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Abstract. We consider the quantum model of a driven anharmonic oscillator, in the presence
of dissipation, and present an exact analytic solution for the corresponding Wigner function

in the steady-state regime. This provides explicit phase-space images of the resulting state of
the cavity mode, and allows us to understand how the quantum interference is built up into it.
The photon number probability distribution is calculated and analysed as well. We monitor
the transition from the semiclassical to extreme quantum regime of operation, and identify
gualitative changes, where the conventional characteristics of the model, such as bistability or
turning points, become meaningless.

Keywords: Quantum quasiprobabilities, Wigner function, photon statistics, anharmonic
oscillator, dissipative, nonlinear quantum noise effects

1. Introduction An example of a quantum optical dissipative model that
has been analysed in terms of the Wigner function is the well
Recent developments in quantum optics have resulted inknown parametric oscillator (PO) model. An approximate
significantly increased interest in the Wigner function [1]. result for the corresponding Wigner function, based on the
Being a joint quasiprobability distribution for the position  selution of the truncated Fokker—Planck equation, has been
and momentum observables, the Wigner function has a one-given in [6]. Another approach, based on the relation of the
to-one correspondence to the density matrix, thus providing wigner function to the known solution of the Fokker—Planck
complete information about a given quantum system. It also equation in positiveP-representation, has been used in [7]
allows us to visualize the quantum dynamical image of a g ganalyse quantum superposition and interference effects in
quantum state in the phase space—an important problemMpg This approach has been further developed in [8], to utilize
since the early stages of quantum mechanics. As compared, complexp-representation solution for a generalized model
with other quasiprobability d|str|bu_t|9ns, the ngn_erfuncuon of PO, thus allowing one to obtain a simple analytic result for
has Fhe advantage_of t_)ESt d_escrlbmg nonclassical sta_tt_es fhe corresponding Wigner function. Numerical techniques to
light n quantum optics, including the quantum superposition analyse the Wigner function for the PO subjected to both one-
and mterference pherpmena (see, €.9., [2] and .reference%md two-photon loss mechanisms, and recently for the model
therein). ~ Most significantly, the Wigner function has ofthree-photon down-conversion, have also been used [9,25].

been shown to be experlmenftally _rec_ons_tructlble, b_y an addition, we mention a recent paper [10] which provides
measurement of a set of probability distributions of the light : . .

. . a novel approach for the direct computation of the Wigner
quadrature-phase amplitudes, using the method of quantumfunction from phase space

tomography [3-5]. These quadrature probabilities are simply In this paper we present a new Wigner-function

the marginal distributions of the Wigner function. . P~ )
solution for a dissipative quantum mechanical system. We

A number of model Hamiltonians and particular . ) i
idealized nonclassical states of light has been successfullyconsider the well known model of a driven anharmonic

described with use of the Wigner function. However oscillator (AHO), and derive an exact analytic result for the

very few realistic quantum optical systems that include Corresponding Wigner function in the steady state.
dissipation, and lead to generation of nonclassical light, are ~ The AHO is one of the most fundamental models in
known to be analysed in terms of the Wigner function. This guantum optics [11-17]. It describes a self-interaction (self-
is especially true, if we look for exact analytic results. The Pphase modulation or Kerr interaction) of a mode of radiation
difficulty here is that nonlinear optical interactions usually fieldinacavity filled by g ‘®-nonlinear medium. The model
generate unsolvable Fokker—Planck-type equations for theis knownto be responsible, in particular, for dispersive optical
Wigner function, that contain third- or higher-order derivative bistability and for amplitude squeezing, and has also been
terms. To stress the importance of incorporating the used to describe formation of Séidinger-cat states. The
dissipation effects into the idealized models and underlying effective interaction Hamiltonian of the AHO model has also
nonclassical states, we only mention the crucial sensitivity of a relevance in description of Bose—Einstein condensates, in
the famous Sclidinger-cat states to losses. a simple single-mode approximation [18].
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With dissipation included, the driven AHO model has d .t . 2 . 2 )
been solved exactly in the steady-state regime, interms ofthe ~ +3_7 ('@ + 2 e — E) + oo 5 (=2xa%)
Fokker—Planck equation in complex-representation [11]. 1 92
Using this solution we derive here an exact and surprisingly oo

