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By using a complex field with a symmetric combination of electric and magnetic fields, a first-order cova-
riant Lagrangian for Maxwell's equations is obtained. This leads to a dual-symmetric quantum-field theory
with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase,
conjugate to a conserved helicity numbje31050-29479)50809-3

PACS numbd(s): 03.65.Bz, 03.50.De, 42.50p, 11.10-z

The complex, dual symmetric form of Maxwell’'s equa- [7,8]. The advantage is that the helicity density is related to
tions [1] has a number of useful and intriguing properties.physical fields acting at a point, has well-defined transforma-
Dual symmetry[2] (interchangingB and E) has become a tion properties, and gives information about particle number
topical subject recently, due to its relevance to problems infather than energy. This operator directly utilizes the explicit
volving massive quantum-field theories and solitg8F In  dual symmetry in the present formulation of electrodynam-
this Rapid Communication, | will introduce a Lagrangian for ics. Another local symmetry, together with a conserved cur-
the complex form of Maxwell's equations. This allows an rent, is obtained from a rescaling symmetry found by using a
elegant reformulation of quantum electrodynamics using aovariant Lagrangian with complex fields.

Dirac-type covariant Lagrangian, with only first-order time  The complex electromagnetic fie[d] is defined asF
derivatives and a six-dimensional complex field. In this=(E, +iB)/\2 in units wherefi=c=go=puo=1. This
form, the dual symmetry corresponds to a type of phase rotechnique has been known for some tifi8e-14] and has
tation, which generates the conserved helicity number of théeen investigated recently as a means of defining a photonic
field. In addition to this, | show that these results can bewave function[15,16. The motivation for the theory is a
extended to obtain an infinite set of conservation laws, inlogical extension of Dirac’s techniqul7] of finding the
cluding conservation of local photon number and quantunsquare root of the Laplacian operator, except using represen-
squeezing density operators. tations of O(3) rather than the Dirac gamma matrices. |

In this type of electrodynamics, the dual symmetry is gen-€extend this idea to derive a covariant Lagrangian, and obtain
erated simply through a phase rotation of the complex electhe relevant conservation laws.
tromagnetic field, and is therefore similar to the chiral sym- The procedure | will follow is to consider possible local
metry of Weyl[4] neutrino theory. A useful property of the Lagrangian field theories that have only first-order terms in
dual phase defined in this way is that it is conjugate to dhe time derivatives, so that they directly generate the first-
photon-number difference operator, and hence is free frorarder Maxwell equations, just as the Dirac Lagrangian di-
the well-known problems of single-mode phase operatorgectly generates the Dirac equation. Since radiation field op-
[5,6]. It is also possible to develop a local current and densityerators have dimensiofiL] 2, and the Lagrangian has
operator for the helicity number, which does not have thedimension[L] ™4, it is clear that a Lagrangian that includes
drawbacks usually found with local photon-number densityproducts of fields and derivatives must also involve gauge

fields with dimensiof{L] . Thus, it is necessary to intro-
duce a transverse complex vector potentidd=(A
*Electronic address: drummond@physics.ug.oz.au +iA)/\2, whereV - . A=0. The fieldA is the dual potential
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for the transverse part of the electric field, whileis just the ~ This Lagrangian density generates the covariant form of the
usual magnetic vector potential. Here the complex potentiavave equation, which ig,a*#=0. In more detail, the re-
field A is related to the free complex Maxwell fielf, by  lation [V-S]=iV X ¢ means that the two three-vector
F=VXA. components off each satisfy an independent wave equation

In general,E can have a longitudinal component, which of the form given by Eq(3).
has no representation in this form. This problem only arises To ensure that the the canonical Hamiltonian corresponds
in the presence of interactions, and is inherent in the idea dp the classical energy, the constraint is imposed tFat
a photonic wave function with just transverse components=V X.A. The Hamiltonian then equals the energy at all
Interacting fields and details of applications to dielectric andimes, and the canonical momentum fieldIs-i W a®. The
atomic systems will be treated in more detail in a following fundamental fields are regarded here as being a combination
paper. The first question is whether there is a Lagrangian th&f the physical fields and the potentials, rather than the usual
can generate Maxwell's equations, while having a Hamil-Situation of just the potentials being regarded as dynamical
tonian density: variables. This does not change the number of physical de-
grees of freedom.

