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We analyze the coherent formation of molecular Bose-Einstein condensate (BEC) from an ato
BEC, using a parametric field theory approach. We point out the transition between a quantum so
regime, where atoms couple in a local way to a classical soliton domain, where a stable coup
condensate soliton can form in three dimensions. This gives the possibility of an intense, stable a
laser output. [S0031-9007(98)07283-4]
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Parametric solitons or simultaneous solitary wav
(“simultons”), involving the opticalx s2d nonlinearity,
have been the topic of much recent theoretical a
experimental interest in nonlinear optics. We propo
a novel mechanism by which a similar phenomeno
may occur in nonlinear atomic optics, in which cohere
molecule formation in a Bose-Einstein condensate (BE
takes the place of second harmonic generation.

This requires a coupling that converts two atoms in
one molecule, thus generating coupled atomic and mole
lar Bose-Einstein condensates—and so taking advant
of molecular states that are known to exist in alkali-met
vapors. Our model includes a coherent molecular form
tion process (i.e., without dissipation) in an atomic BE
vapor [1] (or atom laser [2]), either through a Feshba
resonance [3] or Raman photoassociation [4]. We no
that Feshbach resonances have already been observed
The coherently coupled atom-molecular condensate co
provide a route to the observation of a localized thre
dimensional BEC soliton, even in the absence of a tr
potential. A possible application is in the free propagatio
of a nondiverging atom-laser pulse, thus greatly increas
the intensity in an atom-laser beam. Even more than t
would be the importance of observing the striking phys
cal properties of this novel quantum field theory, and th
corresponding Bose-enhanced chemical kinetics.
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The original solution for the parametric soliton was
in a one-dimensional environment [6]. These classic
solutions have been classified topologically [7], and ar
generic to the mean-field theories of parametric nonlin
earities that convert one particle into two (and vice versa
The equations are nonintegrable, and are different to t
usual integrable classes of soliton equations. A consi
erable advantage of these types of nonlinear equations
that they are capable of providing solutions in one, two
or three space dimensions, which does not occur in t
usual Gross-Pitaevskii equations. Both classical [6–8
and quantum [9] solutions have been recently identifie
(including observation of classical solitons in experimen
[10]), although these different types of soliton have strik
ingly different qualitative behavior.

The purpose of this Letter is to point out the physica
origin of these differences between the quantum an
classical versions of the parametric field theory and t
identify experimental requirements for observing thes
novel effects in Bose condensates. We consider t
following basic Hamiltonian, to give a simple model of
molecule formation:

Ĥ  Ĥ0 1 Ĥ1 1 Ĥint , (1)

where the free and interacting Hamiltonians are
Ĥ0  h̄
Z

d3x

"
h̄

2m
j=F̂j2 1

h̄
2M

j=Ĉj2

#
,

Ĥ1  h̄
Z

d3x

"
k

2
F̂y2F̂2 1 VCsxdĈyĈ 1 VFsxdF̂yF̂

#
, (2)

Ĥint  h̄
Z

d3x
x

2
fF̂2Ĉy 1 F̂y2Ĉg .
Here we define complex fieldsF̂ 
R

d3kâskd 3

expfisk ? xdg and Ĉ 
R

d3kb̂skd expfisk ? xdg. The
field F̂ represents an atomic species of massm in a
potentialVFsxd, in one internal state, whilêC represents
a dimer species of massM  2m, in a single vibrational
and rotational state, with a potentialVCsxd.

The coupling constantx represents a formation rate
for the dimer, in theS-wave scattering limit, whilek
© 1998 The American Physical Society 3055
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represents the effective self-interaction of the atomic fie
In the absence of any trap, the potentials are uniform, a
h̄r  h̄sVC 2 2VFd is the formation energy of the dime
species. We note that these interactions are idealiz
in the sense that bothx and k represent processes tha
are microscopically nonlocal. To represent such nonlo
behavior, we must introduce a momentum cutoffkm in the
relative momenta of interacting fields, which physical
must be around the inverseS-wave scattering length—if
we wish to use the nonrenormalized effective potential
describeS-wave scattering. This is known to be essenti
to the correct interpretation of these types of effecti
field theories. It should be recognized that molecular se
interactions—as well as atom-molecular scattering—w
occur as well. These are neglected here, since the rele
cross sections are not well known.

