
Probing Three-Body Correlations in a Quantum Gas Using the Measurement of the Third
Moment of Density Fluctuations

J. Armijo,1 T. Jacqmin,1 K.V. Kheruntsyan,2 and I. Bouchoule1

1Laboratoire Charles Fabry, UMR 8501 du CNRS, Institut d’Optique, 91 127 Palaiseau Cedex, France
2ARC Centre of Excellence for Quantum-Atom Optics, School of Mathematics and Physics, University of Queensland,

Brisbane, Queensland 4072, Australia
(Received 20 July 2010; published 30 November 2010)

We perform measurements of the third moment of atom number fluctuations in small slices of a very

elongated weakly interacting degenerate Bose gas. We find a positive skewness of the atom number

distribution in the ideal gas regime and a reduced skewness compatible with zero in the quasicondensate

regime. For our parameters, the third moment is a thermodynamic quantity whose measurement

constitutes a sensitive test of the equation of state, and our results are in agreement with a modified

Yang-Yang thermodynamic prediction. Moreover, we show that the measured skewness reveals the

presence of true three-body correlations in the system.
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Measurements of higher-order correlations and the den-
sity fluctuations, in particular, are becoming an increas-
ingly important tool in the studies of ultracold quantum
gases. Such measurements are able to probe quantum
many-body states of interacting systems, often giving ac-
cess to key quantities that characterize the system. This is
particularly true for one-dimensional (1D) gases, where the
effects of fluctuations are enhanced compared to 3D sys-
tems and govern the rich underlying physics. Zero-distance
second- and third-order correlation functions have been
probed in several ultracold gas experiments by measuring
the rates of two- and three-body inelastic processes such as
photoassociation and three-body recombination [1–3].
Such measurements enabled the study of the strongly
correlated regime of ‘‘fermionization’’ in a 1D Bose gas.

An alternative experimental technique is the in situmea-
surement of atom number fluctuations in a small detection
volume, achievable through the analysis of noise in absorp-
tion images. The fluctuation variance (or second moment)
provides information about an integrated nonlocal density-
density correlation function. In addition, under adequate
experimental conditions, the variance can render as a ther-
modynamic quantity, and therefore such measurements
constitute a probe of the thermodynamic properties of
quantum gases [4–6], alternative to the analysis of density
profiles [7–9] or momentum distributions [10]. In situmea-
surements of atom number fluctuations in weakly interact-
ing quasi-1D Bose gases were used to probe the crossover
from the nearly ideal gas regime,where bosonic bunching is
present, to the quasicondensate regime, where the density
fluctuations are suppressed [4,6]. In fermionic systems,
sub-shot-noise atom number fluctuations were observed
in a degenerate Fermi gas [11,12]. Combining this with
the measurement of compressibility of the gas deduced
from the known density profile and confining potential,

such measurements have been shown to provide reliable
thermometry [11].
In this Letter we expand the arsenal of probes of higher-

order correlations in quantum gases by measuring the third
moment of atom number fluctuations. This is done using
in situ absorption imaging of an ultracold gas on an atom-
chip setup sketched in Fig. 1(a). We probe a weakly
interacting quasi-1D Bose gas. We have measured a posi-
tive third moment of the atom number distribution in a
degenerate gas within the ideal gas regime and within
the crossover towards a quasicondensate. In the quasicon-
densate regime the measured third moment is compatible
with zero. The third moment of the atom number distribu-
tion is linked to the third-order correlation function,
and our measurements demonstrate the presence of true
three-body correlations in the gas. Apart from this, we
show that the measured third moment is related to a
thermodynamic relation that involves a second-order

FIG. 1 (color online). (a) Scheme of the imaging setup. The
probe laser crosses the atomic cloud (red dot) before its reflec-
tion from the chip surface and detection on a CCD camera.
(b) Typical in situ absorption image; the scale on the color bar
shows the optical density. The pixel size in the object plane is
� ¼ 4:5 �m. (c) Typical longitudinal density profile (solid
curve), together with the mean profile (dashed red curve).
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derivative, and therefore the technique can be used as a
sensitive probe of the thermodynamics of a quantum gas.

