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We describe a scheme, operating in a manner analogous to a reversed Raman output
coupler, for measuring the phase-sensitive quadrature statistics of an atom laser beam.
This scheme allows for the transferral of the atomic field statistics to an optical field, for
which the quantum statistics may then be measured using the well-developed technology
of optical homodyne measurement.

1. INTRODUCTION

The development of optical homodyne techniques [1,2] allowed for quadrature measure-
ments of the electromagnetic field, which subsequently led to demonstrations of quantum
features such as squeezing [3], the Einstein-Podolsky-Rosen (EPR) paradox [4] and contin-
uous variable teleportation [5]. As the techniques for the manipulation of Bose-Einstein
condensates (BEC) are constantly improving, it may not be long before similar effects
will be achieved with bosonic matter waves in the laboratory. Several methods have been
proposed for producing highly non-classical BEC states, including correlated atomic pairs
and demonstrations of the EPR paradox using molecular dissociation [6], the transfer of
quantum states from an optical field to an atomic field [7–9], and the entanglement of an
optical field with an atom laser output [10]. The successful demonstration of these effects
will require some method of performing quadrature measurements on propagating atomic
fields, as a matter-wave equivalent of optical homodyne measurements.

In optical homodyne techniques an intense reference field, which may be considered
as classical, is mixed on a beamsplitter with the field of interest. Measurement and
manipulation of the photocurrents obtained from measurements of the two outputs of the
beamsplitter then allow for the quantum statistics of the field to be accessed in a manner
not possible with ordinary intensity measurements. This process allows us to measure
the optical field quadratures which have a direct analogue in bosonic matter fields. In
principle, these could be measured for atomic fields by repeating the steps used in the
optical case, but atomic beamsplitters and phase-controlled reference condensates are not
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simple to produce in the laboratory. We propose a way to circumvent these difficulties by
transferring the desired statistics to an optical field before making the measurements.

2. ATOMIC QUADRATURES

The well known field quadratures of quantum optics [11] are defined as

X̂a = â + â†, and Ŷa = −i
(
â − â†) , (1)

where â is the photonic annihilation operator. The Heisenberg uncertainty principal then
requires that V (X̂)V (Ŷ ) ≥ 1, with an optical field being called “squeezed” when one of
these variances is less than one. In an equivalent manner we may use the annihilation
and creation field operators for massive bosons to define atomic quadratures,

X̂ψ = ψ̂ + ψ̂† and Ŷψ = −i
(
ψ̂ − ψ̂†) , (2)

which have the same mathematical properties and allow us to define concepts such as
squeezing for atomic fields. Although simple to define, it is not obvious how to measure
these atomic quadratures. We will show how, under certain conditions, their statistics
may be transferred to an optical field and then indirectly measured. Note that all mea-
surements are in fact indirect, as what is registered is always something such as a digital
readout of a photocurrent and not the actual quantity being measured.

3. RAMAN INCOUPLING

Our scheme is an adaptation of the Raman output coupler for atom lasers [12], but with
an arrangement of the Raman fields which reverses the coupling, as shown in Fig. 1. At
the simplest level, which ignores any spatial effects (for a treatment of these, see Bradley
et al. [13]), the system may be described by the Hamiltonian

H = h̄(ω13 − Δ)ψ̂†
3ψ̂3 + ih̄g13

[
âψ̂1ψ̂

†
3 − â†ψ̂†

1ψ̂3

]
+ ih̄g23

[
b̂ψ̂2ψ̂

†
3 − b̂†ψ̂†

2ψ̂3

]
, (3)

where ψ̂2 acts on the atom laser field and ψ̂1 is the operator for the highly occupied
trapped condensate, while ψ̂3 acts on the upper level of the Raman transition. The two
annihilation operators â and b̂ belong to the two laser fields, with g13 and g23 describing
the coupling strength between these and the atomic transitions. These fields are detuned
from the upper atomic level by Δ. Note that the atomic levels are not levels of a single
atom, but describe different levels of single atoms within interacting atomic fields. The
next level of approximation, to enable analytical solutions, is to assume that the control
field, described by b̂, is intense and coherent, so that we may set g23〈b̂〉 = Ω23, and that
the condensate in level one is large and essentially undepleted, so that we may also set
g13〈ψ̂1〉 = Ω13. We will set the Ωij as real.