. . . X . 20at2
simple analytic result for the corresponding Wigner function.
This provides explicit phase-space images of the steady statavhere y and x are defined as follows:y = y +iA,
of the system and of the underlying nonclassical effects. ~ x = x’ +ix”. We note that in the compleR-representation

Since our results are based on the exact nonlinearthe amplitudese, " are independent complexnumber
treatment of quantum fluctuations, it is particularly Variables corresponding to the operatarsa’, and their
interesting to focus on the extreme quantum regime of integration domains are to be chosen as contour integrals in
operation, corresponding to extremely high nonlinearities the individual complex planes. The Fokker—Planck equation
or low dissipation. This brings out a rather rich variety (3)can be solved exactly, inthe steady-state regime, using the
of phase transition images in the bistable operation regime, method of potential equations. This results in the following
qualitatively different to what one would expect from the form of steady-staté-function [11]:
corresponding semiclassical analysis. We also calculate .
the photon number probability distribution function which  p (, o) = A’ 2(a 1) 2 exp(f + iT + ZaaT> . (@)
provides a better insight to the qualitative changes in the a «
transition from the semiclassical to the extreme quantum

(—2x*a™) } P(a,ah, 3)

where N is the normalization constant, and we have

regime. . .
9 introduced the following parameters:
2. Hamiltonian and exact quantum E 12
. i &= —, A== 5)
(quasi)probabilities X X

The anharmonic oscillator model we consider describes The steady-state solution (4) has been used in [11] to
a single intracavity mode which is driven by an external derive the normally ordered operator momeris”a™),
coherent field and which undergoes the process of self-phasgyielding at:

modulation (Kerr interaction) in & ®-nonlinear medium.

We allow for usual one-photon losses for the cavity mode,  tm my _ e[?"T (M (M) oFa(m + A, m + 1%, 2|e|?)
and, in addition, incorporate a two-photon absorption. This C(m + V)T + A% oFo (A, A*, 2|¢]?)

’

nonlinear system can be modelled, in the rotating wave ) ) _ (6)
approximation, by the following Hamiltonian [11, 19]: wheregF>(a, b, z) is a hypergeometric function
H = hoa'a +Tx"aa? + h(Ee ' q" — E*®'q) 0 T ()T (b)

+a1"I +a'ly + azl"; +a'r,. Q) of2(a.b.2) = Z KT (k+a)T(k+b) )

k=0

Herea' (a) is the creation (annihilation) operator for the
cavity mode with the frequency,, x” is the nonlinear Together with the semiclassical steady states, showing
coupling constant for the self-phase modulation process, Pistability (hysteresis) in the amplitude of the cavity mode
proportional to the third-order susceptibilify®, E is the ~ Versus the driving field amplitude, the exact quantum
amplitude of the coherent driving field with the frequency Mechanical mean amplitudés) and the second-order
wr. In addition,T';, T} andT, I'} are reservoir operators ~ correlation function have been analysed in [11].  This
describing one-photon and two-photon losses, which will Was able to show the non-equilibrium nature of the phase
give rise to the damping ratgsandy’, respectively. transition in the system, and to predict nonclassical effects

Utilizing standard techniques (see, e.g., [20, 21]) to Of reduction of photon number fluctuations and photon
eliminate the reservoir operators, one may obtain the antibunching, within the exact nonlinear treatment of
following interaction picture master equation for the density quantum fluctuations. Interms of the mode quadrature-phase

matrix p of the cavity mode: amplitudes, the nonclassical photon statistics in the AHO
ap model is manifested also as an amplitude squeezing [12].
Pl —iA[ata, p] —ix"[a"%a?, p] + [Ea" — E*a, p] In what follows, instead of describing the quantum

statistical properties of the cavity mode via operator
moments, we present an analysis in terms of quantum
+x'(2a%pa' — pa'?a® — a"a’p), (2 (quasi)probability distributions.  Using the steady-state
solution (4), we derive exact analytical results for the photon
number probability distribution function and the Wigner

