute minimum in the
energy surface. This fact does not affect the existence of
stable solutions, however, which persist until the local mini-
mum is completely eliminated as the boundary is crossed
into the unstable region.

We can use this analysis to explain the existence of GVA
solutions which delocalize under evolution despite the exis-
tence of an exact stationary solution. In such cases, the width
of the confining local minimum well(in state space) is
smaller than the perturbation to the exact solution induced by
enforcing the Gaussian ansatz. As one might expect, this
only happens near a stability boundary, where the wells are
small.

VI. RELATION TO PHYSICAL PARAMETERS

From the practical point of view, the question of interest is
whether a given set of the physical parametersm1, x, k11,
Dv, and the total number of particlesN can support stable
atomic-molecular solitons. In order to answer this question
we must be able to interconvert between the soliton param-
eters in terms of the dimensionless variables and the original
physical parameters. This procedure is not of a trivial matter,
and requires a self-consistent solution that is able to map a
given set of values ofsm1,x ,k11,Dv ,Nd into a pair of values
of sg ,a11d, using the time scalet0 and the length scaled0.
Depending on whether or not the pair of values ofsg ,a11d is
inside the soliton existence domaing.0 and 0øa11,1/g,
one can then answer the above question and find the soliton
parameter values in terms of dimensional variables, using the
results of previous sections.

We recall that the relationships between the parameters of
the dimensionless system and the original physical param-
eters are as follows:

Dv = sg − 4d/2t0, s44d

k11/x
2 = a11t0, s45d

N =
1

x2Ît0
S "

2m1
DD/2

N8. s46d

FIG. 12. Dynamical evolution of the EVA solution fora11

=0.01 andg=0.01. Shown are the particle number densities for the
atomic (a) and molecular(b) fields. This figure can be compared
with the strongly oscillatory dynamics of the GVA solution in Fig.
6, and shows improvement in the stability of the EVA solution due
to its lower energy.

FIG. 13. Energy surface topography as one approaches the un-
stable region boundary from below along theg=0.01 line. Shown is
the dimensionless Hamiltonian energy vs the distances in state
space[37]. Different curves correspond(from bottom in increasing
order) to a11=0.2,0.5,0.7,1.

VAUGHAN, KHERUNTSYAN, AND DRUMMOND PHYSICAL REVIEW A 70, 063611(2004)

063611-10



Here, the role of the massm1 is in setting up the length
scaled0=Î"t0/2m1, so that the soliton widths are found un-
ambiguously once the corresponding time scalet0 is set up
self-consistently. This leaves us, in general, with four inde-
pendent variablessx ,k11,Dv ,Nd in the physical parameter
space and two independent variablessg ,a11d of the dimen-
sionless system. Therefore, in order to be able to map
the soliton existence domain in thesg ,a11d plane into the
physical parameter space, we have to restrict ourselves
to cases where—out of four physical parameters
sx ,k11,Dv ,Nd—only two can be varied independently,
while the other pair must be kept fixed.

Depending on which pair of the physical parameters is
chosen to be fixed or varied, one can identify six different
cases where the solution of the problem can be found unam-
biguously. As an example we consider the case where the
fixed pair of the parameters are the couplingsx and k11,
while the adjustable parameters are the detuningDv and the
total number of particlesN. This is the most physically rel-
evant case, as the detuning and the total number of particles
are easier to vary experimentally.

The procedure of mapping the soliton existence domain in
the sg ,a11d plane into thesDv ,Nd parameter space consists
of solving Eqs.(44)–(46) to first identify t0, using Eq.(45),
and then finding the corresponding values ofDv andN from
the remaining two equations. As an intermediate step, this
involves the evaluation ofN8=N8sg ,a11d using Eq. (19),
where the soliton parametersa, b, A, andB are found from
the GVA solutions for thesg ,a11d pair in question. Figure 14
demonstrates this mapping for the values ofk11 andx typical
of a 87Rb BEC experiments.

Similar mapping can easily be constructed in other cases,
where depending on the choice of the fixed pair of the physi-
cal parameters the sequential order of solving Eqs.(44)–(46)
will vary. In all cases, the initial step should consist of iden-
tifying the value of the “dummy” parametert0 using one of
the equations(44)–(46), and then eliminating it in favor of
the remaining pair of the physical parameters in question.

