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Magnus Ögren, Karén Kheruntsyan and Joel F. Corney∗

ARC Centre of Excellence for Quantum-Atom Optics,
School of Mathematics and Physics, The University of Queensland,

Brisbane, Queensland 4072, Australia

We review phase-space simulation techniques for fermions, showing how a Gaus-
sian operator basis leads to exact calculations of the evolution of a many-body
quantum system in both real and imaginary time. We give particular application
to the Hubbard model and to the problem of molecular dissociation of bosonic
molecules into pairs of fermionic atoms.

1.1. Introduction

Phase-space representations first arose from the attempt to describe quantum me-
chanics in terms of distributions over classical variables [1]. For example, Wigner
introduced a function of phase-space variables W(x, p) that would classically cor-
respond to a joint-probability distribution: an integration over x gives the marginal
distribution for p and vice-versa. However in quantum mechanics, such a func-
tion is not guaranteed to be positive; Wigner interpreted this feature as a quantum
correction to classical statistical mechanics [2].

Besides providing insight into the quantum-classical correspondence, phase-
space distributions lead to powerful calculation tools. Where they can be inter-
preted as true probability distributions, the phase-space functions can be sampled
with stochastic trajectories, leading to efficient calculations of quantum dynamics
or equilibrium states (see also Chapters ??, ??, ??, ?? ??).
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For bosonic systems, the well-known phase-space distributions — the Wigner,
Husimi Q [3] and the Glauber-Sudarshan P functions [4, 5] — are based on coher-
ent state expansions. So too are the related simulation techniques — the truncated
Wigner method [6], and the exact +P [7, 8] method — which have been widely
used in quantum optics and ultracold atoms. For fermionic systems, coherent
states do not play the same physical role. Although phase-space distributions us-
ing fermionic coherent states can be defined formally [9], they involve the use
of anticommuting Grassmann numbers and do not have the same computational
utility.

The underlying issue is that the superposition of a state containing an odd
number of fermions with a state containing an even number of fermions is un-
physical, due to the different transformation properties of states with integral and
half-integral spin [10]. This superselection rule means that fermions can only be
created in pairs. A much simpler, and yet complete, representation can there-
fore be achieved with a basis that involves superpositions of even numbers of
fermions. Such a representation for bosons was developed earlier using squeezed
states [11, 12]. Here we use a generalised Gaussian representation, which incor-
porates squeezed and thermal states for fermions into its basis.

The formalism and applications we present here are directed towards exact
simulations of quantum evolution, for which we require a positive phase-space
distribution that obeys a Fokker–Planck equation. This can be achieved with a
basis that includes operators that do not just correspond to physical density ma-
trices. Thus the distributions are defined over a domain of which only a subspace
can be identified with the physical phase space (see also Chapter ??). This feature
means that whereas individual stochastic trajectories cannot be identified with a
particular physical history, the ensemble average does give the exact evolution of
the quantum state. However, the restriction to a physical phase space or restric-
tions on the form of the distribution function [13] may lead to useful approximate
methods.

1.2. Methodology

Most generally, a phase-space distribution is defined through an expansion of the
density operator ρ̂ over some (overcomplete) set of operators Λ̂:

ρ̂ ≡
∑

l

Pl |Ψ⟩ ⟨Ψ| =
∫

P(α)Λ̂(α)dα, (1.1)

where α is the phase-space coordinate. By use of different sets of operators, differ-
ent phase-space distributions can be constructed for the same quantum state. Any
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observable quantity, which in quantum mechanics equates to the expectation value
of an operator, can then be written as a moment of the phase-space distribution:

⟨Â⟩ ≡ Tr
[
Âρ̂

]
=

∫
P(α)A(α)dα, (1.2)

where A(α) ≡ Tr[ÂΛ̂(α)] is the phase-space function corresponding to the observ-
able.

To achieve a phase-space representation for fermions without using coherent
states, we expand the density operator over a set of Gaussian operators. Mathe-
matically, a Gaussian operator is an exponential of a quadratic form of annihilation
and creation operators (see [14] for an explicit formation) and is characterised by
its first-order moments:

Tr
[
ĉ jĉkΛ̂

]
= Ωm jk, Tr

[
ĉ†j ĉkΛ̂

]
= Ωn jk,

Tr
[
ĉkĉ†jΛ̂

]
= Ωn̄ jk, Tr

[
ĉ†j ĉ
†
kΛ̂

]
= Ωm+jk.

