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We show that two evanescently coupledxs2d parametric down-converters inside a Fabry-Perot cavity provide
a tunable source of quadrature squeezed light, Einstein-Podolsky-RosensEPRd correlations and quantum en-
tanglement. Analyzing the operation in the below threshold regime, we show how these properties can be
controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with
integrated optics, it provides a possible route to rugged and stable EPR sources.
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I. INTRODUCTION

The Einstein, Podolsky and RosensEPRd paradox stems
from a famous paper published in 1935f1g, which showed
that local realism is not consistent with quantum mechanical
completeness. A direct and feasible demonstration of the
EPR paradox with continuous variables was first suggested
using nondegenerate parametric amplificationsalso known as
the OPAd f2g. The optical quadrature phase amplitudes used
in these proposals have the same mathematical properties as
the position and momentum originally used by EPR. Even
though the correlations between these are not perfect, they
are still entangled sufficiently to allow for an inferred viola-
tion of the uncertainty principle, which is equivalent to the
EPR paradoxf3,4g. An experimental demonstration of this
proposal by Ouet al. soon followed, showing a clear agree-
ment with quantum theoryf5g.

In this work, rather than using the nondegenerate optical
parametric oscillatorsOPOd, we consider an alternative de-
vice using two degenerate type I down-converters inside the
same optical cavity, and coupled by evanescent overlaps of
the intracavity modes within the nonlinear medium. This
type of coupling has previously been investigated, both ex-
perimentally and theoretically, to induce mutual coherence
and entrainment with solid state lasersf6–8g. Generally, the
device we are proposing may be considered as either a single
nonlinear crystal pumped by two spatially separated lasers,
or two waveguides with axs2d component. We calculate
phase-dependent correlations between the two low frequency
outputs of the cavity in the below threshold regime, showing
that this system exhibits a wide range of behavior and is
potentially an easily tunable source of single-mode squeez-
ing, entangled states and states which exhibit the EPR para-
dox. The spatial separation of the output modes means that
they do not have to be separated by optical devices before
measurements can be made, along with the unavoidable
losses that would result from this procedure. The entangled
beams produced can be degenerate in both frequency and
polarization, unlike those of the nondegenerate OPO, and
would exit the cavity at spatially separated locations. These
correlations are tunable by controlling some of the opera-
tional degrees of freedom of the system, including the eva-

nescent couplings between the two waveguides, the input
power and the cavity detunings.

The term nonlinear coupler was given to a system of two
coupled waveguides without an optical cavity by Peřina et
al. f9g. Generically, the device consists of two parallel optical
waveguides which are coupled by an evanescent overlap of
the guided modes. The quantum statistical properties of this
device when the nonlinearity is of thexs3d type have been
theoretically investigated, predicting energy transfer between
the waveguidesf10g and the generation of correlated squeez-
ing f11g. Coupled xs2d down-conversion processes in the
traveling wave configuration have also been examined theo-
retically, predicting that light produced in one of the media
can be controlled by light entering the otherf12g, and that
such a device can produce an entanglement of the output
beamsf13g. The coupler withxs2d nonlinearity held inside a
pumped Fabry-Perot cavity, and operating in the second har-
monic generationsSHGd configuration, was introduced by
Bacheet al. f14g, who named it the quantum optical dimer
by analogy with various systems that display coupling be-
tween discrete sites. They analyzed intensity correlations be-
tween the modes, predicting noise suppression in both the
sum and the difference.

As the intracavityxs2d down-conversion processes have
long been appreciated as sources of quantum states of the
electromagnetic fieldssee Martinelliet al. f15g for an over-
viewd, we will combine and extend these previous analyses
to consider two coupled down-converters operating inside a
Fabry-Perot cavity. The advantage of this proposal is the
all-integrated nature of the device, which promises greatly
increased robustness. Additional potential advantages are the
reductions in threshold pump power and phase noise, relative
to current practice. Another potential advantage as compared
to the normal type II polarization nondegenerate OPO lies in
the difficulty of stabilizing this device at frequency degen-
eracyf16,17g. Our proposal should be well stabilized by the
linear coupling, without having to add any additional fea-
tures.

