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Received 2 May 2005; accepted 20 May 2005
Abstract

We present phase-space techniques for the modelling of spontaneous emission in two-level bosonic atoms. The posi-

tive-P representation is shown to give a full and complete description within the limits of our model. The Wigner rep-

resentation, even when truncated at second order, is shown to need a doubling of the phase-space to allow for a

positive-definite diffusion matrix in the appropriate Fokker–Planck equation and still fails to agree with the full quan-

tum results of the positive-P representation. We show that quantum statistics and correlations between the ground and

excited states affect the dynamics of the emission process, so that it is in general non-exponential.
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1. Introduction

The study of spontaneous emission has a long history, beginning with the famous Einstein A and B coef-

ficients [1] and the Wigner–Weisskopf law [2]. A comprehensive account can be found in Agarwal [3]. Pre-

vious studies have considered atoms which are not within one de Broglie wavelength of each other, so that

the fermionic or bosonic nature of the atoms need not be considered. This condition holds for dilute high-

temperature atomic samples, but not for degenerate quantum gases. In particular, it does not hold for

Bose–Einstein condensates [4] and now that these are readily available in laboratories around the world,
0030-4018/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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it is of some interest to develop methods which will allow for a full quantum treatment of both the atomic

and electromagnetic fields. In this paper we develop and demonstrate phase-space methods, using the

positive-P [5] and Wigner [6] representations, for the treatment of spontaneous emission from two-level bo-

sonic atoms. We use a simple model without spatial dependence of the atomic fields and without collisional

and dipole–dipole interactions, although these can readily be included for larger atomic samples, along with
other details which would be necessary to model a realistic experimental situation. The simplicity of our

model allows us to consider different quantum states of the atomic fields and demonstrate clearly that cor-

relations which can build up between the ground and excited states have a noticeable effect on the dynam-

ics. We can also give a clear demonstration of the difference between the quantum mechanical predictions of

the positive-P representation and an approximation which we derive from the Wigner representation.
2. Formalism

To begin, we define w(x) as a wavefunction for a bosonic atomic field, with
wðxÞ ¼
X
j

ajwjðxÞ; ð1Þ
the wj(x) are then wave-functions for different (distinguishable) atomic fields. In second quantisation, the

expansion coefficients are changed to operators so that âyj âj becomes the number operator for atoms of

the jth type. For simplicity, we consider one chemical species of atom with two electronic levels, j = a,b,

for the ground and excited states, respectively, and set âa ¼ â and âb ¼ b̂. Having introduced the second-

quantised picture we could also include fermionic atoms, for which Eq. (1) is not defined, and use fermionic
phase-space methods which are under development [7]. However, in this work we will consider only bosonic

atoms. Since the total number of atoms is conserved, the physically relevant (bosonic) operator combina-

tions can be defined by
âyb̂jna; nbi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ 1Þnb

p
jna þ 1; nb � 1i;

b̂
y
âjna; nbi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnb þ 1Þna

p
jna � 1; nb þ 1i;

ð2Þ
where |na, nbæ signifies an atomic field with na atoms in the ground state and nb atoms in the excited state.

We will consider first the case of a single-atom Fock state, where hâyâþ b̂
y
b̂i ¼ 1. The atomic Fock space

then reduces to two dimensions, with basis vectors |0, 1æ and |1, 0æ. The combinations of operators (2) then
play an analogous role to the normal spin raising and lowering operators. We can now make the following

correspondences with the normal Pauli spin operators:
rþ $ b̂
y
â; r� $ âyb̂; rz $

1

2
b̂
y
b̂� âyâ

� �
ð3Þ
and look at the commutation relations. We find
b̂
y
â; âyb̂

h i
¼ b̂

y
b̂� âyâ;

b̂
y
â; b̂

y
b̂� âyâ

h i
¼ �2b̂

y
â;

âyb̂; b̂
y
b̂� âyâ

h i
¼ 2âyb̂;

ð4Þ
all completely equivalent to those of two-level atomic operators such as used in the well-known Jaynes–

