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Three-dimensional solitons in coupled atomic-molecular Bose-Einstein condensates
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We present a theoretical analysis of three-dimensi@ia) matter-wave solitons and their stability proper-
ties in coupled atomic and molecular Bose-Einstein condengB&ESS. The soliton solutions to the mean-
field equations are obtained in an approximate analytical form by means of a variational approach. We inves-
tigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the
atom-atoms-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary
optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium
modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility
of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically dem-
onstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-
order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The
stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical
simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for
demonstrating the ground state of the Schrédinger-Newton and related equations that describe Bose-Einstein
condensates with nonlocal interparticle forces.
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I. INTRODUCTION tions. These more general models may also have astrophysi-

Recent developments in Bose-Einstein condensation dfd! Or guantum-mechanical significance. o
alkali-metal gases include the possibility of coherent mol-  The surprisingly close parallels to nonlinear optics, in the
ecule formation[L,2], or superchemistry[3] via Bose- related fields of quantum many-body theory and atom optics,
enhanced chemical reaction at ultracold temperatures. TH@ve now resglted in the emergence of a new f|g|d of
relevant parametric quantum field theorifs2,4—§ and research—nonlinear atom optics with parametric nonlinear-
their classical nonlinear optical analoigs-9| are the subject 1y The first step toward seeing molecular condensation was
of much current attention, due to the possibility of stable recently undertaken in transient experiments with a Bose-

bright, higher-dimensional solitor(glso referred to as soli- Eﬁ%ﬂeﬁeﬁﬂ?gﬁaﬁg &vszrtza e}tnodrirlsz’i[&\g’ Ic:‘ vc\:lggcehrequze;z%rl_ecule
tary wave$ [1,7,10,1]. Parametric solitons in nonlinear op-

tics with quadratic nonlinearity have now been observed exformation. More recent experiments withCs, /Rb, and
q Y 23Na[18], as well as with degenerate Fermi gase&’sfand

perimentally in two transverse dimensions, as both Spati"’dLi atoms[19], have produced even larger fractions of ultra-
and temporal solitonfl2]. , _ cold molecules, as well as Bose-Einstein condensates of
The dynamical equations f_or parametric solitons ar€ alhgsonic molecular dimers composed of fermionic atoms. All
example of a classically nonintegrable field theory whichihese experiments have employed magnetic Feshbach reso-
generally needs to be treated numerically. The formation ofances, which appear to be more successful at present than
three-dimensional3D) localized solitons is a subject of the alternative Raman photoassociation schg20g
much intrinsic interest in mathematical and nonlinear phys- |n addition to this remarkable experimental progress, the
ics, and it is intriguing that no integrable models supportingoriginal effective quantum field theorjl—6] for coupled
them appear to exist. Despite the absence of integrability, thatomic-molecular BECs has also been developed; it now in-
guadratically coupled equations of parametric nonlinear opeorporates renormalization, the treatment of intrinsic pair
tics and coherently coupled atomic-molecular Bose-Einsteirorrelations, quantum fluctuations, and thermal eff¢sts,
condensat¢BEC) systems appear to be the simplest physi-e.g.,[21-29, as well as a recent review pag@0] for fur-
cally relevant Hamiltonian models having 3D localized soli- ther references
tons[13]. In the near-classical limit of large numbers of atoms or
They also provide an experimental route toward demonphotons, the relevant equations for parametric solitons are
stration of the closely related ground state of thethose of mean-field theory, which is a modified version of the
Schrodinger-Newtor{SN) equation[14] introduced to de- Gross-Pitaevski{GP) equation(in the atomic BEC cageor
scribe gravitationally bound Bose gases, and later revived bthe nonlinear Schrodinger equatigim the photonic case
Penrose and otheifd5,1§ as a possible model of the col- These are in fact identical equations, except expressed in the
lapse of the quantum-mechanical wave function. We alsdlifferent languages of condensed matter physics and photo-
show that there are parallels with more general mean-fielsics. The modification consists of the addition of a paramet-
models of Bose gases having a combination of short-distanagc nonlinear term analogous to a quadratic nonlinearity in
repulsion and finite-range Yukawa-like attractive interac-nonlinear optics. This couples the atomic and molecular
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fields together by means of a coherent interconversion promodel and corresponding experiments is the need to mini-
cess. The parametric coupling acts as an energy-loweringiize incoherent processes like inelastic collisions and other
“glue,” which can permit stable mutually trapped BEC soli- loss processes.
tons to form in 3D. In the absence of gravity, this would
imply the possibility of localized matter waves in free space
without external trapping potentials. Unlike the usual GP
equations, the existence of attractive forces in three dimen- In the model, we suppose that each condensate has the
sions does not result in a catastrophic collapse, provided thésual kinetic energy term, atom-atogawave scattering in-
s-wave scattering length is non-negative. teractions, fmd a nurpber-conservmg coherent coupILng of the
In nonlinear optics, various aspects of the competitionform ®'®™W, whered represents the atomic field, addis
between quadratic and cubic nonlinearities on soliton formathe field operator for the molecular dimers. (D
tion have been studied in Ref&1], either in lower dimen- =1,2,3 spatial dimensions, this leads to a model Hamil-
sions(1D or 2D) or in cases of special relations between thetonian of the following form:
system parameters. Matter-wave solitons in 3D coupled
atomic-molecular BECs have been studied in REf$5,17 b= f dPx
and [32], but only for specific values of the-wave cou-
plings. 5 5
In the present paper, we extend these results to the case of + Lﬂq}?‘(x)&)’r(x)&)(x)&(x) - —X[(i)T(X)(i)T(X)\iI(X)
arbitrary interaction strengths for the atom-molecule cou- 2 2
pling and for the repulsive atom-atosawave scattering, as . ..
well as for arbitrary energy mismatch between the atoms and + ‘I’T(X)(D(X)CI)(X)]} . (1)
molecules. We analyze the superchemistry equations in the
mean-field limit, to obtain the precise conditions underHere,m, andm, are the masses of the atoms and molecules,
which 3D atomic-molecular BEC solitons can form. Ap- respectivelyVy, is the internal molecular energy relative to
proximate soliton solutions are found analytically, by meansree atoms, and the coupling(which we assume is positiye
of a variational approach with a Gaussian and an exponentiglescribes coherent conversion of pairs of atoms into di-
ansatz. We then numerically study the dynamical stability ofatomic molecules, and vice versa. The atomic self-interaction
the resulting solitons on a 3D lattice, together with comparstrengthx,; is proportional to thes-wave scattering length.
ing the results with exact numerical solutions. For example, in 3Dk =4mhay,/my, whereay; is the atom-
We find that there are large regions of stability in param-atom scattering length, which is assumed positive, as is usu-
eter space, depending on the energy difference between tiagly needed to form a stable BEC in the first place.
atomic and molecular condensates, the numbers of atoms To allow comparisons with the Schrédinger-Newton
involved, and the coupling strengths. For simplicity, the[14—1§ equation, we will also consider a related model in
analysis only includes repulsivewave _scattering betwe_en which the interaction term ﬁx[&)TiT\P+@T&>&>]/2 is re-
the atoms, and assumes no otkevave interactions. While e , , )
more generak-wave interactions are simple enough to in- Placed by Aix®'®[W+WT]/2. This models a Bose-Einstein
clude, we have focused on a relatively simple case here inondensat&(x) with short-range interactions, together with
the interest of keeping the parameter space manageable. a long-range attractive force caused by the exchange of a

