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Coherent Molecular Solitons in Bose-Einstein Condensates
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We analyze the coherent formation of molecular Bose-Einstein condensate (BEC) from an atomic
BEC, using a parametric field theory approach. We point out the transition between a quantum soliton
regime, where atoms couple in a local way to a classical soliton domain, where a stable coupled-
condensate soliton can form in three dimensions. This gives the possibility of an intense, stable atom-
laser output. [S0031-9007(98)07283-4]

PACS numbers: 03.75.Fi, 03.65.Ge, 05.30.Jp

Parametric solitons or simultaneous solitary waves The original solution for the parametric soliton was
(“simultons”), involving the optical y® nonlinearity, in a one-dimensional environment [6]. These classical
have been the topic of much recent theoretical andolutions have been classified topologically [7], and are
experimental interest in nonlinear optics. We proposegeneric to the mean-field theories of parametric nonlin-
a novel mechanism by which a similar phenomenorearities that convert one particle into two (and vice versa).
may occur in nonlinear atomic optics, in which coherentThe equations are nonintegrable, and are different to the
molecule formation in a Bose-Einstein condensate (BECusual integrable classes of soliton equations. A consid-
takes the place of second harmonic generation. erable advantage of these types of nonlinear equations is

This requires a coupling that converts two atoms intathat they are capable of providing solutions in one, two,
one molecule, thus generating coupled atomic and molecwr three space dimensions, which does not occur in the
lar Bose-Einstein condensates—and so taking advantagesual Gross-Pitaevskii equations. Both classical [6—8]
of molecular states that are known to exist in alkali-metaland quantum [9] solutions have been recently identified
vapors. Our model includes a coherent molecular formagincluding observation of classical solitons in experiment
tion process (i.e., without dissipation) in an atomic BEC[10]), although these different types of soliton have strik-
vapor [1] (or atom laser [2]), either through a Feshbachingly different qualitative behavior.
resonance [3] or Raman photoassociation [4]. We note The purpose of this Letter is to point out the physical
that Feshbach resonances have already been observed [&figin of these differences between the quantum and
The coherently coupled atom-molecular condensate couldassical versions of the parametric field theory and to
provide a route to the observation of a localized threeidentify experimental requirements for observing these
dimensional BEC soliton, even in the absence of a tramovel effects in Bose condensates. We consider the
potential. A possible application is in the free propagatiorfollowing basic Hamiltonian, to give a simple model of
of a nondiverging atom-laser pulse, thus greatly increasingnolecule formation:
the intensity in an atom-laser beam. Even more than this

would be the importance of observing the striking physi- H=Hy,+ H + Hy, (1)
cal properties of this novel quantum field theory, and the
corresponding Bose-enhanced chemical kinetics. | where the free and interacting Hamiltonians are
N h . i N
Hy=h | &’x| 7= [VO|* + —— [V¥|?
; fdx[mw P v }
= d3x|:; BPH? + vyt + vq,(x)é)*(i)] @

Hiyy = hf d3x%[<f>2\i'* + 29,

Here we define complex fieldsh = [d°ka(k) X | a dimer species of magg = 2m, in a single vibrational
exdi(k - x)] and ¥ = [d*kb(k)exdi(k - x)]. The and rotational state, with a potentié (x).

