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Entanglement and the Einstein-Podolsky-Rosen paradox
with coupled intracavity optical down-converters
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We show that two evanescently couplgd parametric down-converters inside a Fabry-Perot cavity provide
a tunable source of quadrature squeezed light, Einstein-Podolsky-ReB&n correlations and quantum en-
tanglement. Analyzing the operation in the below threshold regime, we show how these properties can be
controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with
integrated optics, it provides a possible route to rugged and stable EPR sources.
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I. INTRODUCTION nescent couplings between the two waveguides, the input
power and the cavity detunings.

The Einstein, Podolsky and Ros€BPR paradox stems The term nonlinear coupler was given to a system of two
from a famous paper published in 198, which showed coupled waveguides without an optical cavity byiiRe et
that local realism is not consistent with quantum mechanicahl. [9]. Generically, the device consists of two parallel optical
completeness. A direct and feasible demonstration of th&vaveguides which are coupled by an evanescent overlap of
EPR paradox with continuous variables was first suggestethe guided modes. The quantum statistical properties of this
using nondegenerate parametric amplificatiaiso known as  device when the nonlinearity is of thg® type have been
the OPA [2]. The optical quadrature phase amplitudes usedheoretically investigated, predicting energy transfer between
in these proposals have the same mathematical properties the waveguidegl0] and the generation of correlated squeez-
the position and momentum originally used by EPR. Evering [11]. Coupled x® down-conversion processes in the
though the correlations between these are not perfect, thdyaveling wave configuration have also been examined theo-
are still entangled sufficiently to allow for an inferred viola- retically, predicting that light produced in one of the media
tion of the uncertainty principle, which is equivalent to the can be controlled by light entering the otHdr2], and that
EPR paradoxX3,4]. An experimental demonstration of this such a device can produce an entanglement of the output
proposal by Otet al. soon followed, showing a clear agree- beamg 13]. The coupler withy® nonlinearity held inside a
ment with quantum theor}5]. pumped Fabry-Perot cavity, and operating in the second har-

In this work, rather than using the nondegenerate opticamonic generatiofSHG configuration, was introduced by
parametric oscillatofOPO), we consider an alternative de- Bacheet al. [14], who named it the quantum optical dimer
vice using two degenerate type | down-converters inside th@y analogy with various systems that display coupling be-
same optical cavity, and coupled by evanescent overlaps dfveen discrete sites. They analyzed intensity correlations be-
the intracavity modes within the nonlinear medium. Thistween the modes, predicting noise suppression in both the
type of coupling has previously been investigated, both exsum and the difference.
perimentally and theoretically, to induce mutual coherence As the intracavityy'? down-conversion processes have
and entrainment with solid state las¢6s-8]. Generally, the long been appreciated as sources of quantum states of the
device we are proposing may be considered as either a singidectromagnetic fieldsee Martinelliet al. [15] for an over-
nonlinear crystal pumped by two spatially separated lasergjiew), we will combine and extend these previous analyses
or two waveguides with a¢'® component. We calculate to consider two coupled down-converters operating inside a
phase-dependent correlations between the two low frequendyabry-Perot cavity. The advantage of this proposal is the
outputs of the cavity in the below threshold regime, showingall-integrated nature of the device, which promises greatly
that this system exhibits a wide range of behavior and igncreased robustness. Additional potential advantages are the
potentially an easily tunable source of single-mode squeezeductions in threshold pump power and phase noise, relative
ing, entangled states and states which exhibit the EPR par#e current practice. Another potential advantage as compared
dox. The spatial separation of the output modes means th&e the normal type Il polarization nondegenerate OPO lies in
they do not have to be separated by optical devices beforde difficulty of stabilizing this device at frequency degen-
measurements can be made, along with the unavoidabkracy[16,17. Our proposal should be well stabilized by the
losses that would result from this procedure. The entanglelinear coupling, without having to add any additional fea-
beams produced can be degenerate in both frequency aiidgres.
polarization, unlike those of the nondegenerate OPO, and
would exit the cavity at spatially separated locations. These Il. THE SYSTEM AND EQUATIONS OF MOTION
correlations are tunable by controlling some of the opera- The physical device we wish to examine differs from that
tional degrees of freedom of the system, including the evadescribed in Ref[14] in one important detail. We will ana-
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lyze it in the down-conversion regime, where the cavitydiffusion matrix of this Fokker-Planck equation is not posi-
pumping is at a frequencya® = wy,. As this device has been tive definite, it cannot be mapped onto a set of stochastic
described in detail in Ref.14], we will give a briefer de- differential equations. Hence we will use the positReep-
scription of the essential features here. The system of interesesentatiori21] which, by doubling the dimensionality of the
consists of two coupled nonlineaf? waveguides inside a phase-space, allows a Fokker-Planck equation with a
driven optical cavity, which may utilize integrated Bragg re- positive-definite diffusion matrix to be found and thus a
flection for compactness. Each waveguide supports two res@rapping onto stochastic differential equations. Making the