In the corresponding nonlinear optical case, theF

and C fields would correspond to a first and secon
harmonic, coupled by ax s2d nonlinearity of the dielectric,
while k would correspond to ax s3d nonlinearity. The
interplay between quadratic and cubic nonlinearities
the case of nonlinear optical solitons has been analyz
at the classical level and for one space dimension,
[11]. The effective masses, which should be differe
in the longitudinal and transverse directions, descri
the effects of dispersion and diffraction, respectively, f
both the fields (see, e.g., [9] for more details). He
the equations refer to a moving frame situation, wi
coordinates moving at the group velocity.

By comparison, in the directly comparable atomic cas
we are considering atoms in free space. No poten
needs to be included, since this is not essential to soli
formation. The molecular formation process would b
tuned in any practical experiment, by magnetic fields
external Raman coupling, in order to reduce the ener
mismatchh̄r. An important consideration is the possibl
effects of losses due to inelastic atom-molecule collision
We assume that an appropriate choice of molecular lev
is made, so that these losses can be ignored over
relevant time scales for solitons to form. Thus, the negle
of molecular vibrational transitions is crucial to th
present theory, which only includes one molecular lev
An ideal situation would involve a direct coupling via
tuned Raman transition to the molecular ground state.
more sophisticated theory would include detailed atom
positions and multiple energy levels within each molecu
Our theory neglects these additional complications.

The Heisenberg equations of motion that correspond
the basic Hamiltonian are

i
≠

≠t
F̂  2

h̄
2m

=2F̂ 1 xĈF̂y 1 kF̂yF̂2

1 VFsxdF̂ ,

i
≠

≠t
Ĉ  2

h̄
2M

=2Ĉ 1
x

2
F̂2 1 VCsxdĈ . (3)
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As a first step, we can take mean values, so th
f  kF̂l and c  kĈl, and assume operator produc
factorization. This gives rise to mean-field equations
valid for a momentum cutoff less than theS-wave
scattering length. For the case of Bose condensates
existing evaporative cooling experiments, near the atom
collective ground state, the mean-field equations represe
modified Gross-Pitaevskii equations—which are know
to successfully describe BEC excitations.

Another way to understand the behavior of this quantu
many-body system is to look for energy eigenstates of th
original Hamiltonian, in the limit of a large momentum
cutoff. These must simultaneously be the eigenstat
of N̂ 

R
d3xfjF̂j2 1 2jĈj2g, conserving the generalized

particle numberN (total number of atoms if we count each
molecule as two atoms). Solving this, a remarkable fa
emerges. We can show rigorously that in the limit of fre
space propagation, anN-boson ground state exists—by
finding exact upper and lower bounds on the Hamiltonia
energy. Since these coincide in three dimensions, we ha
the result that the (idealized) quantum ground-state ener
is exactly

EN
g 

N
2

√
h̄r 2

h̄x2

2k

!
, (4)

where we assumeN is even. The proof of the lower
bound also assumesk . 0 andx2 . 2rk, and the result
is obtained using the known solution of the two-particle
(N  2) bound-state problem [9].

This corresponds toNy2 independent quantum solitons
or “dressed” molecules, each of which exist in a linea
superposition with a pair of atoms (like a Cooper pair), s
that

jcN
Q l 

"
b̂ys0d 1

Z km

0
d3kgskdâyskdâys2kd

#Ny2

j0l .

(5)

In this limit of a large cutoff in the quantum field
theory, the ground-state energy has no lower bound
k ! 0. This is in remarkable contrast to the known
mean-field behavior of the corresponding classical energ
which is rigorously bounded below (see, e.g., [8]). O
more interest is the limiting behavior of the ground-stat
quantum energy when there is a cutoffkm present. We
have obtained a variational estimate of this quantity, an
for this case we obtain (r, k ! 0)

ẼN
Q  2Nmx2kmys8p2d . (6)

Here we have taken the case of a relatively large cuto
so that the result assumes thatkm ¿ fxmys2p h̄dg2, and
uses a variational ansatz of the form given previously
The ansatz gives us the true ground-state energy in t
limit km ! ` (for any finite k), since upper and lower
energy bounds coincide. However, it is not necessari
the lowest possible energy at finitekm. In order to show



VOLUME 81, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 12 OCTOBER 1998

r-
-

d

-
e

s

en
-

ar
es,
y
-
t
f
-

n
nd
d
, it
al,

-
s
il,

t

.

this, we consider a coherent or mean-field ansatz, w
broken symmetry, of form

jcN
C l  exp

(Z
d3xffsxdF̂ysxd 1 csxdĈysxdg

)
j0l .