Spinor theories of the electric and magnetic fields are well
known, and generate a finite-dimensional representation of
the Lorenz group. Here, the potential transformation belongs
There is a straightforward noncovariant Lagrangian densityo an infinite-dimensional representation of the Lorenz group

1
W=7 F=[E|*+]B]%. ®

with these properties. It can be written as [20], since the Lorenz-transformed potentials depend nonlo-
N . 5 cally on the potentials in the original reference frame. This is
Lo AA*)=TA-VXA*—|VX A% (20 due to the known difficulty of defining a unique photon po-

sition. An advantage is that there is no time-like photon mo-
mentum with a negative-metric Hilbert space in this ap-
proach, as there is with the Gupta-Bleuler quantization of the
OF covariant Fermi Lagrangian. Thus, the normal axioms of
iW=V><.’F. 3 quantum theory apply.
An important symmetry property of the present equations
This equation is identical to the free-field Maxwell equa-iS the dual symmetry generating by changing the phasg of

tions. The resulting Hamiltonian density is also identical to@d /A simultaneously, thus rotating, into B. This sym-
the energy density, as required. metry must generate a globally conserved quantity, which |

There is a covariant form of the Lagrangian due toWill show to be the helicity number of the photon field, i.e.,
Schwinger[18], which has only first-order derivatives, like the difference between the number of right and left circularly
the Dirac equation. It is also possible to extend the preserRolarized photons. The conserved dual curtgnis given by
complex electrodynamic theory to a covariant, first-order La-
grangian, on defining a six-dimensional spinor figidwhere J{=VarV. (8

It is simple to verify that this generates the Maxwell field
equation, since one immediately obtains

1 /F

= — . 4) There is a corresponding globally conserved charge, which is

\/E A the integral of the densitylgz(A~ E, +A-B)/2. The global
helicity “charge” is

This has a Lagrangian — apparently different from previ-

ous first- or second-order fornj$9] — given by

1
. Nh=J\I’TaO\I’dV= —f [A-E, +A-BldV. (9)
L=VTp,a"W=[(IA-VX.A). F* +(F.A)]I2. 2

(5
_ ) o ) It is important to notice tha.ﬂg is always zero whenever the
Herep,=id,, and | introduce the six-dimensional complex gjectric and magnetic fields both vanish. This property of

matricese* which are given by “quasilocality” is invariant under Lorenz transformations,
01 0 S T even though the pc_>tentia|s are not local.
o | 4 Dual symmetry is not the only internal symmetry of the
@ —( I O) = ( s o « _( 0 —il ) covariant Lagrangian formulation, since it is also possible to

rescale F—(1+¢€)F and A—(1—¢€).A simultaneously,
without changing the Lagrangian. This generates yet another
The matrix vectorS comprises X 3 complex matrices such Io_caIIy cqnserved_ cuorrent. I call this the scaling curréft
that[S',S/]=ie;S*. TheseS matrices can be represented with scaling densityg:

as 3x 3 Hermitian rotation matrices:

. . Ji=vTata* . (10)
0 0 O 0 O i 0 —-i O
S={ |0 O —i|, O 0 Of i 0 0Of]f. There is a corresponding globally conserved charge,
O i O -i 0 0]J]lO0O O O which is the integral of the scaling densityS(AEL—A