Our quasi-1D Bose gases are produced using 87Rb atoms
in the hyperfine state jF ¼ 2; m ¼ 2i. A very elongated
Ioffe magnetic trap with a longitudinal oscillation fre-
quency ranging from 5.0 to 8 Hz and a transverse oscil-
lation frequency !?=2� ranging from 3 to 4 kHz is
realized using on-chip microwires and an external homo-
geneous magnetic field. Using rf evaporation, we produce
ultracold clouds at temperatures from T ¼ 20 to 500 nK.
The longitudinal rms size L of the cloud ranges from �50
to �100 �m. Under these conditions such gases explore
the crossover from the ideal gas regime to the quasicon-
densate regime [4], and the underlying physics lies in the
1D regime or in the crossover from 1D to 3D [6].

In situ measurements of density fluctuations are per-
formed using absorption images such as the one shown
in Fig. 1(b). The details of our imaging and calibration
techniques are described in the supplementary material
[13]. As the transverse size of the trapped cloud
(< 500 nm rms) is much smaller than the pixel size
(4:5 �m), the only information in the transverse direction
is the diffractional and motional blur on the image. By
summing the atom number over transverse pixels, we
reduce the notion of a pixel to a segment of length � and
derive from each image the longitudinal density profile
[Fig. 1(c)]. We perform a statistical analysis of hundreds
of images taken under the same experimental conditions
[4,6]. For each profile and pixel we extract �N ¼ N � hNi,
where hNi is given by the average density profile. To
remove the effect of shot-to-shot variations in the total
atom number Ntot, the profiles are ordered according to
Ntot and we use a running average of about 20 profiles. As
will be explained below, the longitudinal confining poten-
tial is irrelevant and each �N is binned according to the
corresponding mean atom number in the pixel hNi. For
each bin, we compute the second and third moment of atom
number fluctuations, h�N2i and h�N3i. The contribution of
the optical shot noise to these quantities is subtracted,
although it is negligible for h�N3i.

The measured third moment of the atom number fluctua-
tions, h�N3im, is plotted in Fig. 2 for two different tempera-
tures. For the higher temperature [Fig. 2(a)], we observe a
positive value of h�N3im that increases with hNi. At a
smaller temperature [Fig. 2(b)], h�N3im initially grows
with hNi and reaches a maximum, before taking a value
compatible with zero at large hNi. The corresponding sec-
ond moments or variances h�N2im are shown in the insets.
A finite third moment indicates an asymmetry of the atom
number distribution, which is usually quantified by the

skewness sm ¼ h�N3im=h�N2i3=2m , shown in Figs. 2(c) and 2
(d). Before discussing the physics behind these results, we
first describe how the measured moments h�N3im and
h�N2im are related to the true moments h�N3i and h�N2i.

The measurements of atom number fluctuations are
affected by the finite spatial resolution due to both the

optical resolution and the diffusion of atoms during the
optical pulse, which cause the absorption signal from each
atom to spread over several pixels and blur the image.
Denoting by A the impulse response function of the
imaging system, the impulse response for the pixel ½0;��
is F ðz0Þ ¼

R
�
0 dzAðz� z0Þ, and the measured atom

number fluctuation in the pixel is given by �Nm ¼Rþ1
�1 dz0F ðz0Þ�nðz0Þ, where �nðz0Þ is the local density

fluctuation. For the parameters explored in this Letter,
the expected correlation length lc of density fluctuations
[14] is smaller than 0:5 �m. This is sufficiently smaller
than the width ofA so that we can assume that the density
fluctuations have zero range. Moreover, since the resolu-
tion and the pixel size are much smaller than the longitu-
dinal size of the cloud, we can assume that the gas is locally
homogeneous with respect to z. Then, the measured second
and third moments can be obtained as

h�N2im ¼ h�N2i
Z þ1

�1
dz0F ðz0Þ2=� ¼ �2h�N2i; (1)

h�N3im ¼ h�N3i
Z þ1

�1
dz0F ðz0Þ3=� ¼ �3h�N3i; (2)

where h�N2i and h�N3i are the respective true moments,
whereas �2 and �3 are the reduction factors. For low
enough linear densities, the gas lies in the nondegenerate
ideal gas regime. Then the fluctuations are almost that of a
Poissonian distribution, so that h�N2i ’ h�N3i ’ hNi, and
the reduction factors may be deduced from a linear fit
of the measured fluctuations versus hNi, where hNi is
experimentally determined absolutely. However, such a

