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We summarize recent theoretical results for the signatures of strongly correlated
ultra-cold fermions in optical lattices. In particular, we focus on collective mode
calculations, where a sharp decrease in collective mode frequency is predicted at
the onset of the Mott metal–insulator transition; and correlation functions at
finite temperature, where we employ a new exact technique that applies the
stochastic gauge technique with a Gaussian operator basis.

1. Introduction

Recent progress in obtaining bosonic and fermionic quantum gases has ushered in a
new experimental paradigm in physics. An essential feature in these developments is
that, although technically challenging, ultra-cold atom experiments have remarkably
simple physical conditions. The significant issues are that:

. the underlying interactions are well understood;

. there are few parameters needed;

. interactions can be tuned in many cases.

This will greatly help our understanding of many-body physics, since precise theor-
etical models can be readily obtained at low density, without the complications of a
crystal lattice and reservoirs – as is so often the case at present.

Thus, one can apply simple theoretical models with high accuracy, allowing
innovative experimental tests of methods in quantum field theory (QFT). This could
lead to novel fundamental experiments in physics, such as tests of massive particle
quantum entanglement, as well as applications to metrology.

An important element in recent investigations is the technique of coherent
transformation of cold atoms to molecules, either using photo-association [1] or
Feshbach [2] resonance methods. This allows a strong, tunable interaction between
the atoms. Experiments have confirmed coherently coupled atom–molecular models
[3, 4], with renormalization [5–8].

Bosonic molecular experiments include 133Cs, 87Rb, and 23Na [9–11]. Fermi gases
of 40K and 6Li atoms have proved to be ideal experimental systems owing to their
long molecular lifetimes [12]. These have resulted in cold molecule production
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[13–16], molecular Bose–Einstein condensation [17, 18], and preliminary indications
of fermion superfluid behaviour [19].

The properties of ultracold Bose gases in optical lattices [26] are another ‘hot’
topic, as a starting point for the exploration of strongly correlated many-body
systems [27–29]. Fermionic experiments in optical lattices are already underway
[30, 31], thus allowing the direct realization of the strongly coupled lattice of
fermions known as the Hubbard model. In this paper we review some recently
obtained results for the Hubbard model, in particular:

. the use of collective modes as signatures for the metal–insulator
phase-transition;

. a new exact Gaussian technique for calculating finite temperature correlation
functions, without the Fermi sign problem of traditional Monte Carlo
methods.

2. Hubbard model

A one-dimensional, sinusoidal optical potential is easily created for trapped atoms.
The results are different for fermions and for bosons, since because of the Pauli
exclusion principle, at least two distinct spin eigenstates are needed to have on-site
interactions with fermions.

This leads to the (fermionic) Hubbard model,

H ¼ �
X

j, �¼�1

tij baayi, �baaj, � þ h:c:
� �

þU
X
j

bnnj,þbnnj,� þ X
j, �¼�1

Vjbnnj, �, ð1Þ

where Vj includes the external trap potential which we assume is harmonic, U gives
rise to on-site interactions, and tij describes tunnelling between the sites. This model
of interacting fermions is also used in high-Tc superconductivity, where it is more
qualitative than quantitative in its applicability. The dimensionality and
lattice structure of the model determine the tunnelling matrix tij. In most of the
paper, we will assume this is a one-dimensional lattice with tij ¼ t�iþ1, j, and
Vj ¼ m! 2

0 d
2j 2=2, where m is the fermion mass, !0 the trap frequency, and d the

well separation. We also give correlation results for two-dimensional lattices in the
last section.

2.1 Band structure

In a single-band model as given above, one can expect a band insulator to form in
the non-interacting limit, when all available sites have been occupied (i.e. two
particles per site). However, this is complicated by the existence of the external
potential. For a large, deep trap, the density increases towards the centre, so that
the insulating region becomes localized, coexisting with a conducting region in
the wings.