II. THE SYSTEM AND EQUATIONS OF MOTION

The physical device we wish to examine differs from that
described in Ref.f14g in one important detail. We will ana-
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lyze it in the down-conversion regime, where the cavity
pumping is at a frequency 2vL.vb. As this device has been
described in detail in Ref.f14g, we will give a briefer de-
scription of the essential features here. The system of interest
consists of two coupled nonlinearxs2d waveguides inside a
driven optical cavity, which may utilize integrated Bragg re-
flection for compactness. Each waveguide supports two reso-
nant modes at frequenciesva,vb, where 2va.vb. The
higher frequency modes atvb are driven coherently with an
external laser, while the nonlinear interaction within the
waveguides produces pairs of down-converted photons with
frequencyva. We assume that only the cavity modes at these
two frequencies are important and that there is perfect phase
matching inside the media. The two waveguides are evanes-
cently coupled as in Ref.f14g. Besides the differences in the
pumping frequency, we will be interested in the phase-
dependent correlations necessary to demonstrate entangle-
ment and the EPR paradox, rather than the intensity correla-
tions of Ref.f14g.

The effective Hamiltonian for the system can be written
as

Hef f = Hint + Hcouple+ Hpump+ Hres, s1d

where the nonlinear interaction with thexs2d media is de-
scribed by

Hint = i"
k

2
fâ1

†2b̂1 − â1
2b̂1

† + â2
†2b̂2 − â2

2b̂2
†g. s2d

Herek denotes the effective nonlinearity of the waveguides

swe assume that the two are equald, andâk,b̂k are the bosonic
annihilation operators for quanta at the frequenciesva,vb
within the crystal ks=1,2d. The coupling by evanescent
waves is described by

Hcouple= "Jafâ1â2
† + â1

†â2g + "Jbfb̂1b̂2
† + b̂1

†b̂2g, s3d

where theJk are the coupling parameters at the two frequen-
cies, as described in Ref.f14g. We note that in that work it is
stated that the lower frequency coupling,Ja, is generally
stronger than the higher frequency coupling,Jb, and also that
values ofJa as high as 50 times the lower frequency cavity
loss rate were calculated to be physically reasonable. The
cavity pumping is described by

Hpump= i"fe1b̂1
† − e1

* b̂1 + e2b̂2
† − e2

* b̂2g, s4d

where theek represent pump fields which we will describe
classically. Finally, the cavity damping is described by

Hres= "o
k=1

2

sGa
kâk

† + Gb
kb̂k

†d + H.c., s5d

where theGk represent bath operators at the two frequencies
and we have made the usual zero temperature approximation
for the reservoirs.

With the standard methodsf18g, and using the operator/

c-number correspondencessâj ↔a j ,b̂j ↔b jd, the Hamil-
tonian can be mapped onto a Fokker-Planck equation for the
Glauber-SudarshanP distribution f19,20g. However, as the

diffusion matrix of this Fokker-Planck equation is not posi-
tive definite, it cannot be mapped onto a set of stochastic
differential equations. Hence we will use the positive-P rep-
resentationf21g which, by doubling the dimensionality of the
phase-space, allows a Fokker-Planck equation with a
positive-definite diffusion matrix to be found and thus a
mapping onto stochastic differential equations. Making the

correspondence between the set of operatorssâj ,âj
†,b̂j ,b̂j

†d
s j =1,2d and the set ofc-number variablessa j ,a j

+,b j ,b j
+d,

we find the following set of equations:

da1

dt
= − sga + iDada1 + ka1

+b1 + iJaa2 + Îkb1h1std,

da1
+

dt
= − sga − iDada1

+ + ka1b1
+ − iJaa2

+ + Îkb1
+h2std,

da2

dt
= − sga + iDada2 + ka2

+b2 + iJaa1 + Îkb2h3std,

da2
+

dt
= − sga − iDada2

+ + ka2b2
+ − iJaa1

+ + Îkb2
+h4std,

db1

dt
= e1 − sgb + iDbdb1 −

k

2
a1

2 + iJbb2,

db1
+

dt
= e1

* − sgb − iDbdb1
+ −

k

2
a1

+2 − iJbb2
+,

db2

dt
= e2 − sgb + iDbdb2 −

k

2
a2

2 + iJbb1,

db2
+

dt
= e2

* − sgb − iDbdb2
+ −

k

2
a2

+2 − iJbb1
+, s6d

where thegk represent cavity damping. We have also added
cavity detuningsDa,b from the two resonances, so that for a
pump laser at angular frequency 2vL, one hasDa=va−vL
andDb=vb−2vL. Later, in Sec. V, we will investigate detun-
ing effects in greater detail. The real Gaussian noise terms
have the correlationskh jstdl=0 andkh jstdhkst8dl=d jkdst− t8d.
Note that, due to the independence of the noise sources,
aksbkd andak

+sbk
+d are not complex conjugate pairs, except in

the mean over a large number of stochastic integrations of
the above equations. However, these equations do allow us to
calculate the expectation values of any desired time-normally
ordered operator moments, exactly as required to calculate
spectral correlations.

III. LINEARIZED ANALYSIS

In an operating region where it is valid, a linearized fluc-
tuation analysis provides a simple way of calculating both
intracavity and output spectra of the systemf22,23g, by treat-
ing it as an Ornstein-Uhlenbeck processf24g. To perform this
analysis we first divide the variables of Eq.s6d into a steady-
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state mean value and a fluctuation part, e.g.,a1→a1
ss+da1

and so on for the other variables. We find the steady-state
solutions by solving the equationss6d without the noise
termssnote that in this section we will treat all fields as being
at resonanced, and write the equations for the fluctuation vec-
tor dx̃=fda1,da1

+,da2,da2
+,db1,db1

+,db2,db2
+gT, to first or-

der in these fluctuations, as

d dx̃ = − A dx̃ dt + B dW, s7d

where the drift matrix is

A = FAaa − Aba
*

Aba Abb
G , s8d

with

Aaa =3
ga − kb1

ss − iJa 0

− kb1
ss* ga 0 iJa

− iJa 0 ga − kb2
ss

0 iJa − kb2
ss* ga

4 ,

Aba =3
ka1

ss 0 0 0

0 ka1
ss* 0 0

0 0 ka2
ss 0

0 0 0 ka2
ss*
4 ,

Abb = 3
gb 0 − iJb 0

0 gb 0 iJb

− iJb 0 gb 0

0 iJb 0 gb

4 . s9d

In this equation, dW is a vector of real Wiener
increments, and the matrixB is zero except for the first
four diagonal elements, which are, respectively,
Îkb1

ss,Îkb1
ss* ,Îkb2

ss,Îkb2
ss* . The essential conditions for

this expansion to be valid are that moments of the fluctua-
tions be smaller than the equivalent moments of the mean
values, and that the fluctuations stay small. In the case of the
single optical parametric oscillatorsOPOd, it is well known
that there is a critical operating point around which this con-
dition does not hold. This point is easily found by an exami-
nation of the eigenvalues of the equivalent fluctuation drift
matrix for that system, and this procedure is also valid in the
present case. The fluctuations will not tend to grow as long
as none of the eigenvalues of the matrixA develop a negative
real part. At the point at which this happens the linearized
fluctuation analysis is no longer valid, as the fluctuations can
then grow exponentially and the necessary conditions for
linearization are no longer fulfilled. In this work we will only
be interested in a region where linearization is valid.