mesonlike particleV(x). In the mean-field theory limit, we
Il. THE MODEL pall this model the Gross—Pitaeys!(ii—Yuka\(\IaPY) model; it
is more general than the Schrodinger-Newton model.
We start with an effective field theory model for a coher-  In astrophysical situations, the GPY mean-field theory re-
ently coupled atomic-molecular systeit]. The model and duces to the SN model in the combined limit of zeravave
the obtained results can easily be adopted to describe certaseattering, and an infinitely long-range gravitational interac-
cases of nonlinear optical interactions of second- and subhation with m,— 0, leading to an inverse-square 14%4]. The
monic waves in a nonlinear crystdP,6]. In the atom- presence of a short-range interact®wave scattering term
molecular case, the model refers to a type of superchemistnpakes the GPY model more realistic than the usual SN
[3], in which an atomic condensate is able to coherently ananodel. The SN model is used to describe a degenerate Bose
reversibly interconvert with a condensate of diatomic mol-gas with gravitational self-interaction, and has also been sug-
ecules. gested as a possible mechanism for wave-packet collapse in
There are several possible experimental routes for providguantum mechanid45,16. In the one-dimensional case, the
ing this type of coherent coupling, including a FeshbachGPY theory is similar to the nonlinear interactions in an
resonancgemploying a tuned external dc magnetic fjeld optical fiber caused by couplings of photons to phori@3%.
Raman photoassociatiqinvolving two external lasers with At the same time, the GPY model allows one to investigate
a well-defined frequency differengeand direct single- attractive interactions with more general behavior than a
photon photoassociatiafthis would require an external mi- simple inverse-square law.
crowave or infrared field[1-5,21-3(. The first two cases At the quantum field level, either model Hamiltonian im-
have been experimentally demonstrafdd,2q, although plicitly involves a &function effective interaction between
not yet the last. In practical terms, the main limitation of thethe atoms, and so requires the use of a momentum cutoff

A. Hamiltonian

no - 7 N
{_Zm |V<1>(X)|2+—2m | V)2 + Vg W)W (x)
1 2
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knax<1/aq, for self-consistency. More rigorous regulariza-  This can be recognized as the mean-field equation for a
tion consists of renormalization of the theoi®6] ask,.x ~ BEC having an additional self-gravitational force with the
— . In the present paper, however, we employ a mean-fielgravitational potential energy, and gravitational constant
approximation, and restrict ourselves to the study of solitonss, as well as the usual GP short-range interaction. Here, the
that have spatial widths much larger thbﬁ,ﬂx so that the conserved particle number is given b= [d®|p(x,t)|%. In
cutoff dependencies are negligible, while the relevant paramthe additional limit ofx;;— 0, the equations correspond to
eters are thebservedcouplings. The mean-field theory is the time-dependent version of the SN equatitd—-14 in
also a high-density approximation, since quantum fluctuawhich there is no short-range self-interaction.
tions and correlations are expected to cause a quite different
ground state to appear at low dendity2,23,25.

A more complete model Hamiltonian should also incorpo-
rate atom-molecule and molecule-molecsieave scattering 1. Atom-molecular system
interactions. However, these greatly complicate the analysis

without adding much qualitatively new physics to the 3D _ . ; —
soliton properties studied here. In addition, the respectiv%dﬁatp:h;jz and frequency, so thatisg/dt=wé and

scattering lengths are not known yet in most cases. For this We introduce a characteristic time scajeand a charac-
reaston, we a'sstumett.hat thedatqm-?tom stcatltlerltr;‘g s the dompsigic length scalel,=\%to/2m,. We also transform to di-
nant Swave nteraction and simply omit all OIN&wave o gjonless time and position variables,

scattering processes, in the interest of simplicity.

C. Dimensionless variables

' In general, atom-molecular solitons may exist with peri-

T:t/to,
B. Mean-field equations
The corresponding equations of motion for the mean & =xldo 6)

fields in the atom-molecular model, following from the gnd dimensionless fields,
Hamiltonian(1) and valid at high densities, are

( ) U:Xt0¢eiwtv

L d(x,t ho

T e UL AR A TR .

ot 2m; * uld v = xtoye® . (7)

This gives the corresponding equations of motion in di-
IP(X,1) h o 1, . : Co _
i———— = —Vay+ Aoy =x¢?, (2) mensionless form, with no reduction in parameter space:
ot 2m, * 2
.au
whereiAw=V, is the energy mismatch on converting atoms |&— =- V?u +yU—U* v+ agqulu,
to molecules, anadn,=2m;. T
In this model, the total number of particlés (i.e., the
total number of atomic particles, including pairs of atoms i@ - _ lvzv + ZU _ }uz (8)
inside the diatomic moleculg&ere is conserved: ar 28 20 277

5 5 ) Here we have introduced new dimensionless parameters
N=N;+2N,= | d°x[[¢(x,0]*+2¢(x,0[*].  (3)  according to

For completeness, we include the mean-field equations for @y, = K
the related GPY equations. These have the structure Xto'
dp(x,1) h X —_
T T om0 ) g, o= - ol
v=(2Aw - dw)t,. (9
IP(X,1) h o 1 5 , i ° .
= =‘val//+Awl//—5X|¢| : (4) To make the scaling definite, we can sgtE1 with no
2

loss in generality, provided<0. This corresponds to a lo-

In the limit of m,—0, y—%, so thatAwm,—0 and calized bound state with negative eneigy#w; we do not
x’my=4wGnE, and assuming that is real, we introduce a investigate the unbound solutions here. The chojge1
gravitational field potentiaVy=—x. In this long-range force also gives a simple relationship between the dimensionless
limit, one can apply an adiabatic approximation to the secparametery and the detuning\ o,
ond equation, which leads to the Poisson equation:

v=4+ 2Awty, (10
dp(x,b) n?_, 5 . : .
ih——" == ——Vip+Vyp+ hiy| o2, corresponding to a s_hlfted energy mlsma_tch. _
ot For «41=0 (and with an additional scaling af— u/\2),
Eqgs.(8) are equivalent to Eqs$l) and(2) of Ref.[10], with
Vivg = 47er§| & (5) the value of the coefficiend=1. This corresponds to optical
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parametric interaction in a quadratically nonlinear medium, Note that Eqs(17) are identical to Eqs(11) for real sta-
in which the dispersion coefficients for the fundamental andionary solutions to the atom-molecular system whegn
second-harmonic fields are equal to each other. =ay;=0.