FIG. 2. Measured third moment (open circles) of the atom
number fluctuations versus the mean atom number per pixel,
for temperatures of 376 nK (a) and 96 nK (b). The insets show
the corresponding atom number variances. The error bars are the
statistical errors. Graphs (c) and (d) show the skewness sm
corresponding to (a) and (b), respectively. The theoretical pre-
dictions, scaled by �2 ¼ 0:55 and �3 ¼ 0:34 for (a) and (c), and
by �2 ¼ 0:52 and �3 ¼ 0:31 for (b) and (d), are shown for
comparison: solid lines, the modified Yang-Yang prediction;
dashed lines, the ideal Bose-gas prediction; dash-dotted lines
on (b) and (d), the quasicondensate prediction; dotted lines, the
shot-noise limit hNi.
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deduction is difficult in very cold clouds where only a few
pixels lie in the nondegenerate ideal gas regime.

We thus develop an alternative method that uses the
measurement of the atom number correlation

Ci;iþj ¼
h�Ni�Niþjim

h�N2
i im

¼
Rþ1
�1 dz0F ðz0ÞF ðz0 � j�Þ

Rþ1
�1 dz0F ðz0Þ2

(3)

between the pixel i and the adjacent (j ¼ 1) or the next-
neighbor (j ¼ 2) pixels. Such correlation arises due to the
contribution of an atom to the absorption in both pixels.
Making a Gaussian ansatz for the impulse response func-
tionA, the rms width ofA can obtained by fitting Eq. (3)
to the measured correlations Ci;iþ1 [13]. The reduction

factors �2;3 can then be deduced from Eqs. (1) and (2),

resulting typically in �3 ’ 0:3 and �2 ’ 0:5 for our data.
The result is in good agreement with the slope of h�N2im at
small hNi [see the inset of Fig. 2(a)].

Turning to the discussion of the physics behind our
experimental results, we first point out that the third
moment of atom number fluctuations is actually a thermo-
dynamic quantity when, as in our experiment, the pixel size
is both much larger than the characteristic correlation
length of density fluctuations lc and much smaller than
the cloud length L, lc � � � L. Then a local density
approximation is valid and the gas contained in a pixel
can be well described by a grand-canonical ensemble, in
which the rest of the cloud is acting as a reservoir that fixes
the chemical potential � and the temperature T. Denoting
by Z the grand-canonical partition function, we have
hNi ¼ ðkBT=ZÞ@Z=@�, hN2i ¼ ðk2BT2=ZÞ@2Z=@�2, and
hN3i ¼ ðk3BT3=ZÞ@3Z=@�3. From the first two equations,
we obtain the well-known thermodynamics relation
h�N2i ¼ kBT@hNi=@�, whereas the three equations give

h�N3i ¼ ðkBTÞ2@2hNi=@�2; (4)

where hNi ¼ n� and n is the linear density of a gas
homogeneous along z. Thus, the knowledge of the equation
of state (EOS) n ¼ nð�; TÞ is sufficient to predict the third
moment of the atom number distribution. Note that a more
traditional form of the EOS for pressure P can be readily
deduced from nð�; TÞ using the Gibbs-Duhem relation,
n ¼ ð@P=@�ÞT , leading to P ¼ R�

�1 nð�0; TÞd�0.
We now compare our measurements with the predictions

from different models for the EOS nð�; TÞ. The tempera-
ture of the cloud for the case of Fig. 2(a) is deduced from
an ideal Bose gas fit to the wings of the density profile [6].
For the data of Fig. 2(b), corresponding to the quasicon-
densate regime, such wings are vanishingly small and hard
to detect. In this case we deduce the temperature [6] from
the measurement of density fluctuations in the cloud center
using the thermodynamic relation h�N2i ¼ k2BT

2@hNi=@�
and the EOS of a quasicondensate (see below).