To examine the stability of the system, we first need to
find the steady-state solutions for the amplitudes, by solving
for the steady state of Eq.s6d with the noise terms dropped.
As in the usual optical parametric oscillator, there is an os-
cillation threshold below whicha j

ss=0 and only the high fre-
quency mode is populated. To simplify our results we will
assume that the pumping terms for each crystal are real and

equal se1=e2=ed. In the present case, for a real pump, we
find b j

ss=e / sgb- iJbd. Inserting these solutions in the matrixA
allows us to find simple expressions for the eigenvalues,

l1,2= gb + iJb,

l3,4= gb − iJb,

l5,6= ga + Îfk2e2/g̃b
2 − Ja

2g,

l7,8= ga − Îfk2e2/g̃b
2 − Ja

2g. s10d

Here we have introduced auxiliary variables,g̃a,b

=Îga,b
2 +Ja,b

2 . We immediately see thatl7,8 can develop nega-
tive real parts for a pump amplitude greater than the critical
value,ec= g̃ag̃b/k. As it must, this expression reduces to the
single OPO expression ofgagb/k when the couplings are set
to zero. In that case, there is then a stable above threshold
solution in which the high frequency mode inside the cavity
remains constant, independently of any further increase in
the pumping, and the low frequency mode becomes occu-
pied.

In the present case, it is not simple to find general expres-
sions for these above threshold solutions analytically, but as
we will concentrate our attention on the rich variety of below
threshold behavior which is exhibited, this is not important
here. We note here that, unlike the single OPO case with a
resonant cavity, the threshold pumping is not a constant for
fixed cavity loss rates, but is a function of the coupling
strengths between the two waveguides. Using the below
threshold solutions, we may calculate any desired time nor-
mally ordered spectral correlations inside the cavity using
the simple formula

Ssvd = sA + iv1d−1BBTsAT − iv1d−1, s11d

after which we use the standard input-output relationsf23g to
relate these to quantities which may be measured outside the
cavity.

IV. QUANTUM CORRELATIONS

A. Single mode squeezing

The first quantities we wish to calculate are the single
mode quadrature squeezing spectra, to compare these with
the well-known results for the normal uncoupled OPO. De-
fining the quadrature amplitudes as

X̂j
u = âje

−iu + âj
†eiu, s12d

swhere j =1,2d, we will use the notation

X̂j
0 = X̂j ,

X̂j
p/2 = Ŷj . s13d

We note here that the quadrature definitions do not need to
specify whether it is modea or b which is involved, as we do
not find any interesting behavior in the high frequency
modes below threshold and hence will only present results
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for the low frequency modes. With this normalization the
coherent state value for the quadrature variances is one.

The expressions for the below threshold low frequency
quadrature variances in the single OPO case are well known
f25g, being

SX
outsvd = 1 +

4gagbke

sgagb − ked2 + gb
2v2 ,

SY
outsvd = 1 −

4gagbke

sgagb + ked2 + gb
2v2 , s14d

and predicting zero-frequency squeezing which becomes per-
fect in theY quadrature as the pump approaches the critical
threshold value,e=gagb/k, although the linearized analysis
breaks down near this point. Note that the variances inside

and outside the cavity are related bySX
out=1+2gaVsX̂d. Our

coupled system would be expected to exhibit the above val-
ues in the limit asJa,b→0, which provides a standard for
comparison with the analytical results. In the general case,
we find thatSX1

u
out=SX2

u
out, as expected. We also find that the

coupling means that the intracavity high frequency field is no
longer real, but has a phase given byQb=tan−1sJb/gbd.

This will mean that the optimum correlations will no
longer generally be found in theXj andYj quadratures, but at
some other phase angle, as found previously for second har-
monic generation in detuned cavitiesf26g. Experimentally,
this does not present a problem as the local oscillator phase
is normally swept across all angles, which must therefore
include the optimum angle. We can find analytical solutions
for the angle of maximum single-mode squeezingsand anti-
squeezingd, for example, these differing byp /2 and being
found as

uopt = tan−1

3H 2VsX̂,Ŷd

VsŶd − VsX̂d ± ÎfVsŶd − VsX̂dg2 + 4fVsX̂,Ŷdg2
J ,

s15d

whereVsA,Bd=kABl−kAlkBl. However, as this expression is
a complicated function of several variables when written out
in full, and will not necessarily give the optimum choices at
all frequencies, nor when we consider correlations between
the modes, we will present results where the local oscillator
angle has been optimized numerically.