We seek stationary solutionsu/dr=dv/dr=0) to the

equations of motiori8), i.e., those that have 1. VARIATIONAL ANALYSIS

20— 2 . L
Vgu =u-u*v+ a11|u| u, A. Gaussian variational ansatz

To analyze the localized soliton solutions to E@8),
ng = -u? (11 where y,=1, we introduce an approximate Gaussian varia-

These correspond to extrema of the following dimensionlesgonal ansatZGVA). This permits an analytic treatment of

atom-molecular Hamiltonian: the problem of minimizing the Hamiltonian energy. The sta-
bility of the GVA solutions will be checked numerically by
1 Y 1 dynamical evolution of the equations of motion where the
(up) = D 2, = 2 24 71,2 * )2
H _f d §[| VulF+ S Vol Juf+ Sl ()% GVA serves as the initial condition.
The GVA solutions are introduced according to
+c.cl+ 2 (12) 2
2 : u(¢,7=0)=Ae?,
where the expression for the original Hamiltonian energy in A neb?
terms of the dimensionless variables is v(§7=0=Be™, (18
5 \D2g whereé=|g. Here, the parameteesandb must both be real
H —( ) ZH(“ ) (13 and positive for localized solitons, and we assume that both
2mty/ X the amplitudesA and B are also real and positive. This
A conserved quantity for théu,v) system, which is pro- choice in fact already takes care of the optimum relative
portional to the total number of particlég is phase between the atomic and molecular fields, where we

can without loss of generality tak® to be real, while the

optimum relative phase will dictate the phasefofThis im-

mediately leads us to the conclusion tAdtmust be real and

positive too, in order that the atom-molecule interaction term

remains negativéfor positive y as assumed herand per-

mits a minimum in the Hamiltonian energy. The signfofs
Similarly, stationary solutions to the time-dependent SNin fact irrelevant, since the corresponding equations of mo-

equation (5) may also exist with frequencys, so that tion (8) are invariant under the sign changeAof

idpl t=we, with V; following adiabatically. This translates Substituting the GVA into Eqg14) and(12) for N’ and

Eq. (5) directly to the time-independent SN equation appearthe Hamiltonian energH™?) and taking the integrals we

N = f dPJu(£ D2+ 2u(& D2, (14)

2. Schroédinger-Newton system

ing in Refs.[14,16, for ¢s=¢ expliwt): obtain, inD=1, 2, or 3 space dimensions:
52 | Az 2B?
_V2¢s —Eds+ Vg¢sv N = (E) |:aT/2 + W ! (19
D/2 2 2 2 2
V2V, = 4G |, (15) Hoo =BT 2A* B 2N 4B
2\ 2 aD/2—1 bD/2—l DaD/Z DbD/Z
whereE=fiw.
By introducing characteristic time and length scales, as in 21DI2p2p ay At
Egs.(6), and transforming to dimensionless fields B D(2a + b)P"2 + D(2a)P2 | (20)
!/— . . . . . .
U= toV2mGmy ¢, Minimizing H“*) with respect ta, b, A, andB (for given
ay,1 and y) gives the following solution:
to
=-— b| 2(Db+
b=V, (16) a:_[ (Db+ ) _1], 1)
2|l (D-2b+y

we obtain the dimensionless time-independent SN equations:

V2= U-ou ay(2a+b)M*P(Db + y)[(4 - D)a - 1] - 2*P(2ab)°'74a?
‘f - ’
-(D-2)ab-b]=0, (22
Vi =-u? (17)
(2a+b)P?(Da+ 1) a11(2a+b)°(Db+ ) [
The normalization is now given byd°¢ u?=|&|"Y2. Here & B= o - 5 5 ,
=E/E, is the dimensionless enerdy<0), and the energy (2a) 2°(2ab)
scaleE, is defined viaEy=32m2mN’G?/ 2. (23

063611-4



THREE-DIMENSIONAL SOLITONS IN COUPLED.. PHYSICAL REVIEW A 70, 063611(2004

(2a+b)°2(Db + 9) q{ 2D(? + ) }
2 — 24 = -1, 29
(25)°" 24 P2l D-2¢+Dy 29
In EqQ. (22), the parametea is to be substituted using Eg. 3D+1/v. D 2 5
(21), so that Eq(22) (to be solved firstreads as a polyno- 27" (pg){[(D - 2)p*+ D1(2p + ) - 2Dp(p° + 1)}
mial equation with respect th, for given values ofx;; and - ay1(2p+ )P g? + y)[D - (4 -D)p?] =0, (30)
v. Alternatively, b can be regarded as a free parameter and
E_q. (22) be viewed f';md easily solve_o! with respectatq, for _[(D- 2)p?+D](2p + )P+t
given y andb. In doing so, only positivé values have to be Q= DTl
considered for physically meaningfdbcalized soliton so- D(2p)
lutions. (G +y)(2p+q)?P*t |1
For certain values ofr;; and y this system has a unique X[ 1-amp 23D+2P+1gD ' (3
solution(see Sec. IV A, giving the soliton parameté&sB,
a, andb. The soliton parameters give in turn the resulting 2 5 D
value of the conserved quantity’, Eq.(19), and the Hamil- p2 = MQ (32)
tonian energy(20). (29)°
To compare the EVA solutions with those of the GVA, it is
B. Exponential variational ansatz necessary to ensure that both have identi¢alfor a given

