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Pair Correlations in a Finite-Temperature 1D Bose Gas
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We calculate the two-particle local correlation for an interacting 1D Bose gas at finite temperature
and classify various physical regimes. We present the exact numerical solution by using the Yang-Yang
equations and Hellmann-Feynman theorem and develop analytical approaches. Our results draw
prospects for identifying the regimes of coherent output of an atom laser, and of finite-temperature
‘‘fermionization’’ through the measurement of the rates of two-body inelastic processes, such as
photoassociation.
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fluctuations [11] and the equilibrium state is a quasicon- interacting via repulsive delta-function potential in a 1D
Recent observations of the one-dimensional (1D) re-
gime in trapped Bose gases [1] offer unique opportunities
for extending our understanding of the physics of these
quantum many-body systems. The reason is that the 1D
regime can be investigated theoretically by making use of
the known exactly solvable 1D models [2], which have
been the subject of extensive studies since the pioneering
works of Girardeau [3], Lieb and Liniger [4], and Yang
and Yang [5] (see [6–8] for reviews). With the develop-
ment of experimentally viable Bose gases, these field
theory models — once of theoretical relevance only —
are now becoming testable in tabletop experiments.

The knowledge of the exact solutions to the 1D models
allows us to go far beyond the mean-field Bogoliubov
approximation. In the current stage of studies of ex-
perimentally feasible 1D Bose gases, one of the most
important issues that requires such an approach is under-
standing the correlation properties in the various regimes
at finite temperatures.

In this Letter, we give an exact calculation of the finite-
temperature two-particle local correlation for an interact-
ing uniform 1D Bose gas, g�2� � h�̂�y�x�2�̂��x�2i=n2,
where �̂��x� is the field operator and n � h�̂�y�x��̂��x�i is
the linear (1D) density. As a result, we identify and
classify various finite-temperature regimes of the 1D
Bose gas. Aside from this, the pair correlations are re-
sponsible for the rates of inelastic collisional processes
[9], and are of particular importance for the studies of
coherence properties of atom ‘‘lasers’’ produced in 1D
waveguides.

At T � 0, the local two- and three-particle correlations
of a uniform 1D Bose gas have recently been calculated in
Ref. [10]. Here one has two well-known and physically
distinct regimes of quantum degeneracy. For weak cou-
plings or high densities, the gas is in a coherent or Gross-
Pitaevskii (GP) regime with g�2� ! 1. In this regime,
long-range order is destroyed by long-wavelength phase
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densate characterized by suppressed density fluctuations.
For strong couplings or low densities, the gas reaches
the strongly interacting or Tonks-Girardeau (TG) regime
and undergoes fermionization [3,4]: The wave function
strongly decreases as particles approach each other, and
g�2� ! 0.

At the nonzero temperatures studied here, one has to
further extend the classification of different regimes. For
strong enough couplings or low densities, we obtain the
TG regime with g�2� ! 0 not only at low temperatures,
but also at high temperatures. In addition, and in contrast
to previous T � 0 results, we find a weak-coupling or
high-density regime in which fluctuations are enhanced.
Asymptotically, they reach the noninteracting Bose gas
level of g�2� ! 2 (rather than g�2� ! 1), for any finite-
temperature T.

The emergence of this behavior at low temperatures
implies that one can identify three physically distinct re-
gimes of quantum degeneracy: the strong-coupling TG
regime of fermionization with g�2� ! 0, a coherent GP
regime with g�2� ’ 1 at intermediate coupling strength,
and a fully decoherent quantum (DQ) regime with g�2� ’
2 at very weak couplings. In the GP regime, where the
density fluctuations are suppressed and one has a quasi-
condensate, the local correlation approaches the coherent
level of g�2� ’ 1. However, a free (noninteracting) Bose
gas at any finite T must have g�2� � 2. So, below a critical
density- and temperature-dependent level of interaction
strength, one must have an increase in thermal fluctua-
tions, until the ideal-gas level is reached in a continuous
transition. At T � 0, the transition is discontinuous and
occurs at zero interaction strength, so that it can be
viewed as a zero-temperature phase transition. At high
temperatures the GP regime vanishes and a decrease of
coupling strength transforms the high-temperature TG
regime directly into a classical ideal gas.