The X̂ and Ŷ spectral variances outside the cavity are
found as

SX1,2

out svd = 1 +
4gakehgbfgb

2̃sv2 − Ja
2d + Jb

2ga
2 + sgagb + ked2g + 2gaJb

2kej

4ga
2gb

4̃v2 + fgb
2̃sga

2̃ − v2d − k2e2g2
,

SY1,2

out svd = 1 −
4gakehgbfgb

2̃sv2 − Ja
2d + Jb

2ga
2 + sgagb − ked2g + 2gaJb

2kej

4ga
2gb

4̃v2 + fgb
2̃sga

2̃ − v2d − k2e2g2
, s16d

which, as expected, reduce to the single OPO expressions
above s14d when the coupling terms are set to zero. The
output covariance is

VsX̂j,Ŷjd =
4gaJbkefg̃b

2sga
2 − Ja

2 + v2d + k2e2g

4ga
2gb

4̃v2 + fgb
2̃sgb

2̃ − v2d − k2e2g2
, s17d

which will give uopt=0,p /2 for the uncoupled case, whereŶ

is the squeezed quadrature andX̂ the antisqueezed quadra-
ture.

In Fig. 1 we show the single-mode output spectral quadra-
ture variances for the quadrature of best squeezing as the
low-frequency mode coupling strength is varied, beginning
with Ja=Jb=ga=gb=g. We note here that the pump values
used in all the displayed results,e j =0.5ec, depend on the
couplings as stated above and are therefore different for dif-
ferent combinations of the couplings, but are all the same
fraction of the threshold value. We find less single-mode
squeezing than in the uncoupled case for the same ratioe /ec,

and also find that changingJb mainly serves to change the
angle of maximum squeezing. ChangingJa changes the fre-
quency at which the maximum of squeezing is found. We see
that this device is not as efficient at producing squeezed
single-mode outputs as the normal OPO, but as we are inter-
ested in the quantum correlations between the two output
modes, we will now examine these.

B. Entanglement and the EPR paradox

An entanglement criterion for optical quadratures has
been outlined by Dechoumet al. f27g, following from crite-
ria developed by Duanet al. f28g which are based on the
inseparability of the system density matrix. A theoretical
method to demonstrate the EPR paradox using quadrature
amplitudes was developed by Reidf3g, using the mathemati-
cal similarities of the quadrature operators to the original
position and momentum operators. We will briefly outline
these criteria here and then apply them to our system, using

the quadrature operatorsX̂j and Ŷj. Note that even though
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these quadratures have the same mathematical properties as
the canonical position and momentum operators for the har-
monic oscillator, they correspond physically to the real and
imaginary parts of the electromagnetic field, not its position
and momentum.

To demonstrate entanglement between the modes, we de-

fine the combined quadraturesX̂±=X̂1± X̂2 and Ŷ±=Ŷ1± Ŷ2
and calculate the variances in these, which we may do ana-
lytically. Optimizing the result for arbitrary phase angles is
better performed numerically. Following the treatment of
Ref. f27g, entanglement is guaranteed provided that

SX±

out + SY7

out , 4. s18d

We note here that the combined variance defined in this way
has an obvious relationship with the well-known two-mode
squeezed states which are produced, for example, by the
nondegenerate OPOf29,30g, but that the quadratures be-
tween which we find entanglement here are not the same as

those which are entangled in that case, where these areX̂−

and Ŷ+. In the present case, considering only the phase

anglesu=0 andp /2, we find entanglement withX̂+ andŶ−.
The two individual variances can be written as

SX±

out = SX1

out + SX2

out ± 2VsX̂1,X̂2d,

SX±

out = SX1

out + SX2

out ± 2VsŶ1,Ŷ2d. s19d

The individual quadrature variances are given aboves16d,
while for the covariances we find