. ) i pair of the parameters;; and y. As the solutions given
It can be shown that any localized stationary solution to5,6ve result fromunconstrainey variational minimization
the equations of motiog8) (with ,=1) must possess tails yith respect to all parameters, this requirement will not in
decaying according to general be met. We thus perform a constrained minimization
u(Es 1,7 < e8¢, with respept top, g, and Qi leaving P to be fix'ed by N of
the associated GVA solutiof84]. The constrained EVA so-
lution for D=3 is then given by

v(E> 1,7 « eV, (25)
where é=|&. This result can be obtained by neglecting all §a11pF— &q% +4=0, (33
nonlinear terms in Eqg8) at large¢, and solving the result- 8 (2p+0)
ing decoupled equations for the stationary states. .4 5
Due to the singularity at origin, direct employment of this 3 3 p°q >  8pQ
variational trial function would be problematic. However, F 4P Q+ 48(2p+ o)t T1Q1+p (2p+0q)®

since it indicates that the soliton tails should decay more o
slowly than those of the Gaussian trial functions, we are - QBy+0a) =0, (34)
motivated to also consider an alternative exponential varia-

i ' e | 8 8p°
tional ansatZEVA): F{aup—g . 0 3] . %{1 o o) 3]
u(é,r=0)= pe P&+ g° (2p+q) q (2p+0q)
' ' 2
- —FQ{1+12]=0, (35)
v(§7=0)=Qe e, (26) q

where we have definel=N"/7—-2Q?/q°.

We note that a similar exponential variational solution for
the “atomic” u field (though not for the “moleculard field)
has been used previously for the Schrédinger-Newton equa-

As in the case of the GVA, here too we assume tha, P,
andQ are all real and positive. For analytic simplicity, we let
e be an infinitely small length scale, which is formally in-
cluded to ensure that andv are differentiable ag=0. We

then proceed and evaluate the integrals\ihand H“?) to tion [16].
find that, ase— 0:
IV. 3D SOLITON PROPERTIES
{PZ 2Q2} . . _
N =Kp| 5+— | (27) A. Existence and properties of GVA solutions
P a In order to analyze the properties of the GVA solutions
p2 Q? P2 Q? 20p2Q Egs. (21)—24), for.a given pair ofy and a4, we fir_st note
HUY = Ky w5t o5t 5t Y50 A 0 that our analysis is restricted to the casen@f=0, i.e., re-
p 2q P 29° (2p+9) pulsive atom-atom interactions including a noninteracting
p4 limit of @1,=0. In addition, we restrict ourselves to the three-
+ anm] (28)  dimensional caséD=3) only.
P Next, any localized physical solutions requaendb to
Here,Kp=1, w/2, 7 for D=1, 2, 3, respectively. be both real and positive. The existence of the minimum for
Variational stationary points are then given by the solutionthe Hamiltonian energy, Eq20), requires that the product
to the following set of algebraic equations: A?B is real and positive too, so that the atom-molecule con-
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FIG. 1. GVA solutions existence domain in the, a17) plane,
for y>0. The dotted line gives the upper bound®n correspond-
ing to the boundaryy;1<1/7. The set of vertical lines in the region
y<4 (y=0.5, full line; y=2, dashed line; ang=3.8, dash-dotted
line), and in the regiony>4 (y=4.2, full line; y=6, dashed line;
and y=8, dash-dotted lineare to serve for mapping purposes as

discussed in the text and explained in the captions to subseque

figures.

version term gives a negative contribution to the energy. As;;oms  while N = [d3(

we mentioned earlier, this is achieved by taking batandB
to be positive.

To investigate the consequences of these requirements
terms of the soliton existence domain in the parameter spa
(a11,7), one has to start from solving numerically the poly-
nomial Eq.(22). However, a simpler route that allows us to
obtain analytical results is to vielwas a free positive-valued
parameter and solve E(R2) for 44 in terms ofb andy. In
this case, the GVA solutions can be rewritigor D=3) in a
simpler form:

_bGb+y
8 b+ >
) 24+3/2a3/2b3/2(4a2 -ab-b) (37)
a11= (2a+ b)4(3b +y)(@-1) °

(2a+b)*%(a-1)

" b 2a) .
3/2,

p2-(2atb by (39)

23/ 2b3/ 2

where we have substituted the solution tay into the ex-
pression foB, and the parameterin Eqs.(37)—«39) is to be
substituted using Eq36).

In Appendix A, we analyze the above set of equations for
possible solutions. Restricting ourselves to the physically in-

teresting subspace ¢f>0, we find that the soliton existence
domain for the GVA is given by & «,,<1/vy. The param-
eter space identifying this in they, ay;) plane is shown in
Fig. 1. Here, the vertical lines at=0.5, 2, 3.8, 4.2, 6, and 8

PHYSICAL REVIEW A 70, 063611(2004)

— 05
- - ~Y=2
- =38

o

N

FIG. 2. GVA solution widthsr,=1/v2a ande,=1/12b as func-
tions of ay, for different values ofy corresponding to different
vertical lines in Fig. 1.

Figure 2 represents the GVA soliton widthg=1/y2a
and o,=1/\2b as a function ofu;, (0= a;;<1/y), for dif-
ferent values ofy. Similarly, Fig. 3 represents the fraction of
the number of particles in the atomic fie,/ A" versusay;,
where M, =[d*¢ u? is proportional to the total number of
u?+2v?) is proportional to the total
number of atomic particles including pairs of atoms in the
molecular component. Due to the conserved total particle
Humber, the fraction of molecules is found franf, /A

“£0.51-N/N).

As we can see, for large negative detunifig, corre-
sponding toy<<4 (y>0), and for vanishing atom-atom re-
pulsion (a;;=0), the atomic fraction is relatively small and
increases monotonically with increasing In all cases, the
atomic fraction decreases rapidly ag increases, due to the
increased energy penalty resulting from interatomic interac-
tions. The graphs for the soliton widths show that the atomic
density profiles are in general wider than the corresponding
molecular density profiles, and that the atomic component
becomes wider and lower in the amplitude in the limit of
strong interatomic repulsiony;— 1/+. In this limit, it is
energetically preferable for atom pairs to populate the mo-
lecular component so that the stable configuration of the sys-
tem is a pure molecular condensate. We note that this is a
consequence of the fact that our model neglects the
molecule-molecule self-interaction completely.