(1.3)

where n̄ jk ≡ δ jk − n jk. Here Ω = Tr[Λ̂] is a weighting factor, which is always
positive for the applications given here. Higher-order, normally ordered corre-
lations correspond to sums of products of these variables, according to a Wick
factorisation.

In particular cases (where Ω = 1, m+jk = m∗k j, n jk = n∗k j and 0 ≤ n j j ≤ 1), the
Gaussian operators are genuine density operators corresponding to certain physi-
cal states, such as squeezed and thermal states. In general, however, the operators
are non-Hermitian, so that a positive distribution governed by a Fokker–Planck
equation can always be obtained.

When used as a basis for a phase-space representation, the Gaussian operators
map the evolution of ρ̂ onto an ensemble of stochastic trajectories in the space
of {Ω,m jk,m+jk, n jk}. As indicated by Eq. (1.2), any expectation value can be cal-
culated as the stochastic average of its corresponding phase-space function, for
example, ⟨ĉ†j ĉk⟩Quantum = ⟨n jk⟩Stochastic, and⟨

ĉ†j ĉ
†
k ĉkĉ j

⟩
Quantum

=
⟨
m+jkmk j + n j jnkk − n jknk j

⟩
Stochastic

. (1.4)

In general, one is interested in solving the equation dρ̂/dτ = L[ρ̂], where L
is a linear operator that gives either the Schrödinger picture time-evolution of the
density operator, or the β-derivative of the grand-canonical ensemble density op-
erator (in which case τ is the inverse temperature β = 1/kBT ). When these linear
operators act on the elements of the basis Λ̂ (as when the expansion Eq. (1.1)
is used), they can be written in terms of derivatives with respect to phase-space
variables [15]. By integrating by parts to transfer the derivatives onto P and as-
suming that boundary terms vanish, one obtains a Fokker–Planck equation that
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can be sampled with stochastic trajectories, through the integration of an equiva-
lent set of stochastic differential equations (SDEs). As applied to imaginary-time
evolution, the approach is sometimes known as Gaussian Quantum Monte Carlo
(GMC) or Gaussian-basis QMC.

Due to the overcompleteness of the Gaussian operators, the mapping to the
distribution P is far from unique. This nonuniqueness allows a choice of possible
stochastic realisations of the same quantum evolution. For quantum dynamics,
for example, it allows the final stochastic equations to be tailored to reduce the
fluctuations or improve the stability, and to thereby extend the useful simulation
time [16]. For imaginary-time calculations, this choice allows the mapping to
stable real equations with positive weights, enabling simulations down to very
low temperatures [17].

1.2.1. Imaginary-Time Simulations: Hubbard Model

As an example we consider the 2d Hubbard model, which is a very simple model
of strongly correlated electrons on a lattice [18], and which is believed to be rele-
vant to cuprate high-temperature superconductors [19] (see also Chapters ??, ??,
??, which consider the Bose–Hubbard model). The Hamiltonian reads

ĤH − µN̂ = −J
∑
⟨ j,k⟩,σ

(
n̂ jkσ + H.c.

)
+ U

∑
j

n̂ j↑n̂ j↓ − µ
∑
j,σ

n̂ jσ, (1.5)

with n̂ jkσ = ĉ†jσĉkσ, where ĉ†jσ (ĉ jσ) creates (annihilates) an electron with spin σ at
the lattice site j. The parameter J is the hopping amplitude between nearest neigh-
boring sites ⟨ j, k⟩ on a square lattice, U is the on-site Coulomb interaction strength,
and µ is the chemical potential to control the electron density. The generalisation
to include, for example, an inhomogeneous trapping potential is straightforward.

To obtain a positive-definite diffusion matrix, we rewrite the interaction term
in the Hamiltonian as

U
∑

j

n̂ j↑n̂ j↓ = −
|U |
2

∑
j

(
n j↑ − sn j↓

)2
+
|U |
2

∑
j

(
n j↑ + n j↓

)
, (1.6)

where s = sign(U) [14]. Applying the operator mappings from [14] leads to the
following real Stratonovich SDEs in matrix form:

dnσ
dβ
=

1
2

(
n̄σT(1)

σ nσ + nσT(2)
σ n̄σ

)
, (1.7)