The predictions from the equation of state for an ideal
Bose gas are shown by the dashed lines in Fig. 2. For a
highly nondegenerate (or classical) gas, corresponding to
small hNi, this model predicts h�N3i ’ h�N2i ’ hNi as

expected for a gas of uncorrelated particles. When the
gas becomes degenerate with the increase of hNi, the
contribution of the quantum-statistical exchange interac-
tion term to h�N3i is no longer negligible, and h�N3i
becomes larger than the shot-noise term hNi. Such an
increase is observed in the experimental data in Fig. 2(a).
However, the ideal Bose-gas model strongly overestimates
the third moment with further increase of hNi and we
eventually observe large discrepancy between the predic-
tions of this model and the experimental data. The discrep-
ancy is due to the repulsive interactions between the atoms,
which reduce the energetically costly density fluctuations.
Describing the effects of atomic interactions beyond the

perturbative regime is a challenging theoretical problem.
However, a 1D Bose gas with contact repulsive interactions
is particular since the model is exactly solvable, in the
entire parameter space, using the Yang-Yang thermody-
namic formalism [15]. For the temperatures corresponding
to Figs. 2(a) and 2(b), the ratios of kBT=@!? are 2.6 and
0.50, respectively, implying that the population of the
transverse excited states is not negligible. Accordingly,
we use a modified Yang-Yang model [7], in which the
transverse ground state is described within the exact
Yang-Yang theory [16], whereas the transverse excited
states are treated as ideal 1D Bose gases. This model has
been shown to be valid for our parameters until the quasi-
condensate regime is reached [6]. The corresponding pre-
dictions are plotted in Fig. 2 and agree with the measured
h�N3i very well.
In the quasicondensate regime [corresponding to

hNi * 70 in Fig. 2(b)], where the density fluctuations are
suppressed [17,18], the EOS can be obtained numerically
from the 3D Gross-Pitaevskii equation and is well de-

scribed by the heuristic function �¼@!?ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4na

p �1Þ
[19]. In contrast to the modified Yang-Yang model, this
EOS accounts for the transverse swelling of the cloud due
to interatomic interactions and better describes the mea-
sured variance [see the inset of Fig. 2(b)]. The measured
third moment is compatible with this EOS.
To unveil the role of many-body correlations, which

underlie the measured density fluctuations while remaining
hidden in the thermodynamic analysis, we consider the 1D
two- and three-body (k ¼ 2; 3) correlation functions,

~g ðkÞðz1; . . . ; zkÞ ¼ h ~c yðz1Þ � � � ~c yðzkÞ ~c ðzkÞ � � � ~c ðz1Þi=nk;
where ~c ðzÞ ¼ R

dxdyc ðx; y; zÞ and c is the bosonic field
operator. Using standard commutation relations and the

expression hN2i¼ hNi2þhNiþn2
RR

dz1dz2½~gð2Þðz1;z2Þ�
1�, we find

h�N3i ¼ hNi þ n3
ZZZ

dz1dz2dz3½~gð3Þðz1; z2; z3Þ � 1�

� 3hNin2
ZZ

dz1dz2½~gð2Þðz1; z2Þ � 1�

þ 3n2
ZZ

dz1dz2½~gð2Þðz1; z2Þ � 1�; (5)
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where the integrals are in the interval ½0;��. As we see,
the third moment of atom number distribution depends on

both the ~gð3Þ and ~gð2Þ functions. Moreover, ~gð3Þ contains a
contribution from ~gð2Þ since, when one of the three particles
is far from the other two, ~gð3Þ reduces to ~gð2Þ. To remove
such contributions, we introduce the h function

hðz1; z2; z3Þ ¼ 2þ ~gð3Þðz1; z2; z3Þ � ½~gð2Þðz1; z2Þ
þ ~gð2Þðz2; z3Þ þ ~gð2Þðz1; z3Þ�; (6)

which is nonzero only for all zi being in the vicinity of each
other. Such a decomposition has been previously used
in the description of weakly correlated plasmas [20],
with the approximation h ’ 0 being used to truncate the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.

Using the h function, Eq. (5) can be rewritten as

h�N3i ¼ hNi þ 3n2
ZZ

dz1dz2½~gð2Þðz1; z2Þ � 1�

þ n3
ZZZ

dz1dz2dz3hðz1; z2; z3Þ: (7)

Here, the first two terms represent one- and two-body
effects, with the second term being equal to 3h�N2i �
3hNi. The contribution of true three-body correlations to
h�N3i comes from the three-body integral

H ¼ h�N3i þ 2hNi � 3h�N2i
¼ n3

ZZZ
dz1dz2dz3hðz1; z2; z3Þ: (8)