+y (2a,0aJr - paTa — aTap)

whereA = w. — w, is the cavity detuning. The master
equation is then transformed into a Fokker—Planck equation. X
We follow here the approach of [11], utilizing the complex ~ function. o
representation of the density matrix. The resulting Fokker— ~ Th€ photon number probability distributiop(n) =
Planck equation for the quasiprobability distribution function (2l0ln) can be expressed in terms of the complex
P(a, a") has the following form: representation as follows:

AP (e, )

= [i(%x + 2)(05205T —E) pn) = i // da dat o (ah)" exp(—aotT)P(a, o, (8)
ot o n! c

d
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Figure 1. (a), (b) A quantum mechanical mean intensity (full curve), the semiclassical intensity (the curve with a broken part), and the
locations of local maxima (full circles) and minima (empty circles) in piie)-function as depending da|, for: (&) A/x” = —20 and

y/x"=2;(b)A/x" =—-3andy/x"” = 0.3. (c), (d) The Wigner functiorW (x, y) for the same values af/x” andy /x” as in @), and
for: (c) le] =12, and () |e| = 17.

whereC is an appropriate integration contour for each of The Wigner functior¥ («) is found as follows. Using a
the variablesxy and o', in the individual complex planes. standard definition

Substituting the steady-sta#e-function, equation (4), we

the_n_expand the resul_ting expor_1entia| 'Ferm(expa'f)_, thus W(a) = Ee-zm? / d?y Tr(pere —v aygr are’ (11)
arriving at a separation of variables in the two integrals. T

Transforming next to new variables = ¢/« and s’ =
¢*/a, we find that the integrals are identical to the Hankel
representation of thE-function [22]:

1 1 .

where C is the integration contour (Hankel path), which
starts at £00) on the real axis, encircles the origin in an
anticlockwise direction, and returns back tecp). Also
taking into account the normalization [11], these give the
following final result for the steady-state photon number
probability distribution function:

one can express the Wigner function in terms of #he
representation:

W) = 2e2ef / / dpds’ P(g. 1)
T c
x exp(2a*B + 208" — 2B8™). (12)

Substituting the steady-state solution (4), we note that the
mutual cancellation of the exponential terms expss")

and exp2p8") directly leads to the separation of variables in
the integrals. The variable change= ¢/8 ands™ = ¢*/87
allows us then to recognize an integral representation of the
Bessel function [23]:

sy = P TIre v ,
ntoFa(h, 1%, 2le[?) 27, (z) = (E> / dr 1t exp(t - Z—) . (13)
o 2) . 4
(10)

o0
X .
; kIT(k +n+ )L (k +n +A*) whereC is the same Hankel path as above.
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Figure 2. The same as in figure 1 but fax/x” = —2 andy /x” = 0.2; (b) |¢| = 0.8.
The final result for the steady-state Wigner functiontakes (y/x” > 1), when the usual linearized treatment of quantum

the following explicit form: fluctuations around the stable semiclassical steady states is
valid, the locations of the maxima coincide with the stable

2 | 1 (v—8ea*) ’ branches of the semiclassical intensity. The minimum in
Wi@) =nNe (a*)% ’ (14) p(n), located between the two maxima, corresponds to the
unstable semiclassical solution.
whereN is the normalization constant. With decrease in the relatigry x”, the nonlinear effects
of quantum fluctuations become essential (the linearization
3. Results and discussion starts to fail), and as a consequence the locations of

the maxima/minima in thep(n)-function depart from the
In our numerical analysis of the probability distribution semiclassical curve. This is already seen in the example of
function p(n) and the Wigner function we focus, for figure 1@), while further shifts of the curves, corresponding
simplicity, on the casg’ = 0, thatisy = ix”, and therefore ~ t0 entering into an extreme quantum regime of operation
A= (A/x") —i(y/x") . (The influence of a nonzery is (smallery/x"), are represented in figures} and 2@)—4().
discussed at the end of this section.) In addition, we choose,As we see, the shifts between the quantum and semiclassical
without loss of generality, the phageof the driving field curves are not simply of a quantitative character. In the
E = |E|exp(i¢) equal top = —m/2, so that—¢ = |g|. extreme quantum regime we observe (figurea)-24(@))