T (l)
jkσ = Jδ⟨ j,k⟩ + δ jk

[
|U |

(
n j jσ − sn j j−σ −

1
2

)
+ µ +

(
δσ↑ − sδσ↓

)
ξ(l)j

]
, (1.8)
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with n̄σ = I − nσ, and ξ(l)j (β) real Gaussian noise defined by the correlations

⟨ξ(l)j (β′)ξ(l
′)

j′ (β)⟩ = 2|U |δ(β − β′)δ j j′δll′ . (1.9)

As initial condition for the phase-space variables one chooses n jkσ = δ jk/2, which
represents the infinite-temperature density matrix. The initial weight of a trajec-
tory can be chosen arbitrarily, and it evolves as

dΩ(β)
dβ

= −ΩH(n), (1.10)

with H(n) being the Hamiltonian where operators have been replaced by their
corresponding phase-space variables. Since all phase-space variables are real, the
weight of a trajectory remains strictly positive. This enables an efficient Monte
Carlo sampling without a sign problem by use of an appropriate importance sam-
pling scheme, such as the Metropolis–Hastings algorithm [20] or a reconfiguration
scheme of the trajectories as used in Green’s function Monte Carlo [21].

1.2.1.1. Symmetry Projection

In [22] it was observed that in some cases GMC fails to reproduce all symme-
tries of the Hamiltonian at low temperatures, which also results in a systematic
deviation of the energy with respect to the true ground state energy. In the exam-
ple of the Hubbard model, the SU(2) spin rotation symmetry of the Hamiltonian
is broken at very low temperatures, so that the low-temperature density matrix ρ̂
has non-vanishing overlaps with the S > 0 spin sectors. These symmetries can be
restored a posteriori by projecting ρ̂ onto the symmetry sector of the ground-state,

ρ̂Pr = P̂ρ̂P̂†, (1.11)

where P̂ is the corresponding projection operator. Its form is given by group
theory:

P̂α =
lα∑

g

∑
g

χα(g)†T̂ (g), (1.12)

where the suma goes over all elements g of the discreteb symmetry group G, and
T̂ (g) is the unitary operator corresponding to the group element g. lα is the di-
mension of the αth irreducible representation Dα of G with character χα(g), i.e.
α selects the symmetry sector which the density matrix is projected onto. The
operator T̂ (g) maps the phase-space variables (Ω,n) onto new variables (Ω̃, ñ),
aThe sum in the denominator over all group elements yields the number of elements in the group.
bIn the case of a continuous symmetry the sum

∑
g is replaced by an integral.
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as explained in detail in [22]. Several projection operators can be combined, de-
pending on the number of symmetries of the Hamiltonian, e.g. projection onto
a specific total momentum sector (translational invariance), spin S = 0 [SU(2)
symmetry], or particle number [U(1) symmetry].

1.2.2. Real-Time Dynamics

The application of the Gaussian method to real-time evolution gives the fermionic
equivalent of the +P method for bosons, which yields exact quantum dynamics
for short times.

To show how the method works for systems with two-body interactions, we
again focus on the fermionic Hubbard model [Eq. (1.5)], but with the possibility
of an inhomogeneous trapping potential Vjσ. To succinctly represent the ‘mean
field,’ or deterministic part of the resulting phase-space equations, we introduce
matrices Aσ with components

A jkσ = −Jδ⟨ j,k⟩ + δ jk

(
Un j j,−σ + V jσ

)
. (1.13)

The Itō SDEs can then be written

ṅ↑ = − i
(
n↑A↑ − A↑n↑

)
+
√
−iUn↑ζ(1)n̄↑ +

√
iUn̄↑ζ(2)n↑,

ṅ↓ = − i
(
n↓A↓ − A↓n↓

)
+
√
−iUn↓ζ(1)∗n̄↓ +

√
iUn̄↓ζ(2)∗n↓,

(1.14)

where again n̄σ = I−nσ, and where ζ(l) (l = 1, 2) are diagonal matrices of complex
Gaussian noises, with correlations

⟨ζ(l)
j j (t)ζ(l′)∗

j′ j′ (t′)⟩ = δ(t − t′)δ j j′δll′ . (1.15)

Neglecting the stochastic terms in Eq. (1.14) gives rise to the time-dependent
Hartree–Fock approximation [13]. The noise terms thus give the quantum cor-
rections to the mean-field approach.

Simulations of Eq. (1.14) for few-site systems show excellent agreement with
the exact matrix calculations. Extension up to several hundred sites is numerically
tractable. The practical weakness of the method so far is a limited simulation time
in the case of strong interaction.