VsX̂1,X̂2d =
− 8JaJbga

2g̃b
2ke

4ga
2g̃b

4v2 + fg̃b
2sga

2̃ − v2d − k2e2g2
, s20d

and VsŶ1,Ŷ2d=−VsX̂1,X̂2d, showing that theX̂ quadratures

are anticorrelated and theŶ quadratures are correlated. Al-
though these results allow us to write analytical expressions
for the combined variances, these are rather bulky and not
very enlightening, so we will not reproduce them here.

To optimize the degree of entanglement as a function of
the quadrature phase angle, we investigate the output spectral
correlation,

Su
outsX̂−d + Su

outsŶ+d, s21d

where theX̂ quadratures are at the angleu and theŶ quadra-
tures at the angleu+p /2. What we find, as shown in Fig. 2,
is that the degree of entanglement and the frequency at
which it exists depend on the coupling strengthJa while the
optimum angle depends onJb. When we holdJa constant and
increaseJb, we find that the maximum of entanglement is
always found at zero frequency, but that the optimum
quadrature angle changes.

To examine the utility of the system for the production of
states which exhibit the EPR paradox, we follow the ap-

proach of Reidf3g. We assume that a measurement of theX̂1
quadrature, for example, will allow us to infer, with some

error, the value of theX̂2 quadrature, and similarly for theŶj
quadratures. This allows us to make linear estimates of the
quadrature variances, which are then minimized to give the
inferred output variances,

Sinf
outsX̂1d = SX1

out −
fVsX̂1,X̂2dg2

SX2

out ,

FIG. 1. SXu
outsvd for g=1, Jb=1 and differentJa, all at theu of

maximum squeezing. The solid line is forJa=1 andu=113°, the
dash-dotted line isJa=2, the dotted line isJa=5 and the dashed line
is Ja=10, all for u=22°. The pump amplitude ise=0.5ec in each
case and all quantities plotted in this and subsequent graphics are
dimensionless. Note that all plotted spectra are symmetric about
zero frequency and all results shown use the valuek=0.01 and
ga=gb=g.

FIG. 2. Demonstration of entanglement, usingSu
outsX̂−d

+Su
outsŶ+d, for g=1, Jb=1, andJa=1 ssolid lined, 2 sdash-dotted

lined, 5 sdotted lined and 10sdashed lined. The quadrature angle for

X̂ is 67° and that forŶ is 157°. The pump amplitude ise=0.5ec.
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Sinf
outsŶ1d = SY1

out −
fVsŶ1,Ŷ2dg2

SY2

out . s22d

The inferred variances for thej =2 quadratures are simply

found by swapping the indices 1 and 2. As theX̂j and Ŷj
operators do not commute, the products of the variances
obey a Heisenberg uncertainty relation, withSXj

outSYj

outù1.
Hence we find a demonstration of the EPR paradox when-
ever

Sinf
outsX̂jdSinf

outsŶjd ø 1. s23d

With the expressions for the variances given in Eq.s16d and
the covariances of Eq.s20d, we have all we need to calculate
the EPR correlations. Once again, however, the full expres-
sions are somewhat unwieldy, so we will present the results
graphically.

In Fig. 3 we present the results for optimized quadrature
phase angles whileJb is held constant at a value ofg while

Ja is increased. Note that again the angleu refers to theX̂u

quadratures, while the conjugate quadratures are at an angle
of u+p /2. ChangingJb serves to change the angle of the
maximum violation, without changing the degree of viola-
tion, while changingJa changes both the degree and the fre-
quency of the maximum violation. As expected, these results
are the same for both outputs of the device.