Cummings model [8], as long as we are considering a single atom. We note here that a similar formalism

has previously been used by Bonifacio and Preparata [9], although they did not develop a phase-space rep-

resentation of the problem as we will do in what follows.
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Not unexpectedly, this simple relation to the operators used in the Jaynes–Cummings model does

not survive beyond the single-atom Fock-state case. Consider for example the expressions for the prob-

ability of an atom being in a particular state. In the latter, (with Pjj signifying the probability of being

in state j)
Pbb ¼ hrþr�i; Paa ¼ hr�rþi; ð5Þ

and, if we naively use these correspondences (3), we find
hrþr�i $ hb̂yââyb̂i ¼ hb̂yb̂i þ hb̂yb̂âyâi;

hr�rþi $ hâyb̂b̂yâi ¼ hâyâi þ hb̂yb̂âyâi;
ð6Þ
which are obviously not the correct probabilities. This is because the Pauli operators describe a single atom
with one fermion (electron) which can be in either the ground or excited state. This means that the density

matrix need only be 2 · 2, whereas we wish to investigate bosonic atoms where the density matrix is, in

principle, infinite. To solve this problem, we define
Pbb ¼
hb̂yb̂i

hb̂yb̂i þ hâyâi
; Paa ¼

hâyâi
hb̂yb̂i þ hâyâi

; ð7Þ
which are now the correct probabilities. We may define the atomic coherences as
Pba ¼ hr�i $ hâyb̂i; Pab ¼ hrþi $ hb̂yâi. ð8Þ

We may now write any master equation in terms of these bosonic operators and use the standard mappings

[10] to find Fokker–Planck and stochastic differential equations in the relevant phase-space representations.

As an example to demonstrate our method, we will examine spontaneous emission from excited bosonic

atoms.
3. Spontaneous decay

Spontaneous decay into a zero temperature thermal bath can be modelled by the Hamiltonian
Hbath ¼ �h âb̂
y
Cþ âyb̂Cy

� �
; ð9Þ
where the C are operators for the bath quanta. Following the usual methods [11], this leads to the master

equation,
dq
dt

¼ j
2

2âyb̂qâb̂
y � âb̂

y
âyb̂q� qâb̂

y
âyb̂

� �
. ð10Þ
Looking at Eq. (10), we can immediately find equations for expectation values as
dhx̂i
dt

¼ Tr x̂
dq
dt

� �
. ð11Þ
We find
dhb̂yb̂i
dt

¼ �j hb̂yb̂i þ hâyâb̂yb̂i
� �

;

dhâyâi
dt

¼ j hb̂yb̂i þ hâyâb̂yb̂i
� �

;

ð12Þ
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so that any correlations which build up between the two atomic fields can be important in the dynamics of

the decay. These may be expected to depend on the initial atomic quantum states, something which is easily

modelled using positive-P and Wigner representations. In the standard techniques which use a density

matrix approach, approximations are usually necessary to model anything but number states, which are

not the only possible choice when we wish to treat degenerate quantum gases.
The choice of Hamiltonian (9) shows clearly that our analysis will not describe superradiant emission.

The latter may be defined as a feedback of the radiated field on atoms, whereas, by using a bath for the

emitted field this feedback is formally eliminated. Irrespective of how important superradiation may hap-

pen to be in a real experiment, the effects we describe in this paper are rooted in the many-body atom-field

statistics.
4. Positive-P representation

We will first develop our stochastic equations in the positive-P representation. Using the usual tech-

niques [10], the master equation (10) is mapped onto a Fokker–Planck equation for the P-function [12,13],
dP
dt

¼ � j
2

o

oa
jbj2aþ o

oa�
jbj2a� � o

ob
ðjaj2 þ 1Þb� o

ob� ðjaj
2 þ 1Þb�

� ��

þ j
2

o
2

oaoa�
2jbj2 � o

2

oaob
ab� o

2

oa�ob� a
�b�

� ��
P ða; b; tÞ. ð13Þ
The diffusion matrix, D, of Eq. (13), is not positive-definite so we must use the positive-P representation.