VII. SUMMARY

To summarize, we have applied both Gaussian and expo-
nential variational approximations to the problem of identi-
fying 3D soliton solutions to parametrically coupled dilute
atomic and molecular Bose condensates, with atomic self-
interaction present. The soliton existence domain has been
investigated, and forg.0 found to be defined by 0øa11
,1/g in both cases.

A detailed numerical study of the dynamical behavior of
the Gaussian ansatz solutions has revealed that, as a rule of
thumb, localized propagation of GVA solutions indicates the
existence of true(and stable) stationary solutions. Further-
more, in regions where the GVA propagation is strongly os-
cillatory, the corresponding exponential ansatz solutions
have been found to possess a lower energy, and propagate
almost without oscillations. This indicates that systems for
which the energy of molecular formation is large and nega-
tive and which have weak atomic self-interaction possess
stationary solutions better approximated by the exponential
rather than Gaussian ansatz. Finally, we have identified an
anomalous instability “island” in thesa11,gd parameter
space, where the Gaussian solitons were dynamically un-
stableand where no exact stationary solutions were numeri-
cally found.

The results obtained give the precise conditions under
which 3D coupled atomic-molecular BEC solitons can form.
This is done in terms of the dimensionless parameters
sa11,gd that originate from physical parameters determined
by the atom-molecule coupling, atom-atom repulsives-wave
scattering, and the energy detuning between the atomic and
molecular fields. The total number of particlesN in the sys-
tem is incorporated in the analysis self-consistently, via scal-
ing with respect to the time scalet0 or equivalently with
respect to the choice of the energy origin. We have shown
how one can in principle map the physical parameter space
into the parameter space defined by the dimensionless pa-
rameterssa11,gd, and hence identify whether a particular set
of physical parameter valuessx ,k11,Dv ,Nd lies within the
identified soliton existence and stability domain in the
sa11,gd plane.

Beyond the theoretical interest, the realization of this type
of coupled BEC soliton could provide a way to stabilize the
otherwise diverging output of an atom-molecular laser, pro-
viding a technique for delivering a localized, intense, and
coherent atomic-molecular field to a target or a detector.

The steady-state and variational solutions found here are
also applicable to generalizations of the Schrödinger-Newton
equation.
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APPENDIX A

Standard algebraic analysis of Eqs.(36)–(39) for possible
solutions, for a given pair ofa11ù0 andg, gives the follow-
ing results. First of all, it is easy to see that forb.0 and
B.0, the requirementa.0 andA2.0 (so thatA2B.0 too)
can be satisfied only ifg+b.0. From this, it also follows
that 3b+g.0, 5b+g.0, andb−2a,0. Next, one can eas-
ily see thatB.0 if a−1,0. This last inequality can be
solved in terms ofb, giving the result thatb must satisfyb
,b1, where

FIG. 14. Variation inN andDv along thesa11,gd lines shown in
Fig. 1. The values of the couplingsx andk11 are held constant:x
=10−6 m3/2/s andk=4.96310−17 m3/s.
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b1 =
1

10
fs2 − gd + Îs2 − gd2 + 40gg sA1d

corresponds to the positive-valued solution of the quadratic
equation forb which follows froma−1=0.Thus, as long as
0,b,b1 sa−1,0d and g+b.0, we satisfy the require-
ments thata.0, B.0, andA2.0.

Analysis of the remaining requirement ofa11ù0 is now
reduced to the solution of 4a2−ab−bø0, within the region
0,b,b1 (wherea−1,0) and forg+b.0. Here one has to
distinguish and consider separately two cases corresponding
to gø0 andg.0.

For gø0 the analysis is quite complicated and requires a
pure numerical investigation. The overall conclusion is that
the soliton existence domain is now restricted to a very small
region which is not of major physical interest. For example,
for a11=0, this domain is limited to the values ofg within a
narrow interval −0.0074,gø0. The size of this interval de-
creases with increasinga11 and approaches −1/a11,g,0
as a11→`. In terms of the original(physical) phase mis-
match parameterDv, a physically interesting and important
region corresponds to the values ofDv.0 which we note
correspond tog.4, while g,0 corresponds to very large
and negative detuningDv. For this reason, in the remaining
of the paper we only treat the case ofg.0.

For g.0 we proceed with the analytic treatment as fol-
lows. Substitutinga from Eq. (36), one can rewrite the in-
equality 4a2−ab−bø0 (equivalent toa11ù0) in the follow-
ing form

45b2 + s14g − 2db + gsg − 4d ø
2g2

b
. sA2d

Taking here the equality sign, and considering the left and
the right hand sides as functions ofb, gives an equation that
can always be solved graphically, with the result that forg
.0 there always exists one and only one realpositivesolu-
tion for b, which we define viab0. Consequently, the above
inequality and thereforea11ù0 is satisfied if 0,bøb0.