In Fig. 3, we plot the measured value of H . More
precisely, taking into account the reduction factors �2

and �3, we plot H ¼h�N3im=�3þ2hNi�3h�N2im=�2.
We observe nonzero values of H , which is a signature
of the presence of true three-body correlations in the
gas: H is positive within the ideal gas regime and in
the crossover region towards the quasicondensate [see
Fig. 3(a)], whereas it is negative in the quasicondensate
regime [Fig. 3(b)]. The results are in agreement with the

thermodynamic predictions of the modified Yang-Yang
and the quasicondensate models.
In summary, we have measured the third moment of

density fluctuations in an ultracold quantum gas. This
quantity reveals the presence of true three-body correla-
tions in the system. Moreover, for sufficiently large pixels,
such measurements constitute a very sensitive probe of the
thermodynamics of the gas. As the third moment is related
to the second-order derivative of nð�; TÞ, the method lends
itself as a high-precision tool for discriminating between
alternative theoretical models and can be applied to a broad
class of ultracold atom systems. For example, intriguing
opportunities are in the understanding of the role of higher-
order correlations in thermalization of isolated quantum
systems [21] and in the study of thermodynamics of more
exotic many-body systems where three-body effects, such
as Efimov resonances [22], may lead to different signatures
in the second- and third-order correlations.
This work was supported by the IFRAF Institute, the
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A probe laser beam, locked onto the D2 transition at
the wavelength λ = 780 nm, is reflected from the chip
surface (covered by a gold mirror) after passing through
the atomic cloud. The shadow image of the atomic cloud
is then recorded on a CCD camera, with quantum effi-
ciency larger than 90%. The diffraction-limited optical
resolution has an rms width of 1.0 µm. Great care has
to be taken in absorption imaging to allow for a reliable
measurement of the atom number in each pixel.

We have chosen a configuration that maximizes the ab-
sorption efficiency. To achieve this, we focus the probe
beam onto the chip surface using a cylindrical lens as de-
picted in Fig. 1 (a) of the main text. The 1/e2 size of
the beam in the focused direction x is 50 µm, which is
smaller than the distance of the atomic cloud from the
chip surface so that the beam crosses the atomic cloud
only on its way to the chip and not after its reflection.
Images as in Fig. 1 (a)-(c) are taken after switching off
the wire currents so that only the external homogeneous
magnetic field, whose orientation is close to the y direc-
tion [see Fig. 1 (a) of the main text for the axis defini-
tion], remains switched on. With this geometry, using
a σ+-polarized probe beam we address only the closed
transition |F = 2,m = 2〉 → |F ′ = 3,m′ = 3〉, and the
absorption cross-section at low intensity takes its maxi-
mum value σ0 = 3λ2/2π.

The absorption is measured by taking two pictures,
the first one with the atomic cloud present and the sec-
ond one without the atoms. The atom number in a
given pixel Np is estimated from the Beer-Lambert law
Np = ln(N2/N1)∆

2/σ, where N1 and N2 are the photon
numbers in the pixel on the first and second image, re-
spectively, and σ is the atomic absorption cross-section.
With the transverse size of the cloud being smaller than
the pixel size, no information is available in the transverse
direction, and the number of atoms NBL in an effective
pixel of size ∆ can be obtained by summing Np over of
the transverse pixels. However, as the use of a resonant
probe at high atomic densities produces high optical den-
sities (up to 1.5) this naive procedure fails to correctly
estimate the true atom number N in the pixel. Firstly,
when the transverse extension of the cloud is smaller than

(c)

(a)

(b)

0.69-0.077

-0.062 0.24

0.61-0.054

FIG. 1: (Color online) Typical absorption images used for cal-
ibration and the analysis of density fluctuations: (a) – taken
with a nearly resonant probe, after a small time of flight of
0.5 ms [same as Fig. 1 (b) of the main text, except with a
larger field of view]; (b) – taken with a probe detuned by
5 MHz and a time of flight of 1.5 ms; (d) – taken with a
resonant probe and a time of flight of 2.2 ms to measure the
total atom number. The scales on the colorbars correspond
to optical densities.

both the pixel size and the optical resolution, the Beer-
Lambert law underestimates the true atom number due
to the concavity of the logarithm function, as already
pointed out in [1]. Moreover, the validity of the Beer-
Lambert law is questionable for high atomic densities due
to nontrivial reabsorption effects that may arise [2]. In or-
der to reduce these effects, without decreasing too much
the absorption, we use a near resonant probe and enable
the cloud to spread transversally during a small time of
flight of about 0.5 ms – sufficient to reduce the effects
of high atomic densities, but small enough so that the
atom number fluctuations in a pixel are barely affected.
The measured atom number NBL, however, still deviates
from the true atom number N and we introduce a func-
tion f defined as N = f(NBL) to describe the deviation
from linearity at high optical densities.