nant modes at frequencies,,w,, where 2v;=w,. The  correspondence between the set of opera(té;s&f,f)j,ﬁ;r)

higher frequency modes aty, are driven coher_ently yvith an (j=1,2) and the set ot-number variableiaj,a;,ﬁj ,ﬂj’f),
external laser, while the nonlinear interaction within theWe find the following set of equations:

waveguides produces pairs of down-converted photons with
frequencyw,. We assume that only the cavity modes at these day . + . vy
two frequencies are important and that there is perfect phase gt ~ (va+idg)ay + kay By +iJaas + VkBym(b),
matching inside the media. The two waveguides are evanes-
cently coupled as in Ref14]. Besides the differences in the +
pumping frequency, we will be interested in the phase- i
dependent correlations necessary to demonstrate entangle- dt
ment and the EPR paradox, rather than the intensity correla-

. : —
== (va=idg)ay + keny ~ a0z + VKB 7o(1),

tions of Ref.[14]. da, . + . e
The effective Hamiltonian for the system can be written gt — (Ya+iBa)az+ kapfy +iJaas + Nk fBrr5(t),
as
.
Het=Hint * Heouplet Hpump™* Hires: @) dog _ - (Ya=iAa)a} + ko = idaa + ViBma(0),
where the nonlinear interaction with thg¢? media is de- dt
scribed by ds
. K .
K ator aont . atah ot d_tl = e~ (W+idp)B - Eai +1JpfB2,
Hint = 'ﬁE[% b, —aib; + 8,7, — &b, (2
Here k denotes the effective nonlinearity of the waveguides d_'BI - 6*1 ~(yp—iAp) B - EQIZ ~iJpBs
(we assume that the two are eguahda,, b, are the bosonic dt 2
annihilation operators for quanta at the frequencigswy,
within the crystalk(=1,2). The coupling by evanescent dg . K 5
waves is described by dt 2 (7 +i14b) 5 242 *1JpBy,
Hcouple: ﬁJa[é-lé-z + é—Ié-Z] + ﬁJb[f)lB]zL + E)IE)ZL (3) dB; K 4p
F2 e +_ N2 +
where theJ, are the coupling parameters at the two frequen- dat @ (= 180) 5 2% N1, (6)

cies, as described in R¢fl4]. We note that in that work it is ] )

stated that the lower frequency coupling, is generally Whgre theyk_represent cavity damping. We have also added
stronger than the higher frequency couplidg,and also that ~Cavity detuningsi, , from the two resonances, so that for a
values ofJ, as high as 50 times the lower frequency cavityPUMP laser at angular frequency2 one hasi,=w,= o

loss rate were calculated to be physically reasonable. Th@Ndds=wp~2w,. Later, in Sec. V, we will investigate detun-
cavity pumping is described by ing effects in greater detail. The real Gaussian noise terms

have the correlation&y;(t))=0 and{7;(t) (t")) = s dt—t’).
Hpump:iﬁ[ElBI—5161+52[3£—6;62], (4)  Note that, due to the independence of the noise sources,
. . . _ a(B) anday(By) are not complex conjugate pairs, except in
where thee represent pump fields which we will describe {he mean over a large number of stochastic integrations of

classically. Finally, the cavity damping is described by the above equations. However, these equations do allow us to
2 calculate the expectation values of any desired time-normally
Hyes=h, (TA] + Tib)) + H.c., (5)  ordered operator moments, exactly as required to calculate

k=1 spectral correlations.