B. Existence and properties of EVA solutions

Almost identical arguments relating to the soliton exis-
tence domain can be made for the EVA solutions. We again

1 1

— =05 — y=4.2
--- =2 == y=6
----- =3.8 s L ¥=8

Z.05 Zoo5=
-4

z &
)

01 02

1

serve as test lines for mapping purposes discussed in subse-FIG. 3. Fraction of the number of particles in the atomic field
quent sections. The dotted line gives the upper bound,@n  A/A" for GVA solutions as a function of,, along the lines of
corresponding to the boundaay;<1/7. fixed y values as shown in Fig. 1.
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simplify the analysis by rewriting Eq$29)—(32) in the fol-
lowing form (for D=3):

t \\
‘“ ‘m\‘\‘\m\“

507+ 3 5 i
o Rl (40 g /’ [ “““\\m\\\\\“““‘\\m\mm\m
q-+3y \\“\ “‘\\\
g i
'hnm\“‘ \
o= 240 - q(p + 3)] @)
B p @+ (-
(2p+ q)4(p2 -3) FIG. 5. Example of stable dynamical evolution of the GVA soli-
S VR (42) ton. Shown are the particle number densities for the at¢epiand
3 X 2°p*(q-2p) molecular(b) fields for @;;=0.1 andy=1, with the GVA solution
3 2 taken as the initial condition.
pz- (2P+0)7(q +7)Q 43)
2%q° ' A. Stability of the GVA solutions
Here, the expressiol) for ay4 is obtained from Eq(30) We have conducted a numerical analysis of the dynamics

and has been further substituted into E8fl) to obtain Eq.  of the GVA solution for varioug a44,7y) pairs lying within
(42). The parametep in Egs.(41)—(43) is to be substituted the existence domain®a;,;<1/y, for y>0. The details of
using Eq.(40). By treatingq as a free parameter instead of this analysis are as follows.
aq, (assumingg>0 for localized solutions we can first We first used EQs(36)—«39) to obtain the parameters
solve forp in terms of two independent parametgrand v, characterizing the GVA solution for eadhy;,y) pair in
and then proceed to find the remaining parameters,Q,  question. These solutions were then used, in conjunction
andP. with the dimensionless equations of moti@), to form a set

In Appendix B, we analyze the above set of algebraicof initial value problems. The dynamical behavior of each
equations and conclude that fgr>0 the existence domain Gaussian solution was then determined through numerical
for the EVA solutions is identical to that of the GVA solu- integration using a spherically symmetfg5] semi-implicit
tions, and is given by & a;;<1/7. algorithm.

Figure 4 shows the dependence of the atomic number |n Figs. 5-7 we show typical examples of the dynamical
fraction N/ N for the EVA solution as a function af;, for  evolution of the atomic and molecular fields.
variousy. As we see, the salient features of these curves, as Figure 8 summarizes the results of our dynamical stability
well as the behavior of the EVA soliton widths, are similar to analysis, applied to manya,;,y) pairs satisfying a;;
those of the GVA solutions discussed in the previous subsec=0.01, y=0.01, anda;;<1/y. Here, the points marked
tion. with squares, circles, or crosses represent dynamics of the
GVA solutions, which have been classified as stable, “oscil-
latory,” or unstable in naturg(This necessarily involves a

In order for these variational solutions to prove useful, itcertain degree of ambiguity when distinguishing between the
is necessary to identify some correlation between their dystable and oscillatory casgddere, the term oscillatory is
namical behavior and the existence of act(edacy stable used in a broad sense, and does not mean to imply true
soliton solutions. To this end, we have identified the exacperiodic oscillations around the original GVA solution or the
stationary solutions numerically, by means of the numericakxact stationary solution. The term unstable, on the other
relaxation method, and have checked their stability undehand, refers to delocalization of the GVA solution over short
dynamical evolution for a large number of test points in thetime scaleq36].
(a11-y) parameter space within the GVA/EVA solutions ex-  Remarkably, the GVA solutions display primarily stable
istence domain, & a;,<1/y for y>0. What follows is an dynamics within the & a;;<1/y parameter space. Excep-
account of the dynamical behavior of the variational approxitions to this are two regions close to the-0.01 axis. The
mations, together with comparisons between this behavidower of these regionghe shaded region in Fig. 8 containing
and the existence of stable stationary points. circles contains GVA solutions which, although remaining

V. DYNAMICAL STABILITY
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FIG. 8. Summary of the dynamical behavior of the GVA solu-
tions for different(aqq,7y) pairs. The squares, circles, and crosses
indicate stable, strongly oscillatory, and unstable behavior, respec-
tively. For discussion of the shaded region withya<Egya See
text in Sec. V C.

FIG. 6. Dynamical evolution of the atomie) and molecularb) B. Existence of numerical exact solutions
field densities fora;,=0.01 andy=0.01. This is an example repre- . . . -
senting strongly “oscillatory” behavior of the GVA solution. By using the approximate GVA solution as an initial guess

in the numerical relaxation algorithm, we have investigated
) ] ] ) ] the shape of the exact stationary solution having the same
localized, display highly oscillatory dynamics. Here, the particle number as the GVA. This constraint is used to ensure
EVA solutions have lower energy and give a better approxithat the numerically found exact solution corresponds to the

mation to the exact solutionsee Sec. V C for further dis- same set of physical parameters as the GVA. The stability of
cussion. The other region contains unstable GVA solutionsegach exact solution was determined in the same manner as

(marked by crossgsvhich delocalize rapidly under dynami- that of the GVA, i.e., via real-time dynamical evolution gov-

cal evolution. . erned by Eqs(8). In all cases where a stationary solution
We point out, however, that these regions are rather small;as identified but found to be unstable, a modified initial

in the physical parameter spag®tice the logarithmic scale gyess was found that converged tstablestationary solu-

in Fig. 8. The most interesting area in this sense is about thgon, The modified Gaussian used in these cases was typi-

y=4 axis, corresponding to a minimum energy mismatcha|ly narrower and of higher peak density, while having the

between the atomic and molecular fields\w=0. For ex-  game total particle number. In a small subset of cases, no

ample, even for the detunings as large 9=-10'S™,  exact stationary solution was obtaineske below:

which gives an energy mismatch comparable in magnitude Figyre 9 illustrates the time evolution of one such solu-
with typical mean-field energies in atomic Bose-Einsteintjon. This demonstrates the stability of the exact soliton so-
condensates, the corresponding valueyd$ of the order of  |ytion, in contrast to those corresponding to energy maxima

y=2, for typical values oN=10° and y =10"° m3/2/s(see which become delocalized due to the buildup of small nu-
also Sec. V). In this physically interesting region, the GVA erical inaccuracies such as rounding errors.

solutions are a good approximation to the exact solitons and

maintain excellent dynamical stability.