We start by considering a uniform gas of N bosons
2003 The American Physical Society 040403-1
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FIG. 1. The local correlation g�2� versus � at different �. The
solid curves are exact numerical results, while the dashed
curves represent analytic results (see text).
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box of length L with periodic boundary condition. In the
thermodynamic limit (N;L ! 1, while the density n �
N=L is fixed), the system is exactly integrable by using
the Bethe ansatz, both at T � 0 and finite temperature
[4,5]. In second quantization, the Hamiltonian is

ĤH �
�h2

2m

Z
dx @x�̂�

y@x�̂�

g
2

Z
dx �̂�y�̂�y�̂� �̂�; (1)

where �̂��x� is the field operator, m is the mass, and g > 0
is the coupling constant. For Bose gases in highly elon-
gated traps to be described by this 1D model, the coupling
g is expressed through the 3D scattering length a. This is
done assuming that a is much smaller than the amplitude
of transverse zero point oscillations l0 �

����������������
�h=m!0

p
, where

!0 is the frequency of the transverse harmonic potential.
For a positive a � l0, one has

g � 2 �h2a=ml20; (2)

and the 1D scattering length a1D is �h2=mg ’ l20=a � l0
[12]. The 1D regime is reached if l0 is much smaller than
the thermal de Broglie wavelength of excitations �T �
�2� �h2=mT�1=2 and a characteristic length scale lc [13]
responsible for short-range correlations. On the same
grounds as at T � 0 [10], one finds that for fulfilling
this requirement it is sufficient to satisfy the inequalities
a � l0 � f1=n; �Tg.

The uniform 1D Bose gas with a short-range repulsive
interaction can effectively be characterized by two pa-
rameters: the dimensionless coupling parameter

� � mg= �h2n; (3)

and the reduced temperature � � T=Td, where the tem-
perature of quantum degeneracy is given by Td �
�h2n2=2m, in energy units (kB � 1).

For calculating the local two-body correlation g�2� at
any values of � and �, we use the Hellmann-Feynman
theorem [14]. At T � 0, it has been used for calculating
the mean interaction energy [4], and for expounding the
issue of local pair correlations [10]. Consider the partition
function Z � exp��F=T� � Tr exp��ĤH=T� which deter-
mines the free energy F. Here the trace is taken over the
states of the system with a fixed number of particles in the
canonical formalism. For the grand canonical descrip-
tion, one has to replace the condition of a constant par-
ticle number by the condition of a constant chemical
potential � and add a term ��N̂N to the Hamiltonian.
For the derivative of F with respect to the coupling
constant, one has @F=@g � �T@�logZ�=@g and, hence,

@F
@g

�
1

Z
Tr�e�ĤH=T @ĤH=@g� � �L=2�h�̂�y�̂�y�̂� �̂�i: (4)

Introducing the free energy per particle f��; �� � F=N,
the normalized two-particle correlation is

g�2� �
h�̂�y�̂�y�̂� �̂�i

n2
�

2m

�h2n2

�
@f��; ��
@�

�
n;�
: (5)
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We have calculated the free energy f��; �� by numeri-
cally solving the Yang-Yang exact integral equations for
the excitation spectrum and the distribution function of
‘‘quasimomenta’’ [5]. By implementing a postselective
algorithm that ensures that the derivative of f��; �� is
taken for constant n, we then calculate g�2� from Eq. (5).
The results of our calculations are presented in Fig. 1. We
now give a physical description of different regimes de-
termined by the values of the coupling constant � and the
reduced temperature �.

Strong coupling regime [� * max�1;
���
�

p
�].—In the

strong-coupling TG regime, the local correlation g�2�

reduces dramatically due to the strong repulsion between
particles, and becomes zero for � ! 1. In this regime the
physics resembles that of free fermions, both below and
above the quantum degeneracy temperature. Along the
lines of Ref. [10], to leading order in 1=� the finite
temperature g�2� can be expressed through derivatives of
Green’s function of free fermions G�x� �

R
dk nF�k� �

exp�ikx�=�2��, where nF�k� are occupation numbers for
free fermions. For the normalized local correlation, we
obtain g�2� � 4��G0�0��2 �G00�0�G�0��=�2n4.