field & represents an atomic species of massin a The coupling constanj represents a formation rate
potential Vg (x), in one internal state, whild” represents for the dimer, in theS-wave scattering limit, whilex
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represents the effective self-interaction of the atomic field. As a first step, we can take mean values, so that
In the absence of any trap, the potentials are uniform, ang = (&) and ¢ = (¥), and assume operator product
hp = h(Vy — 2Vg) is the formation energy of the dimer factorization. This gives rise to mean-field equations,
species. We note that these interactions are idealizedalid for a momentum cutoff less than th&wave
in the sense that botly and « represent processes that scattering length. For the case of Bose condensates in
are microscopically nonlocal. To represent such nonlocaéxisting evaporative cooling experiments, near the atomic
behavior, we must introduce a momentum culgffin the  collective ground state, the mean-field equations represent
relative momenta of interacting fields, which physically modified Gross-Pitaevskii equations—which are known
must be around the inversewave scattering length—if to successfully describe BEC excitations.
we wish to use the nonrenormalized effective potential to Another way to understand the behavior of this quantum
describeS-wave scattering. This is known to be essentialmany-body system is to look for energy eigenstates of the
to the correct interpretation of these types of effectiveoriginal Hamiltonian, in the limit of a large momentum
field theories. It should be recognized that molecular selfeutoff. These must simultaneously be the eigenstates
interactions—as well as atom-molecular scattering—willof N = [ 3x[|®|? + 2|¥|?], conserving the generalized
occur as well. These are neglected here, since the relevapéarticle numben (total number of atoms if we count each
cross sections are not well known. molecule as two atoms). Solving this, a remarkable fact
In the corresponding nonlinear optical case, e emerges. We can show rigorously that in the limit of free
and ¥ fields would correspond to a first and secondspace propagation, aM-boson ground state exists—by
harmonic, coupled by ® nonlinearity of the dielectric, finding exact upper and lower bounds on the Hamiltonian
while x would correspond to & nonlinearity. The energy. Since these coincide in three dimensions, we have
interplay between quadratic and cubic nonlinearities irthe result that the (idealized) quantum ground-state energy
the case of nonlinear optical solitons has been analyzeiks exactly

at the classical level and for one space dimension, in N iy
[11]. The effective masses, which should be different EN == (hp _ i) (4)
in the longitudinal and transverse directions, describe 2 2k

the effects of dispersion and diffraction, respectively, foryhere we assumev is even. The proof of the lower
both the fields (see, e.g., [9] for more details). Herepound also assumes> 0 andy? > 2p«, and the result
the equations refer to a moving frame situation, withjs gptained using the known solution of the two-particle
coordinates moving at the group velocity. (N = 2) bound-state problem [9].

By comparison, in the directly comparable atomic case, Thjs corresponds t&//2 independent quantum solitons
we are considering atoms in free space. No potentighr “gressed” molecules, each of which exist in a linear

needs to be included, since this is not essential to 50|it°§uperposition with a pair of atoms (like a Cooper pair), s
formation. The molecular formation process would beinat

tuned in any practical experiment, by magnetic fields or L N/2

external Raman coupling, in order to reduce the energy;, ny _ | 7t "3 At AT

mismatch/ip. An important consideration is the possible o) {b © +[o ¢ke(l)a’ k)a’( k)} 107.

effects of losses due to inelastic atom-molecule collisions. (5)

We assume that an appropriate choice of molecular levels

is made, so that these losses can be ignored over tHg this limit of a large cutoff in the quantum field

relevant time scales for solitons to form. Thus, the neglectheory, the ground-state energy has no lower bound as

of molecular vibrational transitions is crucial to the x — 0. This is in remarkable contrast to the known

present theory, which only includes one molecular levelmean-field behavior of the corresponding classical energy,

An ideal situation would involve a direct coupling via a Which is rigorously bounded below (see, e.g., [8]). Of

tuned Raman transition to the molecular ground state. Anore interest is the limiting behavior of the ground-state

more sophisticated theory would include detailed atomidluantum energy when there is a cutéff present. We

positions and multiple energy levels within each moleculehave obtained a variational estimate of this quantity, and

Our theory neglects these additional complications. for this case we obtairp( x — 0)

The Heisenberg equations of motion that correspond to EN o 2 2

the basic Hamiltonian are Eo Nmx“ken/B77). ©

Here we have taken the case of a relatively large cutoff,

ii d = _ V2h + y bt + kb d? so that the result assumes that > [ym/(Q27h)]?, and
at 2m uses a variational ansatz of the form given previously.
+ Vo (x)d The ansatz gives us the true ground-state energy in the
' limit k,, — oo (for any finite ), since upper and lower
S s X &2 f energy bounds coincide. However, it is not necessarily
Y V= 2M Vi 2 ®7 Vel (3) the lowest possible energy at finitg,. In order to show
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this, we consider a coherent or mean-field ansatz, witltoupled condensates, and is given by

broken symmetry, of form 2
I, = % =17 X 102]1,(5) . (11)
s A m
lye) = exp‘ f Ix[p)DT(x) + ()P (x)]110). X
This enables us to more clearly understand the appar-