where thel'® represent bath operators at the two frequencies

and we have made the usual zero temperature approximation lll. LINEARIZED ANALYSIS

for the reservoirs. . In an operating region where it is valid, a linearized fluc-
With the standard method48], and using the operator/ tyation analysis provides a simple way of calculating both
c-number correspondence&; — «;,bj<— B;), the Hamil- intracavity and output spectra of the systg2,23, by treat-

tonian can be mapped onto a Fokker-Planck equation for thimg it as an Ornstein-Uhlenbeck proc¢24]. To perform this
Glauber-SudarshaR distribution[19,20. However, as the analysis we first divide the variables of H) into a steady-
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state mean value and a fluctuation part, eag— a7°+da;  equal(e;=e,=¢€). In the present case, for a real pump, we
and so on for the other variables. We find the steady-staténd 5°=¢/(,-iJp). Inserting these solutions in the matAx
solutions by solving the equation®) without the noise allows us to find simple expressions for the eigenvalues,
terms(note that in this section we will treat all fields as being

at resonandeand write the equations for the fluctuation vec- A1,2= Y+ b,
tor 8X=[day, day, S, Sty , 5B1, 8B, 9B, 5B5]T, to first or-
der in these fluctuations, as A3.4= ¥~ 1,
=- +
d &X A sxdt+B dw, (7 Moo= 7+ \/m’
where the drift matrix is
A= [Aaa - A:Ja:| ®) A78= Ya~ \’[Kzez%_ Jg]- (10
Ava Aoy | Here we have introduced auxiliary variablesy,,
with =y ﬁ’b+Ja’b. We immediately see that; g can develop nega-
tive real parts for a pump amplitude greater than the critical
Ya —kBy -1, 0 value, .=,/ k. As it must, this expression reduces to the
- Kﬁig a 0 iJ, single OPO expression af,y,/ k when the couplings are set
aa= , < | to zero. In that case, there is then a stable above threshold
~WJa 0 Ya KB solution in which the high frequency mode inside the cavity
0 iJa - K,ng Ya remains constant, independently of any further increase in
the pumping, and the low frequency mode becomes occu-
kas® 0 0 0 pied. N - -
0 w0 0 ' In the present case, it is not S|mple_ to find gen_eral expres-
Apa= 1 , sions for these above threshold solutions analytically, but as
0 0 «ka3° O we will concentrate our attention on the rich variety of below
0 0 0 Ka;‘s* threshold behavior which is exhibited, this is not important
here. We note here that, unlike the single OPO case with a
v 0 -iJ, O resonant cavity, the threshold pumping is not a constant for
_ fixed cavity loss rates, but is a function of the coupling
- 0 % 0 ik (9) strengths between the two waveguides. Using the below
S iJ, 0 % O threshold solutions, we may calculate any desired time nor-
0 i3 0 mally ordered spectral correlations inside the cavity using
the simple formula
In this equation, dW is a vector of real Wiener ) )
increments, and the matriB is zero except for the first S(w) = (A+iwl)'BBI(AT-iwl)™, 11

four diagonal elements, ~which are, respectively,afier which we use the standard input-output relati@s to

y/ ,/ S [ [ s H o - . .
VKB kBT kB3, K5 . The essential conditions for rejate these to quantities which may be measured outside the
this expansion to be valid are that moments of the fluctuagayity.

tions be smaller than the equivalent moments of the mean
values, and that the fluctuations stay small. In the case of the
single optical parametric oscillatg©PO), it is well known

that there is a critical operating point around which this con- A. Single mode squeezing
dition does not hold. This point is easily found by an exami-
nation of the eigenvalues of the equivalent fluctuation drift
matrix for that system, and this procedure is also valid in th
present case. The fluctuations will not tend to grow as lon
as none of the eigenvalues of the matkidevelop a negative
real part. At the point at which this happens the linearized X=aei0+aldl (12)
fluctuation analysis is no longer valid, as the fluctuations can o 1=

then grow exponentially and the necessary conditions fofwherej=1,2), we will use the notation

linearization are no longer fulfilled. In this work we will only R

IV. QUANTUM CORRELATIONS

The first quantities we wish to calculate are the single
mode quadrature squeezing spectra, to compare these with
$he well-known resulilts for the normal uncoupled OPO. De-
g}ining the quadrature amplitudes as

be interested in a region where linearization is valid. X?= X,
To examine the stability of the system, we first need to
find the steady-state solutions for the amplitudes, by solving X2 =%, (13)
] N

for the steady state of E¢6) with the noise terms dropped.

