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By using a complex field with a symmetric combination of electric and magnetic fields, a first-order cova-
riant Lagrangian for Maxwell’s equations is obtained. This leads to a dual-symmetric quantum-field theory
with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase,
conjugate to a conserved helicity number.@S1050-2947~99!50809-3#
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The complex, dual symmetric form of Maxwell’s equ
tions @1# has a number of useful and intriguing propertie
Dual symmetry@2# ~interchangingB and E) has become a
topical subject recently, due to its relevance to problems
volving massive quantum-field theories and solitons@3#. In
this Rapid Communication, I will introduce a Lagrangian f
the complex form of Maxwell’s equations. This allows a
elegant reformulation of quantum electrodynamics usin
Dirac-type covariant Lagrangian, with only first-order tim
derivatives and a six-dimensional complex field. In th
form, the dual symmetry corresponds to a type of phase
tation, which generates the conserved helicity number of
field. In addition to this, I show that these results can
extended to obtain an infinite set of conservation laws,
cluding conservation of local photon number and quant
squeezing density operators.

In this type of electrodynamics, the dual symmetry is ge
erated simply through a phase rotation of the complex e
tromagnetic field, and is therefore similar to the chiral sy
metry of Weyl @4# neutrino theory. A useful property of th
dual phase defined in this way is that it is conjugate to
photon-number difference operator, and hence is free f
the well-known problems of single-mode phase opera
@5,6#. It is also possible to develop a local current and den
operator for the helicity number, which does not have
drawbacks usually found with local photon-number dens
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@7,8#. The advantage is that the helicity density is related
physical fields acting at a point, has well-defined transform
tion properties, and gives information about particle num
rather than energy. This operator directly utilizes the expl
dual symmetry in the present formulation of electrodyna
ics. Another local symmetry, together with a conserved c
rent, is obtained from a rescaling symmetry found by usin
covariant Lagrangian with complex fields.

The complex electromagnetic field@1# is defined asF
5(E'1 iB)/A2 in units where \5c5«05m051. This
technique has been known for some time@9–14# and has
been investigated recently as a means of defining a phot
wave function@15,16#. The motivation for the theory is a
logical extension of Dirac’s technique@17# of finding the
square root of the Laplacian operator, except using repre
tations of O(3) rather than the Dirac gamma matrices.
extend this idea to derive a covariant Lagrangian, and ob
the relevant conservation laws.

The procedure I will follow is to consider possible loc
Lagrangian field theories that have only first-order terms
the time derivatives, so that they directly generate the fi
order Maxwell equations, just as the Dirac Lagrangian
rectly generates the Dirac equation. Since radiation field
erators have dimension@L#22, and the Lagrangian ha
dimension@L#24, it is clear that a Lagrangian that include
products of fields and derivatives must also involve gau
fields with dimension@L#21. Thus, it is necessary to intro
duce a transverse complex vector potentialA5(L
1 iA)/A2, where“•A50. The fieldL is the dual potential
R3331 ©1999 The American Physical Society



ti

h
se
a
nt
n

ng
th
il

si

ld

a-
to

to
e
e
a

vi

x

d

the

r
ion

nds

all

tion
ual

ical
de-

ell
of

ngs
up
lo-
is

o-
o-
p-
the
of

ns
f

h I
.,
rly

h is

e
of
,

e
to

ther

ge,

RAPID COMMUNICATIONS

R3332 PRA 60P. D. DRUMMOND
for the transverse part of the electric field, whileA is just the
usual magnetic vector potential. Here the complex poten
fieldA is related to the free complex Maxwell fieldF, by
F5“3A.

In general,E can have a longitudinal component, whic
has no representation in this form. This problem only ari
in the presence of interactions, and is inherent in the ide
a photonic wave function with just transverse compone
Interacting fields and details of applications to dielectric a
atomic systems will be treated in more detail in a followi
paper. The first question is whether there is a Lagrangian
can generate Maxwell’s equations, while having a Ham
tonian density:

H5F* •F5
1

2
@ uE'u21uBu2#. ~1!