When there are strong repulsive on-site interactions, the system develops a new
band structure in which an insulating region forms at half-filling, i.e. with only one
particle per site. This is shown in figure 1.
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2.2 Local density approximation

In the local density approximation (LDA), we assume that the trap is slowly varying
compared to all correlation length scales. This allows us to use the piecewise exact

solution for the uniform 1D Hubbard model [32] to describe the strongly correlated
interacting ground state.

It is most useful to introduce an effective mass and frequency, corrected for the

band-dispersion, as well as a dimensionless coupling constant and filling factor,
where:

. effective mass, frequency: m� ¼ �hh2=ð2td 2Þ, ! ¼ �hh!0ðm=m
�Þ

1=2=t;
. coupling constant � ¼ U2=ð8t2N!Þ;
. effective filling factor � ¼

ffiffiffiffiffiffiffiffiffiffi
2N!
p

=�.

The effective filling factor can be understood as corresponding to a single particle per

site (n¼ 1) at the trap centre for �¼ 1, although the interpretation is more complex in
general, due to the effects of the trap potential. Note that � is defined as a global
parameter for the entire trap, while the occupation per site (n) varies with radius.

With these parameters, and using the LDA, with a fixed global chemical potential
and harmonic trap potential, one obtains a phase diagram [33, 34] as shown in the

right-hand diagram in figure 1. The labelled regions are as follows:

A: a pure metallic phase. In this case there are no filled bands, and the quantum
gas behaves analogously to a metallic conductor, with n<2 everywhere.

B: a single Mott insulator domain at the centre, accompanied by two metallic
wings. Here the strong particle–particle interactions prevent occupation numbers
larger than one, even though these are allowed by the Pauli principle.

C: a metallic phase at the centre surrounded with Mott insulator plateaus. In this
case, a larger particle number opens up a second band in the trap centre, in which

higher occupations with n>1 are possible.

Figure 1. Left graph: schematic illustration of effective single-particle band structure in a
harmonically trapped fermionic Hubbard model. Right graph: phase-diagram versus the
coupling (�) and filling (�). For details see section 2.2.
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D: a band insulator at the centre with metallic wings outside. This is similar to
phase B. Here, however, due to weaker interparticle interactions there is no Mott
phase, and the central band insulator with n¼ 2 is caused purely by the Pauli
exclusion principle.

E: a band insulator at the trap centre surrounded by metallic regions, in turn
surrounded by Mott insulators. In this case there is a large particle number and
strong interactions, so both Mott insulator and band insulator regions can occur at
different radii from the centre.

3. Collective mode frequencies

3.1 Luttinger approximation

In order to describe the collective modes, we can make use of the Luttinger
long-wavelength Hamiltonian [29], valid for small displacements. Because of the
spin-density separation in the Hamiltonian, there are two types of waves present,
described by the indices � ¼ �, �. We assume here that the external potential only
depends on the density, and does not transform one type of wave into the other, so
that the inhomogeneous Hamiltonian is:

HLL ¼
X
�¼�, �

ð
dx

u�ðxÞ

2
K�ðxÞ�

2
� þ

1

K�ðxÞ

@��
@x

� �2
" #

: ð2Þ

Here the density and spin-wave velocities are u�, u�, respectively, and these have
Luttinger exponents K�,K�. Using the LDA, we can therefore solve the resulting
wave equations for the collective mode frequency, with zero-current boundary
conditions at the boundaries where the density vanishes [35].

The results are shown in figure 2, in which we have solved for the collective
fermionic modes in a trapped one-dimensional two-component Fermi gas, together
with an optical lattice [34]. These graphs show a sharp frequency dip as an
unmistakable signature of Mott metal–insulator transition (MMIT) physics.

Figure 2. Breathing (!B) and dipole (!D) mode frequency versus filling factor � for zero,
intermediate and strong couplings.

2264 P.D. Drummond et al.



This occurs just at the filling factor where the insulating region starts to form at the
trap centre.