As in the usual optical parametric oscillator, there is an osWe note here that the quadrature definitions do not need to
cillation threshold below whicl*=0 and only the high fre- specify whether it is moda or b which is involved, as we do
guency mode is populated. To simplify our results we willnot find any interesting behavior in the high frequency
assume that the pumping terms for each crystal are real arrdodes below threshold and hence will only present results
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for the low frequency modes. With this normalization the This will mean that the optimum correlations will no
coherent state value for the quadrature variances is one. longer generally be found in th§ andY; quadratures, but at
The expressions for the below threshold low frequencysome other phase angle, as found previously for second har-
quadrature variances in the single OPO case are well knowfonic generation in detuned caviti®6]. Experimentally,
[25], being this does not present a problem as the local oscillator phase
is normally swept across all angles, which must therefore
Ay, ypKeE include the optimum_ angle. We can find analytical solu_tions
2 21 for the angle of maximum single-mode squeeziagd anti-
(vays =~ k& + Yo squeeziny for example, these differing byr/2 and being
found as

iut(w) =1+

4¥aypKe O = tant
Sw)=1- , (14) opt
(Ya¥p + K€)2 + Ypw?

2V(X,Y)
and predicting zero-frequency squeezing which becomes per- YRy SN \JnT2 S 12
fect in theY quadrature as the pump approaches the critical V(Y) = VIX) £ \/[V(Y) VI +4V(XY)]
threshold valueeg=vy,v,/ k, although the linearized analysis (15)

breaks down near this point. Note that the variances inSid@vhereV(A B)=(AB) - (A)(B). However, as this expression is

- ; - % o . ' X .
and outside the cavity are related BY'=1+2y,V(X). Our 5 complicated function of several variables when written out
coupled system would be expected to exhibit the above valn full, and will not necessarily give the optimum choices at
ues in the limit asJ,,— 0, which provides a standard for gj| frequencies, nor when we consider correlations between
comparison with the analytical results. In the general casehe modes, we will present results where the local oscillator

we find thatSy= ‘ét, as expected. We also find that the angle has been optimized numerically.

1 A~ ~
coupling means that the intracavity high frequency fieldisno The X and Y spectral variances outside the cavity are
longer real, but has a phase given ®y=tarn*(J,/ ). found as

Ayacel w[ Yo(@? = 32) + I2V2 + (yayo + k€)?] + 2y.Jexe}
4')/2;3(»2 + [;ﬁ(;g - wd) - K262]2

S (@) =1+

_ Ayareln1h(@? ~ B) + B2+ (vaye ~ k€] + 2ya3pe}
4')/3:;30)2 + [%(z— w2) - K262]2

S, (w =1 (16)

which, as expected, reduce to the single OPO expressiorsd also find that changind, mainly serves to change the
above (14) when the coupling terms are set to zero. Theangle of maximum squeezing. Changifigchanges the fre-

output covariance is guency at which the maximum of squeezing is found. We see
that this device is not as efficient at producing squeezed
o o Ay doked V(e Ja+ 0?) + K2€] single-mode outputs as the normal OPO, but as we are inter-
V(X;,Y)) = ~ ~ ~ ' ) ested in the quantum correlations between the two output
4 + (R o) = 2T - -
a¥b bl /b modes, we will now examine these.

which will give 6,,=0,7/2 for the uncoupled case, wheYe

is the squeezed quadrature addhe antisqueezed quadra-
ture. An entanglement criterion for optical quadratures has
In Fig. 1 we show the single-mode output spectral quadrabeen outlined by Dechout al.[27], following from crite-

ture variances for the quadrature of best squeezing as tHi developed by Duaet al. [28] which are based on the
low-frequency mode coupling strength is varied, beginningnseparability of the system density matrix. A theoretical
with J,=Jp=7,=v,=7. We note here that the pump values meth_od to demonstrate the EPR para}dox using quadrgture
used in all the displayed results,=0.5¢., depend on the amplitudes was developed by R¢R, using the mathemati-
couplings as stated above and are therefore different for difc@l similarities of the quadrature operators to the original
ferent combinations of the couplings, but are all the saméosition and momentum operators. We will briefly outline
fraction of the threshold value. We find less single-modethese criteria here and then apply them to our system, using
squeezing than in the uncoupled case for the samee¢htio  the quadrature operatod§ and Y;. Note that even though