1.3. Applications

1.3.1. Application I: Ground-State of the Hubbard Model

The GMC method with and without symmetry projection was systematically
tested in [22] for the 2d Hubbard model up to a lattice size 6 × 6, and in [23]
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for Hubbard ladders up to a size 16×2, for different interaction strengths U/J and
electron density. In the following we summarise the most important results.

For weakly interacting electrons, U/J ≤ 4, GMC correctly reproduces quanti-
ties of interest, e.g. energies and correlation functions. Note that the magnitude of
U enters as a prefactor in the diffusion term. Thus, if the diffusion term is small
compared to the drift term, then GMC reproduces the exact results accurately. For
larger interaction strengths, the GMC solution exhibits systematic errors in vari-
ous quantities, and some of the symmetries in the Hamiltonian are broken. Using
the projection technique the results can be improved considerably, as for example
shown in Fig. 1.1. However, for strong interaction U/J > 8 (and systems with
more than ≈ 30 sites), errors remain also after symmetry projection. One observes
also that with increasing U/J and system size, the overlap of the simulated ρ̂ with
the ground state sector diminishes, i.e. it becomes more difficult to extract the
ground state solution from ρ̂. Thus, the projection scheme works well in the case
where ρ̂ has a large overlap with the true ground state with only a small admixture
of excited states, which can be filtered out by the projection.
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Fig. 1.1. Ground state energy in units of J of the half-filled 4×2 Hubbard ladder as a function of U/J.
The inset shows the relative deviation with respect to the reference values, obtained by the density-
matrix renormalisation group method (DMRG — see also Chapters ??, ??). Symmetry projection
corrects the systematic deviations in the energy from the GMC simulation.

A variant of the symmetry projection scheme was proposed in [24], where the
projection is included in the importance sampling. Instead of sampling trajecto-
ries according to their weight Ω, they are sampled with respect to their projected
weights Ω̃, which leads to a better convergence towards the ground state. One
problem is that the projected weights can become negative (i.e. there is a sign
problem), but this turns out to be tractable in most cases. This so-called pre-
projection method was used to study pairing correlations in the doped 2d Hubbard



September 3, 2011 11:27 World Scientific Review Volume - 9in x 6in corney˙checked˙revised˙KK
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model up to a system size of 10 × 10 and U/t = 7. The analysis suggests that the
pairing correlations are too weak to account for the superconductivity in the high-
temperature cuprate superconductors (for dopings around δ ∼ 0.2), in contrast to
the findings by some other methods (see e.g. [25–27]).

1.3.2. Application II: Dynamics of Molecular Dissociation

To date the real-time Gaussian phase-space method has mainly been applied to
the problem of bosonic dimer molecules dissociating into pairs of free fermionic
atoms of different spin [28] (see also Chapter ??, which considers molecule for-
mation from bosonic atoms). The stochastic simulations reveal physics about the
growth of correlations functions that cannot be obtained with the corresponding
mean-field theory [29].

The Hamiltonian of this boson-fermion model [30] is

Ĥ = ℏ
∑
k,σ

∆kn̂k,σ − iℏκ
∑
k,k′

(
â†k′m̂k,k′−k − m̂†k,k′−kâk′

)
, (1.16)

where k labels the plane-wave modes and σ = 1, 2 labels the effective spin state
for the atoms. The fermionic number and pair operators in momentum space are
defined as n̂k,σ = ĉ†k,σĉk,σ and m̂k,k′ = ĉk,1ĉk′,2, respectively, with {ĉk,σ, ĉ

†
k′,σ′ } =

δk,k′δσ,σ′ (while [âk, â
†
k′] = δk,k′ ). The strength of the atom-molecule coupling is

determined by the parameter κ [29]. Note that because of the pairing terms in the
Hamiltonian, we must now use a Gaussian basis with nonvanishing anomalous
correlations mk,k′ . However, the description is simplified in the case of a uniform
molecular gas, for which k′ ≡ 0. The necessary (complex) phase-space variables
are then nk ≡ nk,σ, mk ≡ mk,−k, m+k ≡ m+−k,k for the fermions and the coherent
amplitudes α, α+ for the bosons. Note that the use of a non-Hermitian basis leads
to m+k , m∗k and α+ , α∗.