In figures 14), 1(b) and 2@)—4(a) we plot the cavity qualitative changes, so that the bistability (in semiclassical
mode steady-state quantum mechanical mean intensityterms) does not now manifest itself through the structure
n = {(a'a) (in photon number units; full curves), the of the p(n)-function, as it only has one maximum. In
corresponding semiclassical result [11] (the curve with a other words this implies that the term bistability (and,
broken segment), and also the locations of the local maximacorrespondingly, the associated turning points or threshold)
(full circles) and local minima (empty circles) in thgn)- becomes meaningless in this regime. Instead, the most
function, as depending ojz|. The graphs are given for probable values of versus|e| are simply represented as
different values of the relative detuning x” and the relation ~ a sequence of relatively wide plateaux.
of the damping constant to the nonlineatityy”. The values While the analysis of the photon number probability
of A/x” andy/x” are chosen to lead to bistability [11], in  distribution provides rather detailed understanding of the
terms of the semiclassical steady-state solutions as dependingionlinear dynamics of the system, this still is incomplete
on|e|. This requires thatA /y)? > 3 andA/x” < 0; the since the p(n)-function is a phase-insensitive quantity.
broken segments of the semiclassical curves correspond tdnstead, acomplete phase-space quantum statistical treatment
the unstable solution, while the full parts correspond to the of our model can be achieved via the Wigner function given

lower and upper branches of the stable solutions. by equation (14).
The monotonic increase (no hysteresis) of the quantum Examples of the Wigner functioW («) = W(x, y),
mechanical mean intensity, which includes quantum wherex = Rex andy = Ime, are given in figures 1—

fluctuations, is a usual consequence of quantum statistical4, for the same values of the parametargy” andy/x”
averaging. The presence or absence of bistability, within as in the corresponding graple).( Different plots of the

the exact quantum statistical treatment, can still be revealedWigner function correspond to different valueggf chosen

by analysing the photon number distribution functiot) to monitor the bistability region or the transition from the

for different values of|e|. In this case the bistability lower to the upper level of excitation. The graphs in figure 1

is manifested in the coexistence of two local maxima in are far from representing the extreme quantum regime, and
p(n). For relatively small nonlinearities and strong damping we see expected images of rather adequate correspondence
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Figure 3. The same as in figure 1 but far/x” = —2 andy/x” = 1075; (b) |e| = 0.025, €) |¢| = 0.03, d) |¢| = 0.04, () |¢| = 0.08, and
(f) lel = 1.

to the semiclassical steady states. The radial (amplitude)regime of operation. The value @f/x” is chosen so that
squeezing of the upper brunch, which represents the knownthe relation between /x” andy/x"” is kept the same as in
property of the AHO model to produce quadrature amplitude figure 1, leading to the same shape (except for a scaling factor)
or photon number squeezing [11,12,16], is also clearly seenof the semiclassical intensity curves. We see here that the two
in the figures. coexisting humps in the Wigner function are overlapping, and
The graph of figure 2) is given for a smaller value of  an additional complicated structure becomes prominent.
y/x", corresponding to entering into an extreme quantum The most dramatic change in the scenario of the
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Figure 4. The same as in figure 1 but far/x” = —0.5 andy /x” = 0.05; (b) |e| = 0.4, (c) |¢|] = 0.55, and @) |¢| = 0.8.