The matrix can be factorised as
B ¼
ffiffiffi
j

p

i
2

ffiffiffiffiffiffi
ab

p
0 � 1

2

ffiffiffiffiffiffi
ab

p
0

ffiffiffiffiffiffi
bþb
2

q
i

ffiffiffiffiffiffi
bþb
2

q
0 i

2

ffiffiffiffiffiffiffiffiffiffiffi
aþbþ

p
0 � 1

2

ffiffiffiffiffiffiffiffiffiffiffi
aþbþ

p ffiffiffiffiffiffi
bþb
2

q
�i

ffiffiffiffiffiffi
bþb
2

q
i
2

ffiffiffiffiffiffi
ab

p
0 1

2

ffiffiffiffiffiffi
ab

p
0 0 0

0 i
2

ffiffiffiffiffiffiffiffiffiffiffi
aþbþ

p
0 1

2

ffiffiffiffiffiffiffiffiffiffiffi
aþbþ

p
0 0

2
6666664

3
7777775
; ð14Þ
where D = BBT. This immediately allows us to write the Itô stochastic equations:
da
dt

¼ j
2
bþba� 1

2

ffiffiffiffiffiffiffiffi
jab

p
g3 � ig1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
jbþb
2

r
g5 þ ig6ð Þ;

daþ

dt
¼ j

2
bþbaþ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

q
g4 � ig2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
jbþb
2

r
g5 � ig6ð Þ;

db
dt

¼ � j
2

aþaþ 1ð Þbþ 1

2

ffiffiffiffiffiffiffiffi
jab

p
g3 þ ig1ð Þ;

dbþ

dt
¼ � j

2
aþaþ 1ð Þbþ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

q
g4 þ ig2ð Þ;

ð15Þ
which may be numerically integrated. Note that, as always in the positive-P representation, there is a cor-

respondence between the operators â; b̂; ây; b̂
y
and the c-number variables a, b, a+, b+, such that
�ðaþÞmðbþÞnapbq ! hðâyÞmðb̂yÞnâpb̂qi; ð16Þ

where the left hand side is a classical average over stochastic trajectories and the right hand side is a quan-

tum-mechanical expectation value.
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Before we resort to stochastic integration, we will see what information we can get from the Itô equa-

tions about the average decay rates, with the caveat that a mean-field approach may not be particularly

meaningful for small atomic samples. Using the rules of Itô calculus, where
dðxyÞ ¼ y dxþ xdy þ dy dx; ð17Þ

we find mean-field equations for the populations in the ground ðNa ¼ �aþaÞ and excited ðNb ¼ �bþbÞ states,
dNa

dt
¼ j Na þ 1ð ÞNb;

dNb

dt
¼ �j Na þ 1ð ÞNb.

ð18Þ
For those not familiar with stochastic calculus, we note that merely dropping the noise terms from Eq. (15)

would not give the correct equations for the populations, although this would be the correct procedure if we

were using Stratonovich equations. With NT the total number of atoms, we may now write an equation for

Nb,
dNb

dt
¼ �j Na þ 1ð ÞNb ¼ �j NT � Nb þ 1ð ÞNb; ð19Þ
which may be solved to give
NbðtÞ ¼
Nbð0Þ NT þ 1ð Þ

Nbð0Þ NT þ 1� Nbð0Þ½ �eðNTþ1Þjt . ð20Þ
In the case of one atom initially excited, this simplifies to
NbðtÞ ¼ sechðjtÞe�jt; ð21Þ

although we would not expect mean-field solutions to be accurate for such small numbers of quanta. How-

ever, we do see that the decay rate is proportional to the number of quanta which can be in the final state, in
a manner reminiscent of Fermi�s golden rule [14]. A work on superradiance, by Rehler and Eberly [15],

gives an expression for the atomic energy (their Eq. (5.1)), which, in the limit that all atoms are within a

wavelength of each other so that their parameter l is equal to 1, becomes
W ðtÞ ¼ � 1