(7)

For this case, the classical decorrelation originates
coherent-state factorization properties of the Hamiltonia
This state is, however, not an eigenstate ofĤ (since
it is not an eigenstate of̂N). It is an approximate
(semiclassical) eigenstate at largeN, and corresponds
to two coupled Bose-Einstein condensates under brok
symmetry conditions.

We will now show that, providedcsxd, fsxd are
chosen to minimize the classical Hamiltonian, they ca
give a lower energy than previously—although still finite
This calculation makes use of the known result that th
classical parametric Hamiltonian is always bounded belo
[8], and the bound is given by the soliton energy fo
exact phase matchingr  0. This soliton energy is
estimated by means of a variational ansatz applied to t
Hamiltonian. We choose

fsxd  g1N2f2ysps1dg3y4 exps2jxj2N2ys1d ,

csxd  2g2N2f2ysps2dg3y4 exps2jxj2N2ys2d . (8)

The negative sign forcsxd ensures that the coupling
energy is negative, and the normalization implies th
g2

1 1 g2
2  1. We note that although a uniform varia-

tional ansatz is possible, it is known that a uniform fiel
of this type is always unstable for a purely parametric co
pling [12]—and hence cannot give the lowest energy.

Substituting into the Hamiltonian gives us the result

EN
C yh̄  N3

√
3h̄
2m

! "
g2

1

s1
1

g2
2

2s2
2

x̃g2
1g2s

3y4
2

ss1 1 2s2d3y2

#
1 N5k̃g4

1s
23y2
1 1 Nrg2

2 , (9)

where we have usedM  2m, with the simplified no-
tation of x̃  25y2s2ypd3y4mxy3h̄ and, similarly, k̃ 
225y2s2ypd3y2k.

To minimize ẼN
C , under the constraint of a fixedN , is

a nontrivial algebraic procedure. However, the physics
considerably simplified in the region where the term inN3

is dominant—which we note should not involve too larg
a contribution from the repulsive term that scales wit
N5, and tends to destabilize soliton formation. In thi
region (i.e., assumingk . r . 0), we obtain a coupled
molecular Bose condensate minimum energy of

ẼN
C  2CN3

√
h̄2

m

! √
mx

h̄

!4

, (10)

whereC is a constant given byC . 1 ? 2 3 1025. The
relevant length scale is nearly identical for the tw
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l1 

p
s1

N
. 1.7 3 102 1

N

√
h̄

mx

!2

. (11)

This enables us to more clearly understand the appa
ent paradox that a full quantum theory gives a qualita
tively different lower energy bound to the corresponding
classical mean-field theory. To obtain a stable couple
atom-molecular condensate, we requireẼN

C # ẼN
Q , which

occurs at a critical boson number:

N $ Ncr 

s
km

8p2C
h̄

mx
. (12)

This question is therefore a subtle combination of mo
mentum cutoff and particle density effects. To give som
numerical results we considerm , 10225 kg, and use a
x-value estimate of aboutx , 1026 m3y2ysec (given in
[3], by Tommasiniet al., for a Feshbach resonance [5]),
leading tomxyh̄ . 103 m21y2. With a choice of the cut-
off at km , 1 nm21, this gives a critical atom number
of about Ncr , 103, which is well within the range of
current BEC experiments. At low particle density, the
formation of individual dressed molecules is favored, a
atoms couple to molecules in a particlelike way. The
process is analogous to Rabi oscillations of atoms betwe
two different electron sublevels, except that it occurs be
tween pairs of atoms and the corresponding molecul
levels. These dressed states have interesting properti
reminiscent of Cooper pairs, but cannot be described b
the classical parametric soliton equations. At large cou
plings x, and at large density (but not too large so tha
S-wave scattering is dominant) the coherent coupling o
two entire condensates is dominant—just as in nonlin
ear optics. In this domain, provided other recombinatio
processes are negligible, there are strong, coherent, a
nonlinear wavelike interactions between the atomic an
the molecular Bose condensates. For these parameters
even appears possible to form a stable, three-dimension
Bose-Einstein soliton.
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