transition from the lower to the upper level of excitation, coherent state, superposition of coherent states ¢8ciger
in the extreme quantum regime, is represented in the phase<€ats). In both these cases the Wigner function has manifestly
space images of figurest€(f) and 4p)—(d). In figure 4 oscillating behaviour and negative-valued regions [2]. With
the relation betweem\/x” andy/x” is chosen as in the the dissipation included, the interference effects in the AHO
cases of figures 1 and 2, while in figure 3 we chopgg” model evolving from the initial coherent state have been
much smaller. The structure of the Wigner function contains analysed in [17], in terms of th@-function dynamics.
now oscillating features and may show more than two local Returning to our model, it is natural to expect that these
maxima and minima which clearly cannot be identified with gquantum coherences contribute in the resulting mixture state,
the semiclassical steady states. even if we do not specify what kind of mixture of what
Noticing the complicated structure and oscillating kind of superposition states we end up with. We note here
features in the Wigner function, it is natural to treat these thatan exact analytic expression for the steady-state density
within the context of quantum superposition and interference Matrix p of the cavity mode, in the Fock states basis, can be
phenomena. The quantum superposition, in the case of pur@btaineq using thg above complBxsolution and the contour
states, is known to lead to manifestly oscillating behaviour of intégration technique, yielding at:

the Wigner function, with interference fringes being spread ~ T'(\)I'(A")
even into negative-valued regions [2]. Regarding to this point p= oF>(h, A%, 2|€[2)
we emphasize, however, that one of the main properties of our (&) ()" oFa(A + 1, A* +m, |¢?)

resultfor the Wigner function, is thatit is positive everywhere. X " In)(m|, (15)

In addition, due to the presence of dissipation it cor?,(\eNsponds n,m Vulml TGAmEGS +m)

to a statistical mixture. Nevertheless, quantum superpositionbut this is more difficult to analyse than the Wigner function,
and interference effects are still relevant here. The simplestequation (14).

argument is that the effective quartic interaction Hamiltonian To examine the manifestation of the quantum
in equation (1) is known to have photon number eigenstates,interference in our Wigner function, we firstly consider for

and also to produce, in the case of evolution from an initial simplicity the limit y/x” — 0 andA/x” = 1. In this
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case. = % and the Bessel function in equation (14) can be Of cubic nonlinearities in atomic gases would lead to the

expressed in terms of elementary functions [23]:1,, = relation y/x" ~ 10'-1(°. These are typical values to
V2/(7z) cosz. This gives: employ successfully a semiclassical analysis and linearized
N ) treatment of quantum fluctuation. Correspondingly, the most
W(x, Vlietje = e—22+y?) cos( m)‘ ) interesting and nontrivial effects studied here for the extreme

m/2le] quantum regimey/x” < 1) are far from being observable,

i ) (_16) in this case.
‘The x-dependence of the Wigner function, in the However, a recent analysis [24] suggests a new scheme
region x > 0, is simply given by: W(x,y = for the AHO model, which utilizes atomic dark resonances

0) oc exp(—2x?) cos'(v/le[x). This clearly demonstrates  4nq allows to achieve giant optical nonlinearities. According

the character of oscillations in the Wigner function. to this proposal such a scheme can decrease the rejatich

For negzative valuedr we have: W(x’yz = 0 « by several orders of magnitude, leadingytgy” ~ 0.05.
exp(—2x°)[exp(v/8le[Ix]) + exp(—v/8le[Ix[)]%, which is @ |3 terms of our results for the intracavity photon number

single peaked function, with the maximum value being much ,opapilities and the Wigner function, this particular regime,

greater than the values in the region> 0. With the  gygied in [24] for the case of zero cavity detuning, is
dissipation included, a phase-space image of oscillations iNrepresented in figure 6.

the Wigner function is given in figure &. The characteristic The concept of the so-called photon blockade,
amplltude Qf the o.scn'latlons IS, however,'small compared jntroduced in [24], can easily be interpreted and seen here
with the main contribution located in the regien< 0, so that via the dynamics of the most probablevalues in thep (1)-
the fringes are not seen in the entire domain (fgure 50)).  function, as depending da| (circles in figure 64)): despite