2
Nbð0Þ eðNbð0Þþ1Þjt � ðNbð0Þ þ 2Þ

� 	
eðNbð0Þþ1Þjt þ Nbð0Þ

 ��

. ð22Þ
We note that, once we redefine their energy scale so that the energy of the ground state is zero rather
than negative and all atoms are initially excited, this gives the same result as our Eq. (20). (In [15], the en-

ergy of a ground (excited) state atom is defined as �(+)�hx/2.) It is interesting that the same result has been

arrived at by different means, although our result allows for some initial population in the ground state and,

as shown below by the numerical results, is only an approximation to the real result, which we will show to

depend on the quantum state of the atomic ensemble. In the regime where all atoms were within an optical

wavelength, we would also expect dipole–dipole forces and maybe even collisional processes to become

important. We stress here that the non-exponential decay predicted by our approach is not the classical sup-

erradiance, but rather is due to correlations between the ground and excited state atomic fields.
To obtain the full quantum results, the Stratonovich version of Eq. (15) was numerically integrated. As

usual in quantum stochastic integration, we must decide on which initial conditions to use for our atomic

fields. The simplest initial condition to model in the positive-P representation is a coherent state, |a0æ, which
can be represented by the pseudoprobability distribution P ða; aþÞ ¼ dða� a0Þdðaþ � a�0Þ. Other quantum

states which may arise naturally when we treat atoms are the chaotic state and the Fock state, which

has a fixed number of atoms. It has been shown that any quantum state may be represented by the posi-

tive-P distribution [5]
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P ða; aþÞ ¼ 1

4p2
e�ja�ðaþÞ�j2=4 aþ ðaþÞ�

2


 ����q aþ ðaþÞ�

2

����
�
; ð23Þ
which we wish to sample for a Fock state with q = |næÆn|. Introducing the new variables
l ¼ a� ðaþÞ�

2
and c ¼ aþ ðaþÞ�

2
; ð24Þ
we find the separable expression
P ðl; cÞ ¼ e�jlj2

p
jcj2ne�jaj2

pn!
¼ e�jlj2

p
Cðjcj2; nþ 1Þ

p
; ð25Þ
where
Cðx; nÞ ¼ e�xxn�1

ðn� 1Þ! ð26Þ
is the Gamma distribution. The variable l is easily sampled via standard methods, while the Gamma dis-

tribution is sampled using a method given by Marsaglia and Tsang [16] to give z = |c|2, so that c ¼ ffiffi
z

p
eih,

where h is uniform on [0, 2p). We then invert to find
a ¼ lþ c and aþ ¼ c� � l�; ð27Þ

which are now correctly distributed to represent the Fock state |næ. For n = 1, the decay follows the well-

known exponential law, as asking whether a single isolated atom is bosonic or fermionic is a meaningless

question. In fact, it is much simpler to calculate the decay for Fock states using a master equation for-
malism rather than stochastic equations [17] and we present the result shown in Fig. 1 more as evidence

that our phase-space approach gives reliable results. We find that the stochastic results for larger n agree

with the master equation results wherever the integration converges. This gives us confidence that the

results for other quantum states, for which a master equation solution is not so easily found, will also

be accurate.

In Fig. 2 we show results for an initial coherent state, |bæ, where b = 1 and, in Fig. 3, the correlation

which builds up between the ground and excited state populations for this initial state. For the initial
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Positive-P solution averaged over 3.4 · 105 stochastic trajectories (solid line) for decay of an N = 1 Fock state, with j = 0.4. The

ential solution (dash-dotted line) and the mean-field analytical solution (dotted line) are shown for comparison.
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Fig. 2. Stochastic result (solid line) from Eq. (15), with j = 0.2 and Nb(0) = 1, with the atom initially excited. For comparison, the

standard exponential decay (dash-dotted line) and the solution from Eq. (20) (dotted line) are also shown. Note that in this result and

that shown in Fig. 3, the excited atom is initially in a coherent state. The equations were integrated over 9.9 · 105 trajectories.
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Fig. 3. Stochastic solution for hâyâb̂yb̂i, for the same parameters as used in Fig. 2.
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n = 1 Fock state, this correlation was zero. It can be seen that the decays are noticeably different,
although we again note that as soon as we have the possibility of more than one atom being present,

collisions and dipole–dipole interactions would also play a role. These have not been included in our

analysis at this stage as we are more interested in a proof of principle rather than modelling exactly a

given physical system.