The reason for this is simple to understand. Collective modes involve
large density currents, which propagate through the lattice with a characteristic
velocity u�. However, these velocities tend to zero in the neighbourhood of an
insulating region, and must be exactly zero inside the insulator. This effect slows
down transport processes and therefore reduces all collective mode frequencies,
which scale as velocity/length. The effect is strongest just when the insulating region
starts to form, leading to a large fraction of the conducting region having a low
average velocity. As the insulating region grows, the part of the trap that is
conducting is localized to the wings, so the frequency increases again due to the
smaller characteristic lengths involved.

However, there are some limitations to these methods. In particular, this is a
linearized method, and hence is only valid for small displacements; it also only
applies to zero temperature.

Preliminary results in the non-interacting case using the Boltzmann equations
(circles in figure 2) show that there are additional damping effects that are propor-
tional to displacement. This leaves an unsolved problem, of how to deal with finite
temperatures and large displacements in the interacting case.

4. Quantum simulation with Gaussian operators

We now turn to the question of how to carry out many-body quantum field theory
calculations without approximations. Quantum Monte Carlo (QMC) techniques for
fermionic problems are strongly limited by the Fermi sign problem, which causes
large sampling errors [36–38].

Here we give some results using a novel method constructed from a basis of
Gaussian operators, which treats covariances (Green’s functions) as phase-space
variables. In principle, this method can simulate both fermions and bosons [39],
including either thermal ensembles or dynamics. We will treat the case of finite-
temperature fermionic ensembles for definiteness.

4.1 Gaussian expansion

Our approach is different from traditional QMC methods. We expand the state
density operator b�� in an operator basis b��:

b�� ¼ ð Pð�!Þb��ð�!Þd �!, ð3Þ

where Pð�
!

Þ is a probability distribution, sampled stochastically over the variables�
!

which constitute a phase space. Time (or inverse temperature) evolution is obtained
by a mapping procedure which maps operator equations into stochastic equations:

@b��=@t ¼ bLL½b�� ��!@ �! =@t ¼ A
!

þB 	
!

: ð4Þ
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These equations are typically not unique, and have a ‘stochastic gauge’ degree of
freedom, which must be chosen to make the distribution compact enough to
eliminate boundary terms and minimize sampling errors [40–42].

4.2 Gaussian operators

The mapping procedure depends on the operator basis chosen, and we shall choose a
Gaussian operator basis, defined for both Fermi [43] and Bose [44] cases, as:

b���ðnÞ ¼ � I� nj j�1: exp baa I� I� I� n½ �
�1

� �baayh i
: : ð5Þ

Here, annihilation and creation operators are included as a vector:baa ¼ ðbaa1, . . . ,baaMÞT.
The upper signs apply for bosons, the lower signs for fermions.

A typical application of these methods is to calculate thermal equilibrium
correlation functions. Since the fermion number is usually unknown, the grand
canonical distribution, b�� ¼ expð�ðbHH� 
bNN Þ�Þ, is the most appropriate choice of
ensemble. Here, b�� is the unnormalized density operator, � ¼ 1=kBT is the inverse
temperature, and 
 is the chemical potential. The phase-space variable n is a complex
matrix, which is best thought of as a (finite temperature) stochastic Green’s function.
Thus, hbaayibaaji� ¼ h�nijiPð�Þ, where h:iP indicates a phase-space average over the
distribution P.

5. Fermionic correlations

Rewriting the canonical density operator as an equation for inverse temperature
evolution, one obtains:

db��
d�
¼ �

1

2
ðbHH� 
bNNÞ,b��h i

þ
: ð6Þ

After applying the appropriate identities, one then obtains the following
Stratonovich stochastic gauge equations for the Hubbard model, where � is a
weight and n� is the stochastic Green’s function for spin � ¼ �1:

d�

d�
¼ ��Hðnþ, n�Þ

dn�
d�
¼

1

2
ðI� n�ÞmT ð1Þ� n� þ n�mT ð2Þ� ðI� n�Þ
� 	

: ð7Þ

Here we have introduced a transition matrix T ðjÞ� and real Gaussian noise terms
defined by:

. T-matrix:

T
ðrÞ
i, j, � ¼ tij � �i, j jUj snj, j,�� � nj, j, � þ

1

2

� �
� 
þ �ðsþ1Þ=2�ðrÞj


 �
;
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. Noise:

�ðrÞj ð�Þ �
ðr0Þ
j0 ð�

0Þ

D E
¼ 2jUj�ð� � �0Þ�j, j0�r, r0 :

5.1 Finite-temperature correlations

The left graph of figure 3 shows the second-order correlation function gð2Þ for
a simulation of the uniform one-dimensional Hubbard model, with both attractive
and repulsive on-site interactions, compared to the analytic result at zero
temperature [32].

The right graph shows the mean energies and particle numbers in a 2D lattice for
a variety of chemical potentials, with no evidence for a Fermi sign problem that
would cause enhanced sampling errors at low temperature. We note that this
extension to higher dimensions is especially troublesome for traditional QMC
techniques in the repulsive case. Our technique shows no evidence of increased
sampling error at increased dimensionality, or with changes either to the filling factor
or the sign of the coupling constant.

6. Summary

We have reviewed some recent theoretical developments for ultra-cold fermionic
atoms in an optical lattice.

For the case of the Mott metal–insulator (MMIT) transition in one dimension, at
zero temperature, we give a universal phase diagram based on the exact 1D
solutions, and valid in the LDA limit of large traps. A crucial experimental signature
was predicted, namely a strong frequency dip at the filling factor corresponding to
the onset of the MMIT at the trap centre.
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Figure 3. Hubbard models versus inverse temperature �. Left graph shows the second-order
correlation function g2ð0Þ ¼ hbnnjjþbnnjj�i=hbnnjjþihbnnjj�i for a 100-site 1D lattice at half-filling.
jUj ¼ 2 and t¼ 1. The right graph shows a 16� 16 2D lattice for chemical potentials 
¼ 2
(solid), 
¼ 1 (dashed) and 
¼ 0 (dot-dashed). Curves without crosses give the number of
particles per site for 
¼ 1 (dashed) and 
¼ 0 (dot-dashed). U¼ 4, t¼ 1, and 50 paths initially.
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More generally, a novel exact technique for general dynamic and static Fermi
calculations was presented. This can be used to calculate correlations of strongly
correlated fermions at any temperature – and for Hubbard models in any dimension.
This is therefore a solution to the long-standing Fermi sign problem in the
Hubbard model.
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[31] M. Köhl, H. Moritz, T. Stöferle, et al., Phys. Rev. Lett. 94 080403 (2005).
[32] E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20 1445 (1968).
[33] M. Rigol, A. Muramatsu, G.G. Batrouni, et al., Phys. Rev. Lett. 91 130403 (2003).
[34] X.-J. Liu, P.D. Drummond, H. Hu, Phys. Rev. Lett. 94 136406 (2005).
[35] R. Combescot, X. Leyronas, Phys. Rev. Lett. 89 190405 (2002).
[36] D.M. Ceperley, Rev. Mod. Phys. 71 438 (1999).
[37] W. von der Linden, Phys. Rep. 220 53 (1992).
[38] R.R. dos Santos, Braz. J. Phys. 33 36 (2003).
[39] J.F. Corney, P.D. Drummond, Phys. Rev. Lett. 93 260401 (2004).
[40] P. Deuar and P.D. Drummond, Phys. Rev. A 66 033812 (2002).
[41] P.D. Drummond, P.Deuar, K.V. Kheruntsyan, Phys. Rev. Lett. 92 040405 (2004).
[42] M.R. Dowling, P.D. Drummond, M.J. Davis, et al., Phys. Rev. Lett. 94 130401 (2005).
[43] J.F. Corney, P.D. Drummond, cond-mat/0411712.
[44] J.F. Corney, P.D. Drummond, Phys. Rev. A 68 063822 (2003).

2268 P.D. Drummond et al.


	first