V. DETUNING THE CAVITY

Often in optical systems the best performance is found
when the cavity is resonant for the different modes involved
in the interactions. In the present case we find that detuning
the cavity by the appropriate amount from the two frequen-
cies allows for some simplification of the theoretical analysis
and can actually improve some quantum correlations. With
detunings included, the steady state below threshold solu-

tions for the high frequency mode are found as

b1
ss= b2

ss= bss=
e

fgb − isJb − Dbdg
, s24d

so that, settingDb=Jb, we return to the well-known real so-
lutions for a single OPO. If we then setDa=Ja, define the
new variablesAp=a1+a2 andAm=a1−a2, and eliminate the
time dependence ofba,b, we can write positive-P stochastic
equations as

dAp

dt
= − gaAp + kbssAp

+ + Îkbsssh1 + h3d,

dAp
+

dt
= − gaAp

+ + kbssAp + Îkbsssh2 + h4d,

dAm

dt
= − fga + 2iJagAm + kbssAm

+ + Îkbsssh1 − h3d,

dAm
+

dt
= − fga − 2iJagAm

+ + kbssAm + Îkbsssh2 − h4d.

s25d

In the above, the noise terms are the same as those of Eq.s6d.
We note here that, although it is the detuning in the low
frequency mode that allows us to write the equations forAp
andAp

+ in a particularly simple form,Db also plays a role, in
that it allows us to treatbss as real, which will make the
interesting quantum correlations in and between theX andY
quadratures, so that we do not have to examine all possible
local oscillator angles to find the best performance.

Following the same linearization procedure as in Sec. III,
we find the corresponding drift and noise matrices,

Apm= 3
ga − kbss 0 0

− kbss ga 0 0

0 0 ga + 2iJa − kbss

0 0 − kbss ga − 2iJa

4 , s26d

and

Bpm= 3
Îkbss 0 Îkbss 0

0 Îkbss 0 Îkbss

Îkbss 0 − Îkbss 0

0 Îkbss 0 − Îkbss

4 . s27d

In terms of the quadratures used in Sec. IV, we now define

Xp = Ap + Ap
+ = X1 + X2,

Xm = Am + Am
+ = X1 − X2,

Yp = − isAp − Ap
+d = Y1 + Y2,

FIG. 3. Demonstration of the EPR correlation forJb=g=1 and
Ja=1 ssolid line, u=67°d, 2 sdash-dotted line,u=67°d, 5 sdotted
line, u=113°d and 10sdashed line,u=113°d. The pump amplitude
is e=0.5ec.
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Ym = − isAm − Am
+ d = Y1 − Y2, s28d

and give expressions for the output spectral variances of
these new quadratures. For theXp andYp quadratures these
are particularly simple,

SXp

outsvd = 2 +
8gagbke

sgagb − ked2 + gb
2v2 ,

SYp

outsvd = 2 −
8gagbke

sgagb + ked2 + gb
2v2 , s29d

and are readily seen to be the sum of the variances for two
uncoupled OPOs, as given in Eq.s14d. As in that case, the
zero-frequency variance inYp is predicted to vanish at the
critical pump value ofec=gagb/k, although, as should be
well known, a linearized analysis is not valid in that region.
However, the degree of squeezing is more than was found to
be available in the doubly resonant case considered above.
The other two variances do not uncouple and have more
complicated expressions,

SXm

outsvd = 2 +
8gagbkefsgagb + ked2 − gb

2s4Ja
2 − v2dg

fgb
2sga

2 + 4Ja
2 − v2d − k2e2g2 + 4ga

2gb
4v2 ,

SYm

outsvd = 2 −
8gagbkefsgagb − ked2 − gb

2s4Ja
2 − v2dg

fgb
2sga

2 + 4Ja
2 − v2d − k2e2g2 + 4ga

2gb
4v2 .

s30d

Graphical results for the combined quadratures which ex-
hibit squeezing are shown in Fig. 4, from which it is obvious
that by far the best squeezing quadrature isYp, which, for
these parameters, shows almost 90% squeezing at zero fre-
quency. The quadraturesXm andYm show only a very small
degree of squeezing far from zero frequency. What this result
shows, along with the results for the resonant cavity, is that

the low frequency modes want to oscillate at two distinct
frequencies, as is normal for coupled systems. The detuning
chosen,Da=Ja, moves the sum mode frequency closer to
resonance while the other frequency is further detuned.
Along with the choice ofDb so as to make the intracavity
high frequency amplitude real, this results in maximized
single-mode noise supression and entanglement centered on
zero frequency.