An interesting theoretical application of this model can be made for bosons in lattice wells. The Heisen-

berg uncertainty principle has been used to infer that atoms condensed at lattice sites were in number states,

due to an increase in phase noise [18]. We note here that number states are not the only states with phase

noise above the coherent state level, as chaotic and thermal states, among others, will also exhibit this prop-
erty. As small numbers of atoms in a lattice site may be a perfect candidate for measurements of the spon-

taneous emission rate, we will investigate this process for a chaotic state. These states have a particularly

simple P-function, with
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P ðbÞ ¼ 1

p�n
expð�jbj2=�nÞ; ð28Þ
where �n is the average number present in the mode [11]. If the state is a mixture of coherent and chaotic

states, i.e. a chaotic state with a coherent displacement, the P-function is written as
P ðbÞ ¼ 1

p�n
expð�jb� b0j

2
=�nÞ; ð29Þ
where b0 is the coherent displacement. We show the results of an averaging of 1.56 · 105 stochastic trajec-

tories in Fig. 4, for b0 = 1 and �n ¼ 0.1. In Fig. 5, we show the results for b0 = 0 and �n ¼ 1. By comparison

with Fig. 2, we see that the decay in the chaotic case is noticeably faster.
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line).
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5. Wigner representation

In the theory of stochastic electrodynamics [19], spontaneous emission is often claimed as being explicable

as stimulated emission which is actually stimulated by vacuum fluctuations [20]. The Wigner representation

commonly used in quantum optics is equivalent to this theory if the Fokker–Planck equation for the Wigner
function is truncated at second order, a positive-definite diffusion matrix is found, and distributions with po-

sitive Wigner functions are considered. Using the standard correspondences for Itô calculus [10], the master

equation (Eq. (10)) can be mapped onto a generalised Fokker–Planck equation for the Wigner function,
dW
dt

¼ j
2

� o

oa
jbj2 � 1

2

� �
a

� �
þ o

oa�
jbj2 � 1

2

� �
a�

� �
þ o

ob
� jaj2 þ 1

2

� �
b

� �
þ o

ob� � jaj2 þ 1

2

� �
b�

� �� ��

þ 1

2

o2

oaoa�
2jbj2 � 1

� �
þ o2

obob� 2jaj2 þ 1
� �

þ o2

oaob
�2abð Þ þ o2

oa�ob� �2a�b�ð Þ
� �

� 1

6

o3

oaoa�ob
� 3

2
b

� �
þ o3

oaoa�ob� � 3

2
b�

� �
þ o3

oaobob�
3

2
a

� �
þ o3

oa�obob�
3

2
a�

� �� ��
W ða;b; tÞ.

ð30Þ
Although methods exist for developing stochastic difference equations for a system which gives derivatives

of higher than second-order in the Fokker–Planck equation [21,22], we will truncate the above equation at

second order as our aim is to compare the predictions of the positive-P representation with that of the rep-

resentation which results from discarding the third-order derivatives in Eq. (30). However, what we do no-

tice is that the diffusion matrix of Eq. (30) is not positive-definite and thus has no straightforward mapping

onto stochastic differential equations. As shown in [22], we may double the phase-space in a way analogous

to that used in the positive-P representation and find stochastic equations for four independent variables in
what we may call a truncated positive-Wigner representation.