(7)  ent paradox that a full quantum theory gives a qualita-
tively different lower energy bound to the corresponding

For this case, the classical decorrelation originates ifyaqgjcal mean-field theory. To obtain a stable coupled
coherent-state factorization properties of the f'am'Iton'anatom-molecular condensate, we requit = £, which
This state is, however, not an eigenstate /f(since  J..\rs at a critical boson nu’mber' 2

it is not an eigenstate of¥). It is an approximate
(semiclassical) eigenstgte at largg and corresponds N=N. = kmw R
to two coupled Bose-Einstein condensates under broken r
symmetry conditions.

We will now show that, providedy(x), ¢(x) are

—. 12
8m2C my (12)

This question is therefore a subtle combination of mo-

chosen to minimize the classical Hamiltonian, they ca entum cutoff and particle density effects. To give some

_ : ey ' ider ~ 10-> kg, and use a
ive a lower energy than previously—although still finite. humerical r(.ESUItS we consider ~ 10 9 : ;
g gy P y 9 ;Y-value estimate of aboyg ~ 10~¢ m*/2/sec (given in

This calculation makes use of the known result that th 3], by Tommasiniet al., for a Feshbach resonance [5])
classical parametric Hamiltonian is always bounded below™!" N ; . ’
b y eading tom y /i = 10> m~'/2, With a choice of the cut-

[8], and the bound is given by the soliton energy for o "

exact phase matching = 0. This soliton energy is g;faat;[o]arth ! nrlno3 ’Vtm;hgli\;ea,; ?,:,I;[tlﬁﬁ: i{gr?ar;g;n%?r
timat f iational t lied to th or oV ; .

estimated by means of a variational ansatz applied to current BEC experiments. At low particle density, the

Hamiltonian. We choose ; O .
formation of individual dressed molecules is favored, as

d(x) = gIN[2/(ms)P/* exp(—|xI2N?/s1), atoms couple to molecules in a particlelike way. The
) 3/4 s process is analogous to Rabi oscillations of atoms between
Y(x) = —gaNT[2/(ms2) "™ exp(—[xI"N"/s2). (8)  two different electron sublevels, except that it occurs be-

tween pairs of atoms and the corresponding molecular
{evels. These dressed states have interesting properties,
> 2 . . reminiscent of Cooper pairs, but cannot be described by
gi + ¢ = 1. We note that although a uniform varia the classical parametric soliton equations. At large cou-

tlona}l ansatz is possible, it is known that a un|forrr_1 f'eldplings,\/, and at large density (but not too large so that
of this type is always unstable for a purely parametric cou-

pling [12]—and hence cannot give the lowest energy. S-wave scattering is dominant) the coherent coupling of

Substituting into the Hamiltonian gives us the result VO entire condensates is dominant—just as in nonlin-
9 9 ear optics. In this domain, provided other recombination

The negative sign fory(x) ensures that the coupling
energy is negative, and the normalization implies tha

N waf 30 g_% g_% B )?gfgzng processes are negli.gible, there are strong, coherept, and
Ec/h =N T 1 932 nonlinear wavelike interactions between the atomic and
2m S 25, (s1 + 2s9) .
3 the molecular Bose condensates. For these parameters, it
+ Nokgls; ™" + Npg3, (9) even appears possible to form a stable, three-dimensional,
_ S Bose-Einstein soliton.
where we have;/gseM v 2m, with the simplified no- We gratefully acknowledge the hospitality of the
ta_t!_’(/)zn of X 227%(2/m)**my/3h and, similarly, & = TP (University of California, Santa Barbara) and use-
27022/ 7)Y k. ful discussions with D. Heinzen. This research was

L ~N . . .
To minimize Ec, under the constraint of a fixel, is  sypported in part by the Australian Research Council,

a nontrivial algebraic procedure. However, the physics ignd by the National Science Foundation under Grant
considerably simplified in the region where the termVih  No. PHY94-07194.

is dominant—which we note should not involve too large
a contribution from the repulsive term that scales with
N3, and tends to destabilize soliton formation. In this
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