There is a straightforward noncovariant Lagrangian den
with these properties. It can be written as

Lnc~A,A* !5 iȦ•“3A* 2u“3Au2. ~2!

It is simple to verify that this generates the Maxwell fie
equation, since one immediately obtains

i
]F
]t

5“3F. ~3!

This equation is identical to the free-field Maxwell equ
tions. The resulting Hamiltonian density is also identical
the energy density, as required.

There is a covariant form of the Lagrangian due
Schwinger@18#, which has only first-order derivatives, lik
the Dirac equation. It is also possible to extend the pres
complex electrodynamic theory to a covariant, first-order L
grangian, on defining a six-dimensional spinor fieldc, where

c5
1

A2
SFAD . ~4!

This has a Lagrangian — apparently different from pre
ous first- or second-order forms@19# — given by

Lc5C†pmamC5@~ iȦ2“3A!•F* 1~F↔A!#/2.
~5!

Herepm5 i ]m , and I introduce the six-dimensional comple
matricesam which are given by

a05S 0 I

I 0D , a i5S 0 Si

Si 0 D , a45S i I 0

0 2 i I D .

~6!

The matrix vectorS comprises 333 complex matrices such
that @Si ,Sj #5 i« i jkSk. TheseSi matrices can be represente
as 333 Hermitian rotation matrices:

S5S F 0 0 0

0 0 2 i

0 i 0
G ,F 0 0 i

0 0 0

2 i 0 0
G ,F 0 2 i 0

i 0 0

0 0 0
G D .

~7!
al

s
of
s.
d

at
-

ty

nt
-

-

This Lagrangian density generates the covariant form of
wave equation, which is]mamc50. In more detail, the re-
lation @¹•S#c5 i“3c means that the two three-vecto
components ofc each satisfy an independent wave equat
of the form given by Eq.~3!.

To ensure that the the canonical Hamiltonian correspo
to the classical energy, the constraint is imposed thatF
5“3A. The Hamiltonian then equals the energy at
times, and the canonical momentum field isP5 iC†a0. The
fundamental fields are regarded here as being a combina
of the physical fields and the potentials, rather than the us
situation of just the potentials being regarded as dynam
variables. This does not change the number of physical
grees of freedom.

Spinor theories of the electric and magnetic fields are w
known, and generate a finite-dimensional representation
the Lorenz group. Here, the potential transformation belo
to an infinite-dimensional representation of the Lorenz gro
@20#, since the Lorenz-transformed potentials depend non
cally on the potentials in the original reference frame. This
due to the known difficulty of defining a unique photon p
sition. An advantage is that there is no time-like photon m
mentum with a negative-metric Hilbert space in this a
proach, as there is with the Gupta-Bleuler quantization of
covariant Fermi Lagrangian. Thus, the normal axioms
quantum theory apply.

An important symmetry property of the present equatio
is the dual symmetry generating by changing the phase oF
andA simultaneously, thus rotatingE' into B. This sym-
metry must generate a globally conserved quantity, whic
will show to be the helicity number of the photon field, i.e
the difference between the number of right and left circula
polarized photons. The conserved dual currentJd is given by

Jd
m5CamC. ~8!

There is a corresponding globally conserved charge, whic
the integral of the density,Jd

05(L•E'1A•B)/2. The global
helicity ‘‘charge’’ is

Nh5E C†a0 CdV5
1

2E @L•E'1A•B#dV. ~9!

It is important to notice thatJd
0 is always zero whenever th

electric and magnetic fields both vanish. This property
‘‘quasilocality’’ is invariant under Lorenz transformations
even though the potentials are not local.

Dual symmetry is not the only internal symmetry of th
covariant Lagrangian formulation, since it is also possible
rescaleF→(11e)F and A→(12e)A simultaneously,
without changing the Lagrangian. This generates yet ano
locally conserved current. I call this the scaling currentJs

i ,
with scaling densityJs

0:

Js
m5C†ama4C. ~10!