The non-uniqueness of the phase-space mapping can be exploited to give
stochastic equations with different numerical properties. One specific set of Itō
stochastic differential equations is

ṅk =αm+k + α
+mk + N−1/2

0 nk
(
mkζ

∗
1 + m+kζ

∗
2
)
,

ṁk = − 2iδkmk + α (1 − 2nk) + N−1/2
0

(
m2

kζ
∗
1 − n2

kζ
∗
2

)
,

ṁ+k =2iδkm+k + α
+ (1 − 2nk) + N−1/2

0

(
m+2

k ζ
∗
2 − n2

kζ
∗
1

)
,

α̇ = − 1
N0

∑
k

mk + N−1/2
0 ζ1,

α̇+ = − 1
N0

∑
k

m+k + N−1/2
0 ζ2.

(1.17)
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We here use a time scaled with t0 = 1/κ
√

N0 and have normalised the molecular
field to its maximum value possible

√
N0, where N0 ≡

∑
k â†â+

∑
kσ n̂k,σ. It is then

clear how the noise terms scale with the total number of particles. The stochastic
complex Gaussian noises ζ j ( j = 1, 2) obey ⟨ζ j(τ)ζ j′ (τ′)⟩ = 0, ⟨ζ j(τ)ζ∗j′ (τ

′)⟩ =
δ j j′δ(τ − τ′). In practice we convert the equations to Stratonovich form [31] and
integrate them with a semi-implicit method.

1.3.2.1. Optimisation by Means of Gauges

The freedom in choosing the stochastic equations for a given Hamiltonian is in
practice inexhaustible. For example, one could make the replacements ζ j → ζ̃ j =

ζ jc j, ζ∗j → ζ̃∗j = ζ∗j /c j. The complex parameters c j are knobs one can adjust to
improve the numerical performance. This is an example of a simple ‘diffusion’
gauge that can increase the simulation time of Eq. (1.17) by up to 50%.

For the Hubbard model of Eq. (1.5) it is possible to rewrite the interaction term
as b̂†↑b̂↑b̂

†
↓b̂↓ = −b̂†↑b̂

†
↓b̂↑b̂↓ ≡ m̂†m̂, which allows the use of a different set of map-

pings and subsequently an expanded set of phase-space variables: {n↑, n↓,m,m+}.
Although as yet untested, the inclusion of anomalous variables may allow for a
more efficient representation when pairing effects are important.

1.4. Validity Issues

We have here made use of phase-space functions that can be treated exactly as
probability distributions, leading to a mapping of the quantum evolution onto an
ensemble of stochastic trajectories. The price of this exact mapping is that the
stochastic trajectories explore a domain that cannot be identified with the physical
phase space. The unphysical dimensions tend to harbour unstable regions leading
to diverging trajectories and large associated sampling error as the evolution pro-
gresses. Furthermore, the mapping to a Fokker–Planck equation requires that the
distribution function is sufficiently bounded so that certain boundary terms can be
neglected. If, after a certain simulation time, the underlying distribution develops
low-order polynomial tails, the mapping is no longer guaranteed to be exact and
systematic errors may arise beyond this point.

For the simulation of real-time dynamics, the development of boundary terms
is associated with clear signatures, such as individual trajectories undergoing large
excursions in phase space (‘spiking’) and a dramatic increase in sampling error.
An exact replication of quantum dynamics is achieved up until the emergence of
such signatures, which indicate the limits of useful simulation time. For the case
of imaginary-time evolution, the situation is more subtle. The trajectories may be
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stable even down to very low temperatures, at least in the case of the Hubbard
model, with no dramatic increase in sampling error. Yet here too, ‘spiking’ be-
haviour has been observed at the onset of systematic deviations [23], which can
also be detected in the violation of some of the Hamiltonian symmetries. As we
discussed above, the effect of the systematic errors can be removed in some sit-
uations, at the expense of an increased sampling error, and the exact many-body
ground-state recovered by a projection onto a symmetric subspace.

1.4.1. Validity Domain

Generally, the Gaussian method works best for weakly interacting systems, i.e.
where the deterministic term in the stochastic equations dominates the diffusion
term. In the case of strong interactions, the method provides accurate results up to
a certain simulation time, as we have explained above. Note that any Hamiltonian
with terms which are at most quartic in the fermionic operators can be mapped
onto a set of SDEs via the Gaussian representation. This includes, for example,
the general electronic structure problem from quantum chemistry [22], or any
system with two-body (but not three-body) interactions.
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