B. Entanglement and the EPR paradox
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FIG. 1. () for y=1, J,=1 and differentd,, all at the § of FIG. 2. Demonstration of entanglement, using"(X.)
maximum squeezing. The solid line is fdg=1 and #=113°, the +5?)ui(§(+), for y=1, J,=1, andJ,=1 (solid line), 2 (dash-dotted
dash-dotted line i9,=2, the dotted line iS,=5 and the dashed line |ing), 5 (dotted ling and 10(dashed ling The quadrature angle for
is J,=10, all for #=22°. The pump amplitude i8=0.5¢ in each X is 67° and that fol is 157°. The pump amplitude is=0.5..
case and all quantities plotted in this and subsequent graphics are ¢
dimensionless. Note that all plotted spectra are symmetric about g
zero frequency and all results shown use the vate®.01 and V(% %) = 8.Jany§y§Ke (20)

Ya=Yo=7- 4)/55/3w2+[3/t2)(;§—w2) _ Kzez]z’

these quadratures have the same mathematical propert|esaf}]sd V(\Afl.\?z)I—V(g(l,;(z), showing that thex quadratures

the canonical position and momentum operators for the har- _ A
monic oscillator, they correspond physically to the real anddre anticorrelated and theé quadratures are correlated. Al-
imaginary parts of the electromagnetic field, not its positionthough these results allow us to write analytical expressions
and momentum. for the combined variances, these are rather bulky and not

To demonstrate entanglement between the modes, we d¥ery enlightening, so we will not reproduce them here.
fine the combined quadraturéé =X, X, and ¥,=¥,+V, ) To oztlmlze thhe degreeI of en_tangle_ment rE]lS a function of |
and calculate the variances in these, which we may do anzg-e quadrature phase angle, we investigate the output spectra
lytically. Optimizing the result for arbitrary phase angles is Correlation,
better performed numerically. Following the treatment of o e
Ref.[27], entanglement is guaranteed provided that S5 (X)) + Sp(YL), (21)

SI+S < 4. (18)  where theX quadratures are at the angle@nd theY quadra-
- - tures at the anglé+ /2. What we find, as shown in Fig. 2,

We note here that the combined variance defined in this waip that the degree of entanglement and the frequency at
has an obvious relationship with the well-known two-modeWhich it exists depend on the coupling strengthwhile the
squeezed states which are produced, for example, by tHfgPtimum angle depends dg. When we hold), constant and
nondegenerate OP(29,30], but that the quadratures be- increasel,, we find that the maximum of entanglement is

tween which we find entanglement here are not the same &Wways found at zero frequency, but that the optimum
quadrature angle changes.

thosg which are entangled in that cgse,. where thesxare To examine the utility of the system for the production of
and Y,. In the present case, considering only the phasgates which exhibit the EPR paradox, we follow the ap-

anglesH:IO gndwlz, we find entanglemgnt with, andY_. proach of Reid 3]. We assume that a measurement Of)AKl’lle
The two individual variances can be written as quadrature, for example, will allow us to infer, with some
ut ot ut PN error, the value of th&, quadrature, and similarly for th¢,
S =Sk S £2V(X, %), quadratures. This allows us to make linear estimates of the

guadrature variances, which are then minimized to give the
b cout . cout . a inferred output variances,
SU= S+ U 2V(YLY). (19) o
c [V(X1,X5)]
The individual quadrature variances are given ab@u@, Sh(X2) =§}lit—¢t2,
while for the covariances we find 2
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1.4 ' ' tions for the high frequency mode are found as

€
b SS_— SS_— = , 24
~ e TR

1.2

so that, setting\,=J,, we return to the well-known real so-

= v '
EE \ ! lutions for a single OPO. If we then sat,=J,, define the
‘5 0.8r Vol ] new variablesA,=a; + a, andA,=a; —a,, and eliminate the
RS Vo time dependence g8, ,, we can write positive? stochastic
@ sl v ] equations as
2 L]
v
3 v d —
0.4f u ) FAtE == YAt KIBSSAE +\KkBsdm+ 13),
0'20 5 10 15 d_pg
w (units of y) dt = '}’aA;; + K:BssAp +VKBs M2+ 14),
FIG. 3. Demonstration of the EPR correlation fiy=y=1 and
J,=1 (solid line, #=67°), 2 (dash-dotted linep=67°), 5 (dotted dA, . .
line, #=1139 and 10(dashed linep=1139. The pump amplitude dat [a+ 213a]Am+ kBsAm+ NkBsd 71 = 773),
is €=0.5¢.
dA;, : —
ut ut _ [V(Ylsz)] dt =-[va- 2|Ja]Ar+n + kBsPAm+ VKB 12~ 14).
Shi(YD) =Sy~ ST (22
2 (25)