There is a corresponding globally conserved char
which is the integral of the scaling density,Js

0(A•E'2L
•B)/2. Hence, define
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Mh5E Ca0a4C dV5
1

2E @A•E'2L•B#dV. ~11!

More generally, an infinite set of related conserved densi
is obtained by first defining a hierarchy of fieldsA(n)

through the relationA(n11)5“3A(n), whereA(1)5A.
Each field obeys an identical Maxwell equation, and it can
verified that there is a conserved densityr (m,n)5
A(m)* •A(n), with conserved current J(m,n)5A(m)*
3A(n)/ i , for every integer pair (m,n). The fields have di-
mension@L#2n, and the currents have dimension@L#2(n1m).
Thus, for example,r (2,2)5H is the energy density,J(2,2)

5E'3B is the Poynting vector, andr (2,1)5Jd
01 iJs

0 is a
complex density that includes both the dual and scaling d
sities, giving a single conservation law.

Either form of the Lagrangian can be quantized by cre
ing commutators from the fundamental constrained Di
brackets@21#. The canonical momentum conjugate toA ex-
actly interchanges the magnetic and electric fields, since

P̂5 i F̂* 5 i“3Â* 5@B̂1 i Ê'#/A2. ~12!

Imposing canonical commutators at equal times, and ass
ing transverse field constraints, gives

@Âi~ t,x!,P̂ j~ t,x8!#5 id i j
'~x2x8!. ~13!

Hered i j
'(x2x8) is the transverse delta function. The resu

ing field commutators agree with those derived in more st
dard ways, and hence agree with known quantum-field th
retic results. Related dual symmetric Lagrangians o
different type were introduced by Zwanziger@22#, and by
Schwarz and Sen@23#, using pairs of real fields, rather tha
the present approach.

On expanding in terms of annihilation and creation ope
tors for the different helicities, the complete mode expans
becomes:Â(x)5Â1(x)1Â2

† (x), where

Âs~x!5E d3kF 1

~2p!3kG1/2

eksâkseik•x. ~14!

Herek5uku, while ek6 represent the right and left circularl
polarized photons, respectively@24#, with eks•eks8

* 5dss8 ,

ik3eks5sveks , andueksu51, wheres561 is the helicity
andk5uku.

Clearly, the positive frequency parts ofÂ(x) andÂ†(x)
correspond to different helicities. Thus, number operat
can be formed in each helicity case, with

N̂s5E d3kN̂k,s , ~15!

whereN̂k,65âk6
† âk6 . The above result can be used to c

culate the conserved quantityN̂h , which shows that the
normal-ordered operator equals the difference between
and right circularly polarized photon numbers@25#:

N̂h5N̂12N̂2 . ~16!
s

e

n-

t-
c

m-

-
-

o-
a

-
n

s

-

ft

Since the dual charge equals the helicity number, whic
a difference operator, it appears possible to define a Her
ian dual phase operator conjugate tonh , which could have a
physical realization. By comparison, a Hermitian quantu
phase operator conjugate to a positive-definite number op
tor is not well defined, except as a singular limit@5,6#. This is
in agreement with the experimental situation, which is th
optical phase measurements typically involve two mod
whose relative phase is then conjugate to a photon-num
difference. Relative phases are also involved in recent w
on optimal quantum measurement@26#.

Operational measurements of photon flux usually invo
time-averaging detectors that distinguish positive and ne
tive frequency components. With this in mind, it is useful
note that the helicity potentialsÂs contain only positive
frequency components. Defining a hierarchy of fields li
this, according toÂs

(n11)5s“3Âs
(n) ~whereÂs

(1)5Âs),
I find that these helicity fields satisfy modified comple
Maxwell equations of the form

i
]As

(n)

]t
5s“3As

(n) . ~17!