In the regime of quantum degeneracy, � � 1, the local
correlation is dominated by the ground state distribution
nF�k� �  �k2F � k2�, where kF � �n is the Fermi momen-
tum. Small finite-temperature corrections are obtained
using the Sommerfeld expansion:

g�2� �
4

3

�
�
�

�
2
�
1


�2

4�2

�
; � � 1: (6)

This low temperature result for g�2� has a simple physical
meaning. A characteristic distance related to the interac-
tion between particles is a1D � �h2=mg� 1=�n, and fer-
mionic correlations are present at interparticle distances
x * a1D. For smaller x, the correlations practically do not
change. Hence, the correlation g�2� for large � is nothing
else than the pair correlation for free fermions at a
distance a1D. The latter is g�2� � �kFa1D�

2 � 1=�2, which
agrees with the result of Eq. (6) for � ! 0.

In the temperature interval 1 � � � �2, the gas is
nondegenerate, but the 1D scattering length a1D is still
040403-2
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much smaller than the thermal de Broglie wavelength �T .
As the characteristic momentum of particles is now the
thermal momentum kT �

����������
2mT

p
= �h, one estimates that

g�2� � �kTa1D�2 � �=�2. Calculating Green’s function
G�x� for the classical distribution nF�k�, we obtain

g�2� � 2�=�2; 1 � � � �2; (7)

which agrees with the given qualitative estimate.
The local correlation g�2� is still much smaller than
1, and we thus have a regime of high-temperature
‘‘fermionization.’’

The results of Eqs. (6) and (7) agree with the outcome
of our numerical calculations. For � � 0:1 and � � 10,
they are shown in Fig. 1 (in the region of large �) by
dashed curves next to the solid curves found numerically
for the same values of �.

GP regime (�2 & � & 1).—In the intermediate cou-
pling or GP regime, for sufficiently low temperatures the
equilibrium state is a quasicondensate: The density fluc-
tuations are suppressed, but the phase fluctuates [15]. As
the phase-coherence length l! greatly exceeds the short-
range characteristic length lc � �h=

����������
mng

p
, for finding the

local correlations the field operator can be represented as
a sum of the macroscopic component �0 and a small
component �̂�0 describing finite-momentum excitations.
Actually, the component �0 contains the contribution of
excitations with momenta k & k0 � l�1

c , whereas �̂�0 in-
cludes the contribution of larger k. At the same time, the
momentum k0 is chosen such that most of the particles are
contained in �0. This picture is along the lines of Ref. [6],
and the momentum k0 drops out of the answer as the main
contribution of �̂�0 to g�2� is provided by excitations with
k� l�1

c [16]. The two-particle local correlation is then
reduced to g�2� � 1
 2�h�̂�0y�̂�0i 
 h�̂�0�̂�0i�=n. The nor-
mal and anomalous averages, h�̂�0y�̂�0i and h�̂�0�̂�0i, can be
calculated by using the same Bogoliubov transformation
for �̂�0 as in 3D. This gives the result that

g�2� � 1

Z 1

�1

dk
2�n

�
Ek

"k
�1
 nk� � 1

�
; (8)

where Ek � �h2k2=2m, "k �
��������������������������
E2
k 
 2ngEk

q
is the

Bogoliubov excitation energy, and nk are occupation
numbers for the excitations.

The integral term in Eq. (8) contains the contribution
of both vacuum and thermal fluctuations. The former is
determined by excitations with k� l�1

c , and at � � 0 we
immediately recover the zero-temperature result of
Ref. [10]. For very low temperatures � � �, thermal
fluctuations give an additional correction, so that

g�2� � 1� 2
����
�

p
=�
��2=�24�3=2�; �� �� 1: (9)

The phase-coherence length is determined by vacuum
fluctuations of the phase and is l! � lc exp��=

����
�

p
� [11].

For � � 0:001, the above approximate result, shown in
Fig. 1 at intermediate values of �, practically coincides
with the corresponding exact numerical result.
040403-3
For temperatures � � �, thermal fluctuations are more
important than vacuum fluctuations. The main contribu-
tion to the local correlation is again provided by excita-
tions with k� l�1

c , and we obtain from Eq. (8)

g�2� � 1
 �=�2
����
�

p
� ; � � � �

����
�

p
: (10)

The phase-coherence length is determined by long-
wavelength phase fluctuations. The calculation similar
to that for a trapped gas [17] gives l! � �h2n=mT. The
condition l! � lc, which is necessary for the existence of
a quasicondensate and for the applicability of the
Bogoliubov approach, immediately yields the inequality
� �

����
�

p
. Thus, Eq. (10) is valid under the condition � �

� �
����
�

p
, and the second term on the right-hand side of

this equation is a small correction. One can easily see that
this correction is just the relative mean square density
fluctuations. In the region of its validity, the result of
Eq. (10) agrees well with our numerical data, and is
shown in Fig. 1 for � � 0:001, in the region of small �
values. The exact results graphed in Fig. 1 for different
values of � show that the coherent or GP regime is not
present for � * 0:1, in the sense that g�2� as a function of �
does not develop a plateau around the value g�2� � 1.