The inferred variances for the=2 quadratures are S|mply In the above, the noise terms are the same as those ¢6BEG.
found by swapping the indices 1 and 2. As thandY We note here that, although it is the detuning in the low
operators do not commute, the products of the variancegequency mode that allows us to write the equationsApr
obey a Heisenberg uncertainty relation, Wﬁﬁ“t&”‘ﬂ andA; in a particularly simple forma,, also plays a role, in
Hence we find a demonstration of the EPR paradox whenthat |t allows us to treajBss as real, which will make the
ever interesting quantum correlations in and betweenXrandY
- - quadratures, so that we do not have to examine all possible
Sh(XShi(Y) < 1. (23)  local oscillator angles to find the best performance.

Following the same linearization procedure as in Sec. lll,

With the expressions for the variances given in and ) ) ; . )
P g E®) we find the corresponding drift and noise matrices,

the covariances of Eq20), we have all we need to calculate
the EPR correlations. Once again, however, the full expres-

sions are somewhat unwieldy, so we will present the results Ya T KPss 0 0
graphically. A = —KBss Ya 0 0 26)
In Fig. 3 we present the results for optimized quadrature pm= 0 0 7,+2J, -kBss |
phase angles whild, is held constant at a value gfwhile _ o
L. . ~ 0 0 KBss  Ya~ 2Ja
J, is increased. Note that again the angleefers to thex’
guadratures, while the conjugate quadratures are at an angled
of 6+7/2. ChangingJ, serves to change the angle of the ’
maximum violation, without changing the degree of viola- VkBss O VKBss 0
tion, while changingl, changes both the degree and the fre- 0 \E 0 \F
guency of the maximum violation. As expected, these results Bom=| —— ss — ss (27)
are the same for both outputs of the device. VkBss 0 —VkBss O
!’_ /_
0 VKBss 0 ~ VKPss

V. DETUNING THE CAVITY In terms of the quadratures used in Sec. IV, we now define

Often in optical systems the best performance is found
when the cavity is resonant for the different modes involved
in the interactions. In the present case we find that detuning
the cavity by the appropriate amount from the two frequen- Xin = Am+ A" = X; = Xy,
cies allows for some simplification of the theoretical analysis
and can actually improve some quantum correlations. With
detunings included, the steady state below threshold solu-

Xp=Ap+ AL =X+ Xo,

=—i(A-A) =Y+ Y,,
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FIG. 4. Output spectral variances of the combined modes for FIG- 5. The sum of the output spectral variancgb + S, for
Jb=2p=7a=%=y=1 and J;=A,=10. The solid line isS}", the

Jo=Ap=7a=mw=7=1 and J,=A,=1 (solid line), 10 (dash-dotted
dash-dotted line i€, and the dotted line i€ A value of less i), and 20(dashed ling A value of less than 4 represents en-
than 2 represents saueezing. The pump ampTitudec & 5e..

tanglement. The pump amplitude és 0.5¢..

the low frequency modes want to oscillate at two distinct
(28) frequencies, as is hormal for coupled systems. The detuning
] ] . chosen,A,=J,, moves the sum mode frequency closer to
and give expressions for the output spectral variances gbsonance while the other frequency is further detuned.
these new quadratures. For thg and Y, quadratures these Ajong with the choice ofA, so as to make the intracavity
are particularly simple, high frequency amplitude real, this results in maximized
single-mode noise supression and entanglement centered on
zero frequency.