Using these results, we can now investigate the degree of
entanglement, as done above for the resonant case. As shown
in Fig. 5, we find that the quadraturesYp and Xm are en-
tangled, exactly as in the single OPO case. As with the
squeezing, the detunings have moved the maximum of en-
tanglement to zero frequency. A sign of the out of resonance
mode attempting to resonate is seen in the small degree of
entanglement apparent aroundv<20g. We also see that the
degree of entanglement is less than in the case with zero
detuning, shown previously in Fig. 2, although it must be
remembered that the absolute pump powers are not the same,
merely the ratiose /ec. Finding analytical expressions for
EPR correlations is not possible using this coupled-mode
approach, as, although we can calculate the necessary cova-

riances, for example,VsX̂1,X̂2d=fVsXpd−VsXmdg /4, it is not
obvious how to separate out the single-mode variances.
However, these can still be calculated numerically using the
full single-mode equations with the appropriate detunings.
That the system clearly demonstrates the EPR paradox is
shown in Fig. 6, although again the maximum inferred vio-
lation is less than in the resonant case.

We note here that all the quantities shown for the detuned
system are actually calculated at a lower absolute pump
power than in the resonant case. For positive detunings, the
critical pump amplitude is found as

ec = Îfga
2 + sJa − Dad2gfgb

2 + sJb − Dbd2g/k, s31d

so that our choice of detunings means this is no longer a
function of the coupling strengths. Therefore a careful choice

FIG. 4. Output spectral variances of the combined modes for
Jb=Db=ga=gb=g=1 and Ja=Da=10. The solid line isSYp

out, the
dash-dotted line isSXm

out, and the dotted line isSYm

out. A value of less
than 2 represents squeezing. The pump amplitude ise=0.5ec.

FIG. 5. The sum of the output spectral variances,SXm

out+SYp

out, for
Jb=Db=ga=gb=g=1 and Ja=Da=1 ssolid lined, 10 sdash-dotted
lined, and 20sdashed lined. A value of less than 4 represents en-
tanglement. The pump amplitude ise=0.5ec.

ENTANGLEMENT AND THE EINSTEIN-PODOLSKY-… PHYSICAL REVIEW A 71, 053803s2005d

053803-7



of detunings has two main advantages in that it fixes the
quadratures for which the maxima of quantum features are
found, and means that the pumping necessary to a good per-
formance does not vary with the coupling strengths.

The choice of detunings shown has the possible disadvan-
tage that, as the effective coupling is now only in theAm
mode, which is moved away from resonance, the quantum

correlations which depend on both the modes are slightly
degraded. This is readily seen from the figures because those
correlations which includeXm andYm change more withJa
than do the others.

VI. CONCLUSION

This system exhibits a wide range of behavior and is po-
tentially an easily tunable source of single-mode squeezing,
entangled states, and states which exhibit the EPR paradox.
The spatial separation of the output modes means that they
do not have to be separated by optical devices before mea-
surements can be made, along with the unavoidable losses
which would result from this procedure. The entangled
beams produced can be degenerate in both frequency and
polarization, unlike those of the nondegenerate OPO, and
would exit the cavity at spatially separated locations. This
may be a real operational advantage over the nondegenerate
OPO, which is also known to produce nonclassical states.
The tunability that exists because of the number of different
parameters which can be experimentally accessed, such as
the coupling strength, the pump intensity, and the detunings,
may make it interesting for a range of potential applications
which would require the availability of states of the electro-
magnetic field with varying degrees of nonclassicality. Since
this type of system is compatible with integrated optics tech-
niques, it may provide a more robust source of entanglement
than interferometers that use discrete optical components.
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