&)

AT
i

\\\\\\\\\\‘\‘\‘\‘ o

200

FIG. 9. Exact soliton dynamics with the exact solitary solution
FIG. 7. Dynamical evolution of the GVA solution fer;;=3 and  (found numerically as the initial condition, for,,=0.1, =1, and
vy=0.01 representing an example of unstable behavior. Shown is th&” being fixed to the same value as in the respective GVA solution.
particle number density for the atomic field, with similar behavior Shown is the particle number density for the atomic field, with
observed for the molecular field. similar behavior found for the molecular field.

063611-8



THREE-DIMENSIONAL SOLITONS IN COUPLED.. PHYSICAL REVIEW A 70, 063611(2004

2

10
(a)
1 G
10 g
o
i 10° °
PN D\ (a=0)
N
10_1 b o o :
o o :
| o
1072 oot
107 v 10° 10°
| (®)
4
a
2
l | | Il FIG. 11. Comparison of the density profiles for the atoifac
> UL '_1' and the moleculagb) fields described by the GVA, EVA, and exact
10 y 10 stationary solutions, fot;;=0.01 andy=0.01. Note the dramatic

failure of the GVA to approximate the exact solution in this case.
FIG. 10. (a) Comparison of stable soliton existence domain with

the dynamical behavior of GVA solutions. Stable exact solutionssolutions—a fact revealed by the oscillatory GVA dynamics
were found for all marked points outside of the shaded region. Thgrevalent in this area. Examining the profiles of the corre-
precise boundary of the shaded region, where no exact solutiorgponding numerically-obtained exact solutions suggests that
were found, was identified by approaching it from below and fromthe EVA solutions may provide a better approximation in this
above along the vertical lines shown (b). The lines themselves region.
consist of points, of spacing 0.01 4, for which the exact solu- In order to test this for a givetw;4,y) pair, we need to
tions were identified, while the interrupted part of each line corre-ensyre that the GVA and EVA solutions in question are being
sponds to having no exact solutions. compared for the same value of the parametér corre-
sponding to the total number of particles. Thus, we first iden-
In Fig. 10, we summarize the results of the stability analy-tified the value of\A” for the GVA solution, and then solved
sis for the exact solutions and compare them with those oEqs.(33)<35) for the parameters of the correspondirmn-
the GVA. Stable exact soliton solutions were identified for allstrained EVA solution.
(a11,7) pairs used in the GVA dynamical analygssee Fig. Figure 11 illustrates the improvement in the fit of the pro-
8), except those lying within the shaded region. The boundfile of the EVA solution to that of the exact stationary solu-
ary of this region was found using an extra set of test pointgion, for a;;=y=0.01. The corresponding GVA solution is
for higher accuracy. Distorting the initial guess input to thealso shown for comparison. The resulting reduced amplitude
relaxation algorithm did not help in finding exact stable so-of oscillation in the dynamics of the EVA is shown in Fig.
lutions in the shaded region. Note that, apart from a small2.
number of exceptions near the boundary, all unstable GVA In order to understand and quantify this improvement, the
solutions in Fig. 8 which delocalized under dynamical evo-total Hamiltonian energy corresponding to both ansatz solu-
lution (as for the example in Fig.)@are contained within the tions has been calculated for a collection of points spanning
shaded region in Fig. 10. The physical origin of this instabil-the parameter space under consideration. The shaded area
ity is yet to be understood. with Egya<Egyain Fig. 8 represents the region of parameter
Thus, one can make the statement that the existande space where the constrained EVA solutions have lower en-
dynamical stability of the GVA solution is strongly indicative ergy than that of the GVA. This analysis shows that the EVA
of the existence of a true stationary soliton solution. Thisindeed provides a better approximation to the exact solitons
applies even to the case of strongly oscillatory GVA dynam-in cases when the dynamics of the GVA is strongly oscilla-
ics, in the sense that we were able to find a stable exadory.
soliton solution whenever the oscillatory behavior of the Previous investigations of the SN equatifit6], which
GVA persisted for long evolution time. has a stationary solution exactly equivalent to ours wgith
=ay;,=0, have come to the same conclusion that over a class
of trial functions the exponential ansatz for the “atomic”
field provides the best upper bound to the ground state
Stationary solitons fofa;,,y) pairs in the lower left cor- energy. The fact that the upper bound provided by our
ner of Fig. 8 are poorly approximated by the Gaussian ansatgolution, —0.108°G?N?/42, is higher than the value

C. Oscillatory dynamics and EVA solutions
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FIG. 13. Energy surface topography as one approaches the un-
stable region boundary from below along t=0.01 line. Shown is
the dimensionless Hamiltonian energy vs the distamée state
space[37]. Different curves correspondrom bottom in increasing
ordep to «,1,=0.2,0.5,0.7,1.
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It is clear from this illustration that, ag;; approaches the
unstable region, the soliton solution becomes metastable as it
corresponds to a local rather than absolute minimum in the

FIG. 12. Dynamical evolution of the EVA solution for;, ~ €N€rgy surface. This fact does not affect the existence of
=0.01 andy=0.01. Shown are the particle number densities for theStable solutions, however, which persist until the local mini-
atomic () and molecularb) fields. This figure can be compared Mum is completely eliminated as the boundary is crossed
with the strongly oscillatory dynamics of the GVA solution in Fig. into the unstable region.

6, and shows improvement in the stability of the EVA solution due  \We can use this analysis to explain the existence of GVA
to its lower energy. solutions which delocalize under evolution despite the exis-
tence of an exact stationary solution. In such cases, the width

~0.146°G2N?/%2 quoted in[16] is due to the fact that we of the confining local minimum welin state spaceis
have used variational solutions for batrandy fields. rather  Smaller than the perturbation to the exact solution induced by

than just foru. These upper bounds can be contrasted witfEnforcing the Gaussian ansatz. As one might expect, this
the exact ground state energy of —0.6@2N?/%2 [14] only happens near a stability boundary, where the wells are

which we have verified using our numerical relaxation code Small-

The SN helps to also understand the dramatic failure of VI. RELATION TO PHYSICAL PARAMETERS
the GVA solutions to approximate the exact solitons in the
region of smally and «. Here, the tails of the density distri- ~ From the practical point of view, the question of interest is
butions become increasingly important, and according to Eqvhether a given set of the physical parametegs x, «11,
(25) the v field with y— 0 decays much slower than the tail Aw, and the total number of particlés can support stable
of any Gaussian. In terms of the SN equation, this correatomic-molecular solitons. In order to answer this question
sponds to evolution of the wave function in a very long-We must be able to interconvert between the soliton param-
range potentiab. eters in terms of the dimensionless variables and the original
physical parameters. This procedure is not of a trivial matter,
and requires a self-consistent solution that is able to map a
given set of values dfmy, x, k11, Aw,N) into a pair of values