Using these results, we can now investigate the degree of
entanglement, as done above for the resonant case. As shown
8YaYpbke in Fig. 5, we find that the quadraturé§ and X,, are en-
_(7a7b+f<6)2+ Yew?' tangled, exactly as in the single OPO case. As with the

squeezing, the detunings have moved the maximum of en-
and are readily seen to be the sum of the variances for twganglement to zero frequency. A sign of the out of resonance
uncoupled OPOs, as given in E@4). As in that case, the mode attempting to resonate is seen in the small degree of
zero-frequency variance iM, is predicted to vanish at the entanglement apparent around= 20y. We also see that the
critical pump value ofe.=y,y,/«, although, as should be degree of entanglement is less than in the case with zero
well known, a linearized analysis is not valid in that region. detuning, shown previously in Fig. 2, although it must be
However, the degree of squeezing is more than was found t&membered that the absolute pump powers are not the same,
be available in the doubly resonant case considered abovgerely the ratiose/e.. Finding analytical expressions for
The other two variances do not uncouple and have morgpRr correlations is not possible using this coupled-mode

Y= —i(An= A=Y= Yy,

87a7bK6
(Yavp— K€+ Yow?

Sw)=2+

Si(w) =2 (29

complicated expressions,

8Yaokel (Yavh + k€2 = (435 - 0?)]

i) =2+

approach, as, although we can calculate the necessary cova-
riances, for exampley(X;,X;) =[V(Xp) - V(Xy)]/4, it is not
obvious how to separate out the single-mode variances.

[yﬁ(yg + 4\]§1 - wd) - KPEP+ 4'}/3'yéw2,

8YaYorel (Yayh — K€)2 — Y (432 - ?)]

However, these can still be calculated numerically using the
full single-mode equations with the appropriate detunings.
That the system clearly demonstrates the EPR paradox is
[V(2+ 402 - ) — KPET + 4y2ryiw? shpwn in Fig. 6, a!though again the maximum inferred vio-
lation is less than in the resonant case.

(30 We note here that all the quantities shown for the detuned

Graphical results for the combined quadratures which exsystem are actually calculated at a lower absolute pump
hibit squeezing are shown in Fig. 4, from which it is obvious power than in the resonant case. For positive detunings, the
that by far the best squeezing quadratureyjs which, for  critical pump amplitude is found as
these parameters, shows almost 90% squeezing at zero fre- _ 2 2
quenc;F/). The quadrature§, andY,, show oqnly a vegry small €= VDA + Ba= 8710+ B~ 40, (39)
degree of squeezing far from zero frequency. What this resulio that our choice of detunings means this is no longer a
shows, along with the results for the resonant cavity, is thafunction of the coupling strengths. Therefore a careful choice

) =2-

053803-7
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1.1

correlations which depend on both the modes are slightly
degraded. This is readily seen from the figures because those
correlations which include,,, and Y, change more withl,

than do the others.

1F

0.9r

osl VI. CONCLUSION

This system exhibits a wide range of behavior and is po-
tentially an easily tunable source of single-mode squeezing,
entangled states, and states which exhibit the EPR paradox.
The spatial separation of the output modes means that they
do not have to be separated by optical devices before mea-
surements can be made, along with the unavoidable losses
which would result from this procedure. The entangled
beams produced can be degenerate in both frequency and

03 : : : : polarization, unlike those of the nondegenerate OPO, and
0 1 2 3 4 5 . . . . .
o (units of 7 would exit the cavny_ at spatially separated locations. This
may be a real operational advantage over the nondegenerate

FIG. 6. The product of the inferred output spectral variances OPO, which is also known to produce nonclassical states.
sSSP, for J,=Ap=v.==y=1 andJ,=A,=1 (solid line) and 10 ~ The tunability that exists because of the number of different
(dash-dotted line On this scale, the result fal,=20 is indistin-  parameters which can be experimentally accessed, such as
guishable from that fod,=10. A value of less than 1 represents a the coupling strength, the pump intensity, and the detunings,
demonstration of the EPR paradox. The pump amplitudes is may make it interesting for a range of potential applications
=0.5¢. which would require the availability of states of the electro-

magnetic field with varying degrees of nonclassicality. Since
of detunings has two main advantages in that it fixes thdhis type of system is compatible with integrated optics tech-
quadratures for which the maxima of quantum features ar8iques, it may provide a more robust source of entanglement
found, and means that the pumping necessary to a good pdhan interferometers that use discrete optical components.
formance does not vary with the coupling strengths.

The choice of detunings shown has the possible disadvan-
tage that, as the effective coupling is now only in thg This research was supported by the Australian Research
mode, which is moved away from resonance, the quantunCouncil.
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