We therefore make the changes a* ! a+ and b* ! b+, noting that averages of these are equivalent to

symmetrically ordered operator expectation values, so that these are not the same as the variables used

in the positive-P equations, although this should be obvious by context. One possible factorisation of

the diffusion matrix of Eq. (30) is then
BW ¼ ~A~04
� 	

þ ~04 ~C
� 	

; ð31Þ
where
~A ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j bþb� 1

2


 �q
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j bþb� 1

2


 �q
0 0

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðbþb� 1

2
Þ

q
�i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j bþb� 1

2


 �q
0 0

0 0 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2


 �q
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2


 �q
0 0 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2


 �q
�i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2


 �q

2
666666664

3
777777775
; ð32Þ
and
~C ¼

i
2

ffiffiffiffiffiffiffiffi
jab

p
0 � 1

2

ffiffiffiffiffiffiffiffi
jab

p
0

0 i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

p
0 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

p
i
2

ffiffiffiffiffiffiffiffi
jab

p
0 1

2

ffiffiffiffiffiffiffiffi
jab

p
0

0 i
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Fig. 6. Excited state probability for an initially excited one-atom coherent state. The solid line is the positive-P average of 9.9 · 105

trajectories, the dash-dotted line represents 3 · 105 trajectories of Eq. (34), and the dotted line is the solution given in Eq. (20).
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and ~04 is the 4 · 4 null matrix. This allows us to write the following stochastic differential equations,
da
dt

¼ j
2

bþb� 1

2

� �
aþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j bþb� 1

2

� �s
g1 þ ig2ð Þ � 1

2

ffiffiffiffiffiffiffiffi
jab

p
g7 � ig5ð Þ;

daþ

dt
¼ j

2
bþb� 1

2

� �
aþ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j bþb� 1

2

� �s
g1 � ig2ð Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

q
g8 � ig6ð Þ;

db
dt

¼ � j
2

aþa� 1

2

� �
bþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2

� �s
g3 þ ig4ð Þ þ 1

2

ffiffiffiffiffiffiffiffi
jab

p
g7 þ ig5ð Þ;

dbþ

dt
¼ � j

2
aþa� 1

2

� �
bþ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j aþaþ 1

2

� �s
g3 � ig4ð Þ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþbþ

q
g8 þ ig6ð Þ.

ð34Þ
These can again be readily integrated numerically, at least for states which have a well-behaved Wigner

function.
We present a numerical solution to this equation, for an initial coherent state with an average of one

excited atom, in Fig. 6, along with the positive-P solution and the mean-field solution of Eq. (20). What

we see is that, even though the phase-space has been doubled so that we are representing nonclassical

dynamics, the truncated positive Wigner solution is closer to the mean-field prediction than it is to the full

quantum solution. If the naive procedure of dropping the noise terms completely from Eq. (34) and inte-

grating the resulting equations is followed, the solutions do not even conserve atom number. This clearly

suggests that any explanation of spontaneous emission as being due to vacuum fluctuations will not result

in an accurate description of the dynamics. This is a demonstration of the failure of the truncated Wigner
method for a system which is noticeably simpler than some of those for which it has previously been shown

to give misleading results [23,24].
6. Conclusions

Using the example of spontaneous emission into a zero temperature reservoir, we have shown how sto-

chastic equations may be developed to model the interaction of bosonic atoms with the electromagnetic
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field. This approach allows for the straightforward inclusion of the atomic quantum states, different num-

bers of atoms, the spatial dependence of atomic ensembles and interactions between the atoms, most of

which would be difficult in the usual master equation approaches. We have shown that, except in the very

special case of a one-atom Fock state, the decay is not exponential, but depends on correlations between the

levels as well as bosonic stimulation by the population of the lower level. This is manifestation of the many-
body atom statistics, because the other possible reason, superradiation, is eliminated by our choice of the

model Hamiltonian. Our approach can be extended to describe the dynamics of more complicated pro-

cesses such as, for example, electromagnetically induced transparency in degenerate gases. In principle it

can also be extended to degenerate fermionic atoms using phase-space methods which are under

development.
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