In order to better understand the nature of the instabilitypf (, «,,), using the time scal& and the length scald,.
marked by the shaded region in Fig. 10, it would be i”StrUCDepending on whether or not the pair of value pfa,,) is
tive to examine the top_ographical var_iations in the energy«ide the soliton existence domajn>0 and 0< ay;<1/v,
surface while approaching and crossing the boundary b&spe can then answer the above question and find the soliton
tween the stable and the unstable regions. By tracing 8,ameter values in terms of dimensional variables, using the
;mgle-¢mgnsmnal trajectory betvyeen known critical points,agits of previous sections.
in the infinite dimensional coordinate space we can learmn e recall that the relationships between the parameters of

something of the higher-dimensional structure. the dimensionless system and the original physical param-
Figure 13 illustrates the topographical variation in the en-iars are as follows:

ergy surface when the unstable region is approached from

D. Energy surface topography

below asay; is increased along the=0.01 line. Here, the Ao =(y=-4)/2t, (44)
critical points (including the unstable or delocalized solu-

tions) for each(ay4,y) pair were evaluated, and linear inter- kil x? = aqito, (45)
polation was used to generate a continuous path between

stable(S), unstable(U) and delocalizedD) solutions, along _ 1 (h D’ZM

a contour of constant” [37]. N= Xz\“‘% 2m, : (46)
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W s Y A detailed numerical study of the dynamical behavior of
o g ' the Gaussian ansatz solutions has revealed that, as a rule of
2\ z10° i thumb, localized propagation of GVA solutions indicates the
: ’,{,f' existence of trugand stablg stationary solutions. Further-
, oo , e more, in regions where the GVA propagation is strongly os-
W e o Y 100 10° cillatory, the corresponding exponential ansatz solutions
40 (57) Ao (57 have been found to possess a lower energy, and propagate

FIG. 14. Variation inN andAw along the(a,,. 7) lines shown in almost without oscillations. This |nd|9ate§ that systems for

: . ) which the energy of molecular formation is large and nega-
Fig. 1. The values of the couplingsand «;1 are held constanty . . . . ;
A6 302 _ 17 3 tive and which have weak atomic self-interaction possess
=10"° m*“/s andx=4.96xX 10/ m°/s. . . . .
stationary solutions better approximated by the exponential
rather than Gaussian ansatz. Finally, we have identified an
anomalous instability “island” in the(ay4,y) parameter
space, where the Gaussian solitons were dynamically un-
stableand where no exact stationary solutions were numeri-
“cally found.

Here, the role of the mags; is in setting up the length
scaledy=\#t,/2my, so that the soliton widths are found un-
ambiguously once the corresponding time sdgles set up
self-consistently. This leaves us, in general, with four inde

pendent variablegy, k13, Aw,N) in the physical parameter — The results obtained give the precise conditions under

space and two independent vgrlab(esalj) of the dimen- \yhich 3D coupled atomic-molecular BEC solitons can form.
sionless system. Therefore, in order to be able to mafhjs is done in terms of the dimensionless parameters
the soliton existence domain in the,a;,) plane into the (4., 4) that originate from physical parameters determined
physical parameter space, we have to restrict ourselvesy the atom-molecule coupling, atom-atom repulsiveave
to cases where—out of four physical parametersscattering, and the energy detuning between the atomic and
(X: k11,Aw,N)—only two can be varied independently, molecular fields. The total number of particlisin the sys-
while the other pair must be kept fixed. tem is incorporated in the analysis self-consistently, via scal-
Depending on which pair of the physical parameters isng with respect to the time scalg or equivalently with
chosen to be fixed or varied, one can identify six diﬁerentrespect to the choice of the energy origin. We have shown
cases where the solution of the problem can be found unaniow one can in principle map the physical parameter space
biguously. As an example we consider the case where thgyto the parameter space defined by the dimensionless pa-
fixed pair of the parameters are the couplingsand k11, rametergay;, v), and hence identify whether a particular set
while the adjustable parameters are the detudingand the o physical parameter valuds, 11, Aw,N) lies within the

total number of particle$l. This is the most physically rel-  jqentified soliton existence and stability domain in the
evant case, as the detuning and the total number of partlcle@le y) plane.

are easier to vary experimentally. Beyond the theoretical interest, the realization of this type

o The proceldure of makl]pping the soliton existence domain iny¢ ¢4 \pled BEC soliton could provide a way to stabilize the
the (v, a;y) plane into thelAw,N) parameter space consists ,erwise diverging output of an atom-molecular laser, pro-

of solving Eqs.(44)—(46) to first identify to, using Eq.(45),  iding a technique for delivering a localized, intense, and
and then finding the corresponding valuestaf andN from  coherent atomic-molecular field to a target or a detector.
the remaining two equations. As an intermediate step, this The steady-state and variational solutions found here are

involves the evaluation of\"=N"(y,a;y) using Eq.(19),  gi50 applicable to generalizations of the Schrodinger-Newton
where the soliton parameteas b, A, andB are found from  gquation.

the GVA solutions for théy, ay,) pair in question. Figure 14
demonstrates this mapping for the valuesgfandy typical
of a®Rb BEC experiments.

Similar mapping can easily be constructed in other cases, The authors gratefully acknowledge the ARC for the sup-
where depending on the choice of the fixed pair of the physiport of this work and thank G. Collecutt for helpful discus-
cal parameters the sequential order of solving E4$—~46)  sjons. We also thank the authors of the XMDS softwa&

will vary. In all cases, the initial step should consist of iden-Which was used here for dynamica| simulations.
tifying the value of the “dummy” parametéy using one of

the equationg44)—46), and then eliminating it in favor of
the remaining pair of the physical parameters in question.
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APPENDIX A

Standard algebraic analysis of E¢36)—«39) for possible
solutions, for a given pair af;;=0 andvy, gives the follow-

To summarize, we have applied both Gaussian and expdng results. First of all, it is easy to see that for0 and
nential variational approximations to the problem of identi-B>0, the requiremera>0 andA?>0 (so thatA’B>0 to0)
fying 3D soliton solutions to parametrically coupled dilute can be satisfied only ify+b>0. From this, it also follows
atomic and molecular Bose condensates, with atomic selthat 3+y>0, 5b+y>0, andb—2a<0. Next, one can eas-
interaction present. The soliton existence domain has bedly see thatB>0 if a—1<0. This last inequality can be
investigated, and foy>0 found to be defined by €«;;  solved in terms ob, giving the result thab must satisfyb
<1/vin both cases. <b,, where

VIl. SUMMARY
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l e — a,
by = [(2=9) + (2= 7)*+40y] (AD) !

corresponds to the positive-valued solution of the quadratic
equation forb which follows froma-1=0.Thus, as long as
0<b<b; (a-1<0) and y+b>0, we satisfy the require-
ments thata>0, B>0, andA?>0.