The next step in our analysis consists of showing that
b0,b1, thus restricting the soliton existence region to 0,b
øb0 from which it follows that forg.0 the requirements
a.0, a11ù0, B.0, andA2.0 are satisfied simultaneously.
The proof ofb0,b1 is accomplished by first noting thatb
=b1 (corresponding toa−1=0) is the pole ofa11, and that
a11 is a continuous single-valued function ofb within the
interval 0,bøb1. The discontinuity atb=b1 is such that
a11→−` asb→b1−0 anda11→ +` asb→b1+0. In addi-
tion, limb→0a11=1/g.0, and sinceb0 is the only positive
root of the cubic equation(A2), we conclude that the cross-
over sb=b0d of a11 from positive to negative values can only
take place atb,b1, which implies thatb0,b1.

Finally, one can show graphically(see Fig. 15), that
within the interval 0,bøb0 and for g.0, a11 is a mono-
tonically decreasing function ofb. It approaches its maxi-
mum a11→1/g asb→0, anda11=0 at b=b0. This implies
that there is one-to-one correspondence between the soliton
existence domain 0,bøb0 and the interval 0øa11,1/g,

for g.0. In other words, the interval 0øa11,1/g sg.0d
can be equally regarded as the soliton existence domain in
the parameter spacesa11,gd.

APPENDIX B

Here we analyze the set of algebraic equations(40)–(43)
for possible solutions for a given pair ofa11ù0 andg, with
p, q, P, and Q all being real and positive. The analysis is
very similar to the one carried out for the GVA solutions, and
we summarize it as follows.

For q.0 (as required), in order thatp.0 it is clearly
necessary thatq2+3g.0, since in this case we also have
5q2+3g.0. In addition, for P2 to be positive one has to
haveq2+g.0, provided thatQ.0 (as required). The con-
dition q2+3g.0 then leads to the requirement thatp2−3
,0 for Q to be indeed positive, sinceq2+3g.0 andq.0
imply that q−2p,0.

Substituting the expression forp into p2−3, the require-
mentp2−3,0 can be written in the form

25q6 + s30g − 12dq4 + s9g2 − 72gdq2 − 108g2 , 0.

sB1d

It is clear that, as the left hand side of the inequality is a
polynomial of even order, it can be satisfied if its largest real
root q1 is positive. By performing a numerical analysis of
this polynomial, we find that real positive solutions exist for
all g, and thatq1→2Î3 asg→`. As in the case of the GVA
solutions, we restrict ourselves to the physically interesting
subspace ofg.0. In this case, there always exist one and
only one real positive solutionq1 to the above polynomial.
Thus, provided 0,q,q1 (i.e., p2−3,0) and q2+3g.0,
the requirements thatp.0, Q.0, andP.0 are met.

Turning to the remaining equation fora11, Eq. (41), with
a11ù0, we next find that we must have 4p3−qsp2+3dø0 (in
conjunction withp2−3,0) on the domain 0,q,q1. Here,

FIG. 15. The variation ina11 as a function ofb, for g=0 (a) and
(b) 105, illustrating thata11 is monotonically decreasing function of
b on 0,bøbq.
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we have also taken into account the fact that the termsq2

+gd is always positive, forg.0. Substituting the expression
for p from Eq. (29) into 4p3−qsp2+3dø0 we find that this
inequality is equivalent to

241q8 + s345g − 12dq6 + gs171g − 108dq4 + g2s27g − 324dq2

− 324g3 ø 0, sB2d

and can be satisfied if the largest real rootq0 to the polyno-
mial in the left hand side is positive. We again employ nu-
merics to find that forg.0 there exist only one real and
positive rootq0, i.e., the above inequality is satisfied forq on
0,qøq0. In the limit of largeg, q0→2Î3.

Finally, as for the GVA solutions, we can show numeri-
cally (see Fig. 16) that a11 is a monotonically decreasing
function ofq on 0,q,q0, and thatq0,q1. It approaches its
maximum value 1/g asq→0, anda11=0 atq=q0. This im-
plies that there exists one-to-one correspondence between the
intervals 0,qøq0 and 0øa11,1/g sg.0d, so that the lat-
ter can equally be regarded as the soliton existence domain
for the EVA solutions on the parameter spacesa11,gd.
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