(7) -B)/2. Hence, define



RAPID COMMUNICATIONS

PRA 60 DUAL SYMMETRIC LAGRANGIANS AND CONSERVATION LAWS R3333

1 Since the dual charge equals the helicity number, which is
Mh:j Vo'V dV= EJ' [A-E,—A-B]JdV. (11) a difference operator, it appears possible to define a Hermit-
ian dual phase operator conjugatentp which could have a
More generally, an infinite set of related conserved densitieghysical realization. By comparison, a Hermitian quantum
is obtained by first defining a hierarchy of fieldd(™ phase operator conjugate to a positive-definite number opera-
through the relationA* D=V x AM, where AV=4. torisnotwell defined, except as a singular liri,6]. This is
Each field obeys an identical Maxwell equation, and it can bd" @greement with the experimental situation, which is that
verified that there is a conserved densipy(™"= optical pha;e measurements typ!cally involve two modes,
AM* . AM  with conserved  current J(MM = 4(m* whose relative phase is then conjugate to a photon-number
difference. Relative phases are also involved in recent work
on optimal quantum measuremegb).
22) ny L2.2 Operational measurements of photon flux usually involve
Thus, for examplep*?=7 is the energy density‘*? time-averaging detectors that distinguish positive and nega-

- i i (2.1)=394i39 ;i . ) 2 ) -
E, xXB s th_e Poyn.tlng vector, ang JatiJs ISa " tive frequency components. With this in mind, it is useful to
complex density that includes both the dual and scaling den- -

sities. qiving a sinale conservation law note that the helicity potentialsA, contain only positive
> gving 9 : j . frequency components. Defining a hierarchy of fields like
Either form of the Lagrangian can be quantized by creat;[his according QA D= 5V x A (where.,zt(l)z.:A )
i f he f I i Di > oo o ey o/
Ing commutators from t € fundamenta cqnstralned |ra<i find that these helicity fields satisfy modified complex
bracketq21]. The canonical momentum conjugateb ex- Maxwell equations of the form
actly interchanges the magnetic and electric fields, since: q

x AN/i for every integer pairrg,n). The fields have di-
mension L]~ ", and the currents have dimensidn]~("*™.

.. e dAM

M=iF*=iVXA*=[B+iE, /2. (12) i— =oVx AM. 17)
Imposing canonical commutators at equal times, and assum- This implies the existence of four conservation laws for
ing transverse field constraints, gives each (n,n) pair, which divide the earlier conservation laws

R A into their helicity components. The locally conserved helicity

[Ai(t,x),Hj(t,x’)]=i5iij(x—x’). (13 densities are
Here &/ (x—x') is the transverse delta function. The result- pMM=A"". A1/2, (18)
ing field commutators agree with those derived in more stan- R . .
dard ways, and hence agree with known quantum-field theo- pmM= 4. A2

retic results. Related dual symmetric Lagrangians of a

different type were introduced by Zwanzigg22], and by together with corresponding equations found by exchanging

Schwarz and Sef23], using pairs of real fields, rather than the helicity signs, and the corresponding conserved currents.

the present approach. It is remarkable that these can all be directly obtained simply
On expanding in terms of annihilation and creation operaby using the complex form of Maxwell's equations. This

tors for the different helicities, the complete mode expansiordives rise to a definition of the total photon-number operator

becomes:A(x)=.A. (x) +.A" (x), where as
~ i EC N= | n(x)dv= d3kN, 19
A (x)= J d3k m} &, A, . (14 f n) ; f k 19

where | have introduced a conserved photon density operator
n(x)=n_(x)+n_(x), which is defined in terms of its helic-

ity componentsn, (x) = (p'%?+p2Y)/2. The definition in
andk— [K|. terms of covariant positive and negative helicity quantum

. . ; vV —(T AT = _ A
Clearly, the positive frequency parts g£(x) and . A'(x) fields ¥, = (F,.A,) 112 (where F,= A?) is
correspond to different helicities. Thus, number operators
can be formed in each helicity case, with