This implies the existence of four conservation laws
each (m,n) pair, which divide the earlier conservation law
into their helicity components. The locally conserved helic
densities are

r̂11
~m,n!5Â1

~m!†
•Â1

~n!/2, ~18!

r̂12
~m,n!5Â1

~m!
•Â2

~n!/2,

together with corresponding equations found by exchang
the helicity signs, and the corresponding conserved curre
It is remarkable that these can all be directly obtained sim
by using the complex form of Maxwell’s equations. Th
gives rise to a definition of the total photon-number opera
as

N̂5E n̂~x!dV5(
s

E d3kN̂k,s , ~19!

where I have introduced a conserved photon density oper
n̂(x)5n̂1(x)1n̂2(x), which is defined in terms of its helic
ity components:n̂s(x)5( r̂ss

(1,2)1 r̂ss
(2,1))/2. The definition in

terms of covariant positive and negative helicity quantu
fields Ĉs5(F̂s ,Âs)T/A2 ~whereF̂s5Âs

(2)! is

n̂s~x!5s:Ĉs
†~x!a0Cs~x!:. ~20!

After time-averaging, it is possible to show that the no
mally ordered dual densityĴh

0(x) is equal to the helicity den-
sity n̂h(x)5n̂1(x)2n̂2(x).

Similarly, the scaling densityĴ
s

can be reexpressed i

terms of helicity components. There are two main contrib
tions, one from photon-density-type terms~which vanishes
on time averaging!, and another from terms proportional t
ak1ak82 and their conjugates, which correspond to
quadrature-squeezing@27# measurement, in which opposit
helicities are correlated. These squeezing-related terms f
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a conserved current. I therefore define the conserved hel
squeezing densitym̂h(x), which is measurable using th
technique of homodyne detection with a local oscillator fie

m̂h~x!5~F̂1
†
•Â2

† 1F̂2
†
•Â1

† 2H.c.!/~2i !. ~21!

These definitions of the helicity density, and squeez
density operators are obtained in terms of quasilocal fie
with well-defined geometrical properties. The correspond
densities and currents have a zero expectation value
given spatial locationx, providedF̂s(x)uC&50. This is in
accordance with the requirement of quasilocality, stated
lier. The photon-number density reduces to the earlier kno
forms @7,8#. The fieldĉ therefore has the required attribut
of a photon field operator.

The construction of the photon density operator fro
positive and negative frequency parts of the total opera
means thatn̂(x) corresponds physically to a detector th
cycle averages the input field to obtain the photon numbe
detector of this type implicitly involves time averaging. B
cause of this, theinstantaneousvalue of n̂(x) is not guaran-
teed positive-definite. However, it is easily verified that t
time average ofn̂(x) on time scales longer than any releva
period is positive-definite. This seems to imply that any a
tempt to measure the conserved photon flux on time sc
less than a cycle period can cause dark counts, photoe
sion, and similar effects. These are not always observed,
to the very slow response times of most current photo de
tors ~especially efficient ones!, relative to an optical cycle
The related question of photon position in a state contain
exactly one photon has also been analyzed recently@28#.
ity
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In summary, the use of a complex field combining elect
and magnetic components has a number of interesting
tures in developing a canonical theory of the radiation fie
The Lagrangian generates first-order field equations. A co
riant form is possible, resulting in a six-component wa
equation, analogous to the Dirac equation. The fields th
selves have a nonlocal Lorenz transformation property. T
are treated here as massless spinors transforming unde
infinite-dimensional representation of the Lorenz group. T
does not appear to contradict either causality or unitarity

The complex Lagrangian form allows a direct impleme
tation of symmetry transformations that generate the c
served helicity density, as well a conserved scaling dens
The dual phase can be regarded as the prototype of a p
cal phase measurement, since it comes from the electric
magnetic fields themselves. This phase is also a rela
phase of two propagating electromagnetic modes, whic
how it is operationally measured. It is significant that t
corresponding conservation law is for a number-differen
operator, which is known to be an essential requirement
obtaining a Hermitian phase operator. This gives an alter
tive point of view on the question of a phase operator
quantum optics, since the definition of a phase operator f
single mode of the radiation field is known to result in dif
culties. I have also shown how an infinite set of local, n
mally ordered conserved densities can be generated, inc
ing a type of photon-number density and a squeez
density.
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