Decoherent regime.—At very weak couplings, � &

min��2;
���
�

p
�, the gas enters a decoherent regime. Both

phase and density fluctuations are large. At small enough
� the local correlation is always close to the result for free
bosons, g�2� � 2. In this regime, the only consequence of
quantum degeneracy is the quantum Bose distribution for
occupation numbers of particles, so we can further divide
it into a decoherent quantum (DQ) regime for � < 1 and a
decoherent classical (DC) regime for � > 1.

The result of Eq. (10) cannot be used for � � 0. In this
case one has a gas of free bosons, and Wick’s theorem
leads to g�2� � 2 at any �. For small �, our data in Fig. 1
show a sharp increase of g�2� from almost 1 to almost 2
when � & �2. This is a continuous transition from the
quasicondensate to the DQ regime [18]. Lowering the
temperature lowers the value of � at which this transition
occurs. For � � 0, the transition takes place at � � 0. In
this case it is discontinuous and can be regarded as a zero-
temperature phase transition.

The DQ regime can be treated asymptotically by em-
ploying a standard perturbation theory with regard to the
coupling constant g. Omitting the details of calculations,
which will be published elsewhere, for the local correla-
tion we obtain

g�2� � 2� 4�=�2;
����
�

p
� � � 1: (11)

At higher temperatures � * 1, the decoherent quantum
regime (

����
�

p
& � & 1) transforms to the decoherent clas-

sical regime (� * maxf1; �2g) and g�2� remains close to 2
(see Fig. 1). The local correlation is found in the same way
as in the DQ regime and takes the asymptotic form

g�2� � 2� �
������������
2�=�

p
; � � maxf1; �2g: (12)
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The result of Eq. (12) remains valid for large values of
�, provided that �2 � �. Here the de Broglie wavelength
�T becomes smaller than a1D and the regime of high-
temperature fermionization continuously transforms into
the decoherent regime of a classical gas. The corrections
to g�2� � 2, given by Eqs. (11) and (12), are in agreement
with the exact numerical calculations. In Fig. 1, the
approximate analytical results are shown by the dashed
lines next to the corresponding solid lines found numeri-
cally, for � � 0:1 and � � 1000.

In conclusion, we have calculated the two-particle
local correlation g�2� for a uniform 1D Bose gas at finite
temperatures [19]. Within their range of validity, the
analytical results agree with exact numerical calculations
based on the Hellmann-Feynman theorem and the Yang-
Yang equations. The knowledge of g�2� allows one to
deduce when the approximate GP equation often used
for first-order phase-coherence calculations is valid. The
value of g�2� ’ 1 indicates that the correlation function
factorizes, which is a necessary condition for using the
GP approach. The prediction of coherent behavior only
for certain temperatures and interaction strengths, �2 &

� & 1, may be an important criterion for atom lasers
where spatial coherence is a necessary ingredient in ob-
taining interference and high-resolution interferometry.
Our results are also promising for identifying the regime
of fermionization in finite-temperature 1D Bose gases
through the measurement of inelastic processes in pair
interatomic collisions such as photoassociation. Here
the transitions occur at interatomic distances which are
much smaller than the short-range correlation length lc
and, therefore, the rate will be proportional to the local
correlation g�2�.

We also find a fully decoherent quantum regime in the
case of very weak interactions or high densities. There is a
continuous transition from the GP regime to the ideal-gas
limit (� ! 0), where the gas displays large thermal
(Gaussian) density fluctuations with g�2� � 2 at any finite
temperature [20]. As � is decreased towards the ideal gas,
the GP result holds only above a certain ratio of inter-
action strength to density. Below this, the GP approach
becomes invalid and there is a dramatic increase in fluc-
tuations, with g�2� ! 2 as � ! 0.
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