Analysis of the remaining requirement af;=0 is now

reduced to the solution ofad—ab—b<=0, within the region 12
0<b<b; (wherea-1<0) and fory+b>0. Here one has to 10 ©
distinguish and consider separately two cases corresponding 8
to y<0 andy>0. _of
For y<0 the analysis is quite complicated and requires a & 4
pure numerical investigation. The overall conclusion is that 2, b
the soliton existence domain is now restricted to a very small | o
region which is not of major physical interest. For example, 0 05 1 15 2 25
for a;;,=0, this domain is limited to the values gfwithin a b
narrow interval —0.0074 y=<0. The size of this interval de- FIG. 15. The variation inxy; as a function ob, for y=0 (a) and

creases with increasing;, and approaches —&f;<y<0 (b) 10P, illustrating thata,, is monotonically decreasing function of
as a;;— . In terms of the originalphysica) phase mis- pon 0<b=< by

match parameteAw, a physically interesting and important
region corresponds to the values ®f=0 which we note
correspond toy=4, while y<0 corresponds to very large
and negative detuningw. For this reason, in the remaining
of the paper we only treat the case pf 0.

For y>0 we proceed with the analytic treatment as fol-
lows. Substitutinga from Eg. (36), one can rewrite the in-
equality 4°—ab-b=0 (equivalent tox;,=0) in the follow-
ing form Here we analyze the set of algebraic equati@iy—43)

for possible solutions for a given pair af;=0 andvy, with
5 2y p, q, P, andQ all being real and positive. The analysis is
45+ (14y-2b+ y(y-4) < o (A2)  very similar to the one carried out for the GVA solutions, and
we summarize it as follows.
For q>0 (as requireyl in order thatp>0 it is clearly
cessary that?+3y>0, since in this case we also have
50%+3y>0. In addition, forP? to be positive one has to
haveg®+y>0, provided thatQ>0 (as requiregl The con-
dition g?+3y>0 then leads to the requirement thait-3

for y>0. In other words, the interval 9 ay,;<1/y (y>0)
can be equally regarded as the soliton existence domain in
the parameter spade;, y).

APPENDIX B

Taking here the equality sign, and considering the left anq_|e
the right hand sides as functionstmfgives an equation that
can always be solved graphically, with the result that for
>0 there always exists one and only one ngasitivesolu-
tion for b, which we define vidb,. Consequently, the above ; o ;
inequality and therefore;;=0 is satisfied if G<b=<bh,. ifn([))&otrhgtg)—bzigg?ed positive, sinag’+ 370 andq =0
The next step in our analysis co_nsists of showing that Substituting the expression fgrinto p?-3, the require-
by<by, thus r'estrllctlng the soliton existence region ta b mentp2-3<0 can be written in the form
<bgy from which it follows that fory>0 the requirements
a>0, a;;=0,B>0, andA?>0 are satisfied simultaneously. 2508 + (30y - 12)g* + (992 - 72y)¢? — 108y < 0.
The proof ofby<<b; is accomplished by first noting thét (B1)
=h; (corresponding ta—1=0) is the pole ofay4, and that
aq, is a continuous single-valued function bfwithin the It is clear that, as the left hand side of the inequality is a
interval 0<b=h,. The discontinuity atb=b, is such that polynomial of even order, it can be satisfied if its largest real
ap——% asb—b;—0 anday;— + asb—b;+0. In addi-  root g, is positive. By performing a numerical analysis of
tion, lim,_oa11=1/y>0, and sincey, is the only positive this polynomial, we find that real positive solutions exist for
root of the cubic equatiofA2), we conclude that the cross- all y, and thatq1—>2\s‘§ asy— . As in the case of the GVA
over(b=by) of a4, from positive to negative values can only solutions, we restrict ourselves to the physically interesting
take place ab<b,, which implies thatby<<b;. subspace ofy>0. In this case, there always exist one and
Finally, one can show graphicallysee Fig. 1% that only one real positive solution; to the above polynomial.
within the interval 6<b=<b, and for y>0, ay; is a mono-  Thus, provided 8q<g; (i.e., p?’~3<0) and g?+3y>0,
tonically decreasing function db. It approaches its maxi- the requirements thai>0, Q>0, andP>0 are met.
mum aq,— 1/y asb—0, anday;=0 atb=b,. This implies Turning to the remaining equation far;, EQ. (41), with
that there is one-to-one correspondence between the solitan;= 0, we next find that we must hav@#-q(p?+3) =<0 (in
existence domain €b<b, and the interval 6 ay,<1/7, conjunction withp?-3<0) on the domain 8:q<q,. Here,
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FIG. 16. The variation irv;; as a function ofy, for y=0 (a) and
(b) 10°. Note thatqy< g, and thatgg,q; — 23 for large y.
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we have also taken into account the fact that the tégfn
+17) is always positive, fory>0. Substituting the expression
for p from Eq.(29) into 4p3-q(p?+3)<0 we find that this
inequality is equivalent to

24108 + (345y - 12)q° + y(171y - 108q* + y*(27y - 324 ¢?
-324°<0, (B2)

and can be satisfied if the largest real rggto the polyno-
mial in the left hand side is positive. We again employ nu-
merics to find that fory>0 there exist only one real and
positive rootqy, i.e., the above inequality is satisfied fpon
0<Qg=(qp. In the limit of largey, gy— 2\3.

Finally, as for the GVA solutions, we can show numeri-
cally (see Fig. 1§ that @44 is a monotonically decreasing
function ofg on 0<q<qo, and thaigy<q,. It approaches its
maximum value 14 asq— 0, anda4,=0 atg=qq. This im-

plies that there exists one-to-one correspondence between the

intervals 0<q=<gqg and 0< ay;<1/y (y>0), so that the lat-
ter can equally be regarded as the soliton existence domain
for the EVA solutions on the parameter spdeg;, ).
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