More information on the structure of our Wigner function - 6 increase g | over a relatively wide domain, the injection
can be gained by considering a set of integer values/of’, o an additional photon into the cavity is blocked. It should
_together with the limity/x” — 0. This case results in  pea also noted here that the parameter= |E|/x” can be
integer values of. (A = m = 0,£1,£2,...), with thex- expressed in terms of the cavity input fields as follows. Since
dependence of the Wigner function being given by: |E| = /2y|{ain)|, Wherea;, is an annihilation operator

2 for the coherent driving field at the input of the cavity (so

I (v 8|8|x>‘ - (27) that (a, a;,) = |(ain)|? = fin represents the photon flux or
average number of photons per unittime), then we obtain that
le]? = 2y fin/(x")?. This can also be rewritten in terms of
the relationy /x” andy as follows: f;,, = yle|>(y /x")~%/2,
implying that for|e| ~ 1 and the above-mentioned values of
y ~ 1f standy/x” ~ 0.05, the corresponding cavity

W(x,y =0 = Ne 2|t

Here the cases withh < O are treated using the property
thatJ_,, (x) = (1™ J,(x). Forx < 0 the Bessel function
J..(+/8l¢|x) is transformed into the modified Bessel function
of the first kind1,, (v/8]¢[[x]) through the relation,, (ix) =
i" I, (x). The functionl,,(x) is known to be ngonotonically input photon flux isf,, ~ 2 x 10® photons per second.
increasing, so that together with the factor'¢and|x|" ! Finally, let us discuss the influence of the two-photon
this results in a single-peaked shape of the resulting Wigner o5 or apsorption mechanism which is incorporated in our
function W(x, y = 0) for x < 0. The oscillating structure  yonera) results through the damping rate the real part
in the W(x, y = 0)-function occurs in the region > 0, of the coefficienty = x’ +ix”. Mathematically, complex
due to the well known oscillating properties of the Bessel 5,5 ofy allowed us to treat both the effects of the Kerr
functionJ,, (x) and hence off/,, (+/8[¢[x)|?. The oscillations nonlinearity ") and two-photon absorptiory () within a
are of aperiodic (with an increasing ‘period’) character due |, ifieqd theory. In practical terms, this can be applied to

to the square root dependence .onand have decreasing v sically different nonlinear systems, where the intracavity
amplitudes. The distances between the oscillation peaks als%edium has a third-order polarizability (then= ix"), or

depend onj¢|, and all these are modulated be the factor ;o two-photon absorbey (= x’), or else one may even

—2x2| . ym—1 P 7 H
e |x|["”". This modulation curve has a single peak, for ¢,ngjger 4 combination of these two types of nonlinearity
m > 1, located at/m — 1/2, or is monotonically decreasing within a single cavity § = x’ +ix”). (In each case, the

forlm < O.hln elther(;]ase th(ljs Istr.ongly SLIJ(ppreﬁses oscillations one-photon damping constaptis due to losses through the
at largex, however the modulation peak (in the case- 1) input—output mirror of the cavity.)

may also have a ‘resonantly’ enhancing influence on the In the discussion and examples given above, the two-

mter/;(-i-lrekr]]ce frlfnges thatbaaz W'th!n the W'dt_h of tr]:e pealk_. photon absorption coefficient was set to zero, for the sake of
these features build up into a variety of resulting - g yjicity - Once, however, the characteristic behaviour of
sha_lpes_ of the mc_:dulated _osculat!ons, the overall V'S'b'l_'ty of the system in different operation regimes is revealed, then it
Wh!Ch’ in the entire 9'0”.‘3'” OCf will depend on the re_lat|ve can be easily generalized to the cases with nongérdhis

weights of the contributions in the < 0 andx > O regions. is simply seen from the fact that the actual parameters that

A general conclusion is that the structure of tx. y)- govern the behaviour of the system (and have been used in
function may contain either only few visible fringes (peaks), the analyses) are Re Im 2, and|¢| (see equation (5)):
or several interference fringes which are however invisible '

on the scale of the leading peak. yx' +Ayx”