The function f is deduced from the comparison, in
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FIG. 2: Experimental determination of the correction to the
Beer-Lambert law. The solid curve is a fit to the experimen-
tal data with a third-order polynomial, the straight dashed
line being the linear contribution. NBL is obtained by using
the Beer-Lambert law and summing over transverse pixels in
images taken with a nearly resonant probe and a small time
of flight of 0.5 ms [see Fig. 1 (a)]. N is obtained from images
taken with a probe detuned by 5 MHz and a time of flight
of 1.5 ms, for which the Beer-Lambert law is adequate [see
Fig. 1 (b)].

each effective pixel, of the measured NBL with the cor-
rect atom number N . The latter itself is measured as fol-
lows. First, the correct profile is obtained using images
[such as that shown in Fig. 1 (b)] taken with a detuning
of about 5 MHz that reduces the absorption cross-section
and a time of flight of ∼1.5 ms that permits a transverse
expansion of the cloud. We checked experimentally that
these parameters ensure the validity of the Beer-Lambert
law, while the expansion is small enough as to retain the
longitudinal profile essentially unaffected. Second, the
absolute normalization of the atomic density profile (or,
equivalently, a measure of the absorption cross-section
σ), is deduced form the knowledge of the total atom num-
ber. The latter is measured using a resonant probe with a
time of flight of ∼2.5 ms, as in Fig. 1 (c). With such time
of flight, the cloud transverse expansion is sufficiently
large and the atomic density is small enough as to render
the Beer-Lambert law applicable. Atomic saturation is
taken into account via the formula σ = σ0(1 + I/Isat),
where I is the intensity of the probe beam and Isat is the
saturation intensity. A fit of the measured absorption
versus I gives Isat = 1.4(1) mW/cm2, which is close to
the reported value of 1.62 mW/cm2 [3]. The remaining
discrepancy could be because of possible underestimation
of the intensity of the probe beam seen by the atoms due
to the losses during the reflection of the beam from the
gold mirror and during the transmission through the op-
tical lenses. Finally, the function f is estimated by fitting
the experimental points N versus NBL with a third-order
polynomial, as shown in Fig. 2.

All these calibrations are performed using values aver-
aged over tens of experimental realizations. The images
used for the analysis of fluctuations [as in Fig. 1 (a)] and
those used for calibration [as in Figs. 1 (b) and (c)] are

taken in an alternated way – typically one picture of type
(b) and then (c) after every 15 images of type (a) – to
eliminate the dependence on noise arising from long-time
magnetic field and thermal drifts.

The normalization procedure described above, while
compensating for the effect of the small transverse size
of the atomic cloud, does not compensate for a possible
error induced by short-scale longitudinal density fluctua-
tions. However, in our experimental situation, those fluc-
tuations are smeared out by the atomic diffusion during
the probe pulse and are small.
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FIG. 3: Correlation of atom number fluctuations between ad-
jacent (open squares) and next-neighbor (crosses) pixels. The
solid lines are the predictions for an impulse response function
with an rms width of 2.0 µm, obtained by fitting Ci,i+1.

The precise calibration of the atom number measure-
ment described above is not sufficient for the analysis
of atom number fluctuations. Indeed, the fluctuations
are affected by a finite spatial resolution due to both
the optical resolution and the diffusion of atoms during
the optical pulse, which cause the absorption signal from
each atom to spread over several pixels and blur the im-
age (see main text). The finite spatial resolution is also
responsible for a nonvanishing correlation between the
atom numbers measured in nearby pixels. In fact, we
make use of this correlation for experimental determina-
tion of the spatial resolution of our imaging system. In
Fig. 3 we show the experimental data for the correlation
coefficients Ci,i+j [see Eq. (3) of the main text], corre-
sponding to the atom number fluctuations in the adjacent
(j = 1) and next-neighboring (j = 2) pixels, for the ex-
perimental data of Fig. 2 (c) of the main text. Fitting
these correlation coefficients, we extract the rms width
δ of the impulse response function A and we find that
δ = 2.0 µm for this data set.
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