4. ANALYSIS AND RESULTS

We may now find the Heisenberg equations of motion for the variables we are treating
quantum mechanically as

dâ

dt
= −Ω13ψ̂3,

dψ̂2

dt
= −Ω23ψ̂3,

dψ̂3

dt
= iΔ̃ψ̂3 + Ω23ψ̂2 + Ω13â, (4)
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Figure 1. Schematic of the Ra-
man incoupling scheme, showing the
three atomic levels and the two op-
tical fields.
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Figure 2. Results of stochastic integration of the
five-mode model, showing excellent transfer of
the atomic statistics to the optical probe.

where Δ̃ = Δ − ω13. Assuming that Δ is large, adiabatic elimination of ψ̂3 allows us to
write the linear Heisenberg equations of motion for â and ψ̂2,

dâ

dt
= −iΩ13

Δ̃

[
Ω23ψ̂2 + Ω13â

]
,

dψ̂2

dt
= −iΩ23

Δ̃

[
Ω23ψ̂2 + Ω13â

]
, (5)

along with the equations for the Hermitian conjugates. These may be solved analytically
to give

â(t) =
Ω2

23 + Ω2
13e

−iΩ2t/Δ̃

Ω2
â(0) +

Ω13Ω23

[
e−iΩ2t/Δ̃ − 1

]

Ω2
ψ̂2(0),

ψ̂2(t) =
Ω13Ω23

[
e−iΩ2t/Δ̃ − 1

]

Ω2
â(0) +

Ω2
13 + Ω2

23e
−iΩ2t/Δ̃

Ω2
ψ̂2(0), (6)

and their Hermitian conjugates, where we have set Ω2 = Ω2
13 + Ω2

23. These solutions can
be used to show that, at t = πΔ̃/Ω2,

V (X̂a)|t=πΔ̃/Ω2 =
(Ω2

23 − Ω2
13)

2

Ω4
V (X̂a)|t=0 +

4Ω2
13Ω

2
23

Ω4
V (X̂ψ)|t=0, (7)

where V (X̂ψ) is the variance of the X̂ quadrature of ψ̂2. The same process will work for
arbitrary quadrature angle.

Assuming that V (X̂a)|t=0 = 1, which holds for either the vacuum or a coherent state,
we find

V (X̂a)|t=πΔ̃/Ω2 =
(Ω2

23 − Ω2
13)

2

Ω4
+

4Ω2
13Ω

2
23

Ω4
V (X̂ψ)|t=0, (8)

M.K. Olsen et al. / Nuclear Physics A 790 (2007) 733c–736c 735c



which involves only known quantities. In the special case of Ω23 = Ω13, we find

V (X̂a)|t=πΔ̃/Ω2 = V (X̂ψ)|t=0, (9)

in which case there is a complete transfer of the atomic quadrature statistics to the optical
field.

We have verified these solutions using stochastic integration of the full five-mode model
using the positive-P representation [14], as shown in Fig. 2. The initial conditions were
〈ψ̂†

1(0)ψ̂1(0)〉 = 〈b̂†(0)b̂(0)〉 = 108, 〈ψ̂†
3(0)ψ̂3(0)〉 = 0, 〈ψ̂†

2(0)ψ̂2(0)〉 = 25014, 〈â†(0)â(0)〉 =
0, g13 = g12 = 10−3 and Δ̃ = 100. As can be seen, there is a periodic transfer of statistics
between the atomic beam and the optical probe, so that if the interaction time can be
tuned to the point of optimal transfer, a complete readout of the atomic variances can be
made from the probe field.

5. CONCLUSION

We have shown that it is in principle possible to achieve a perfect transference of quan-
tum statistics from an atomic field to an optical field. A more complicated one-dimensional
analysis shows that the scheme works well if certain conditions such as momentum match-
ing can be achieved. Spontaneous emission is not a problem because we operate in a
regime where the lasers are detuned from the excited level. Further work is being under-
taken to study the behaviour in higher dimensions and also whether there needs to be an
established initial phase between the atomic beam and the trapped condensate.
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