Let us focus now on the characteristic values of Rel = (X2 + (x")2’ (18)
parameters and the relevance of our results to physically
accessible regimes. Considering, for example, a high- M — Ax' —vyx” (19)
Q cavity with y ~ 10° s and conventional values (X2 + (x")?
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Figure 5. Wigner functionW (x, y) for A/x” = 0.5, y/x” = 0.05, and|¢| = 6; (a) and ) are plotted in different windows of andy.
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Figure 6. The same as in figure 1 (i) curves (1) and (2) correspond to quantum mechanical and semiclassical intensities, respectively)
butforA/x” = 0andy/x” = 0.05; (b) the corresponding Wigner function far| = 3.

lel = |E1/v/ ()2 + (x")2. (20) given by the following state equation:
_ 3 2 2
Therefore the above discussion and examples, given for el = 4™+ 4Redn” + [2[n, (21)
specific values of Re = A/x”, Imix = —y/x”, and with turning points
lel = |E|/Ix”|, can equally be viewed as describing the
cases with nonzerg’, as long as the parameters A, x’, n* = [—Z(Rek) + V4(Rer)? — 3|k|2] /6- (22)

x”,and|E| resultin the same values of Relm A, and|¢|, as ] )
defined by equations (18)—(20). For example, the graphs of These results generalize equations (2.18) and (2.19) of [11]
figure 3, where Ré = a = —0.5and Imi = b = —10°° to the case of nonzerg' (or arbitrary values of the complex

parametery = x’ +ix”). Correspondingly, the bistability
requires now that Re o« yx’ + Ax” < 0, and(Rexr)? >
3(Im x)2. ltis easily seen now that if the cavity is only filled
by a two-photon absorber (i.@” = 0, andxy = x') then
we obtain Re. = y/x’ > 0, and therefore the bistability (as
well as the examples of figures 1-4, where\Re 0) cannot

can be viewed as representing the case with nongeand

x" if we chooseA = ax” +by’ andy = ayx’ — by’.
Obviously, there are additional limitations to be included in
the consideration, such as the requirement that the cavity,
damping constang should remain positive valued. In the
above examplea(= —0.5, b = —107°) this may require

be realized.
rather large values gf”, or the magnitude of the two-photon In the general case of boj andy” being nonzero, the
absorption ratg " must be-||m|ted, sothat”/x" > a/b. overall influence of the two-photon absorption mechanism
More generally, the interplay between té and x” is that it reduces the bistability region, leading the

effects can easily be established by considering the behavioursystem towards the monostable (in the limit of larg@
of the system in terms of the semiclassical steady states andehaviour. Alternatively speaking, when including the two-
bistability regions. Following [11] these can be found to be photon losses, to guarantee the observation of the effects
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characteristic for a manifestly bistable regime, one would

need to employ” values and cavity detuningsof opposite
signs and of larger absolute values.

4. Summary

In summary, we have presented an exact Wigner-function
solution to the model of a driven anharmonic oscillator, in the
steady state regime. This allowed us to explicitly visualize

(3]

[4]
5

—_

[6]
[7

(8]

the phase-space images of the state of the cavity mode,

which demonstrate, in particular, a rich variety of transition
scenarios from the low to higher level of photon excitation.

9]

An analysis of the system in terms of the photon number [,

probability distribution has been provided as well.

Of particular interest is the behaviour of the system [11]

in the extreme quantum regime (corresponding to strong
nonlinearities or low damping), where intuitive predictions
The results in this regime show

are likely to fail.

[12

[13
[14]

—_——

qualitative departure of the steady state of the cavity mode[15]
from behaviour in the semiclassical regime, thus making [16]

meaningless such conventional attributes of the model
In addition, while the
dissipation washes out as, usually, quantum superposition[ls]
and interference effects, nevertheless their contribution in the

as bistability or turning points.

resulting Wigner function can still be clearly tracked via the [19]

obtained analytic form of the solution.
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