Herek= k|, while g.. represent the right and left circularly
polarized photons, respectivel[24], with e, € =,y
ikX g,=ocwe,, and|g,|=1, wherec=*1 is the helicity

Ny(X)= oW (x)a®W (x):. (20)

After time-averaging, it is possible to show that the nor-
N(rz f dgka,a'! (15) mally ordergd dual gensir.yﬂ(x) is equal to the helicity den-
sity np(X)=n,(x) —n_(x). .
N At Similarly, the scaling density]s can be reexpressed in
whereNy - =ay. . . The abo)’e result can be used to Cal'terms of helicity components. There are two main contribu-
culate the conserved quantify,, which shows that the tions, one from photon-density-type terrshich vanishes
normal-ordered operator equals the difference between Ie§n time averaging and another from terms proportional to
and right circularly polarized photon numbgg5]: a.,a,_ and their conjugates, which correspond to a
guadrature-squeezin@7] measurement, in which opposite
Np=N,—N_. (16) helicities are correlated. These squeezing-related terms form
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a conserved current. | therefore define the conserved helicity In summary, the use of a complex field combining electric
squeezing densityn,(x), which is measurable using the and magnetic components has a number of interesting fea-
technique of homodyne detection with a local oscillator field:tures in developing a canonical theory of the radiation field.
The Lagrangian generates first-order field equations. A cova-
riant form is possible, resulting in a six-component wave
equation, analogous to the Dirac equation. The fields them-

These definitions of the helicity density, and squeezing lves have a nonlocal Lorenz transformation property. Th
density operators are obtained in terms of quasilocal fielgg®'Ves nave a nonlocal Lore ansformation property. they
re treated here as massless spinors transforming under an

with well-defined geometrical properties. The correspondinj‘fl e . _ :
densities and currents have a zero expectation value at 1gfinite-dimensional representation of the Lorenz group. This

given spatial locatiorx, provided F, (x)| ) =0. This is in does not appear to contradict either causality or unitarity.

accordance with the requirement of quasilocality, stated ear- | '€ COmplex Lagrangian form allows a direct implemen-
lier. The photon-number density reduces to the earlier knowfg2lion of symmetry transformations that generate the con-

N . . served helicity density, as well a conserved scaling density.
forms[7,8]. The field i therefore has the required attributes :
of a photon field operator. The dual phase can be regarded as the prototype of a physi-

The construction of the photon density operator fromcal phase measurement, since it comes from the electric and
positive and negative frequency parts of the total operato?nag”et'c fields themselves. This phase is also a relative

(FL AL+ F AL —He)li).

M (X) (22)

means than(x) corresponds physically to a detector tha

t
cycle averages the input field to obtain the photon number. K'
detector of this type implicitly involves time averaging. Be-

cause of this, thénstantaneousalue ofn(x) is not guaran-

teed positive-definite. However, it is easily verified that the

time average of(x) on time scales longer than any relevant
periodis positive-definite. This seems to imply that any at-

phase of two propagating electromagnetic modes, which is
ow it is operationally measured. It is significant that the

corresponding conservation law is for a number-difference
operator, which is known to be an essential requirement for
obtaining a Hermitian phase operator. This gives an alterna-

tive point of view on the question of a phase operator in

quantum optics, since the definition of a phase operator for a
single mode of the radiation field is known to result in diffi-

tempt to measure the conserved photon flux on time SC""Ie‘aﬂties. | have also shown how an infinite set of local, nor-

less than a cycle period can cause dark counts, photoemi

sion, and similar effects. These are not always observed, d

to the very slow response times of most current photo dete

tors (especially efficient ongsrelative to an optical cycle.

ﬁially ordered conserved densities can be generated, includ-

Lfﬁg a type of photon-number density and a squeezing
Cdensity.

The related question of photon position in a state containing The author gratefully acknowledges useful comments by

exactly one photon has also been analyzed rec¢pdly

A. Bracken and C. W. Gardiner.
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