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Abstract. We consider the quantum model of a driven anharmonic oscillator, in the presence
of dissipation, and present an exact analytic solution for the corresponding Wigner function
in the steady-state regime. This provides explicit phase-space images of the resulting state of
the cavity mode, and allows us to understand how the quantum interference is built up into it.
The photon number probability distribution is calculated and analysed as well. We monitor
the transition from the semiclassical to extreme quantum regime of operation, and identify
qualitative changes, where the conventional characteristics of the model, such as bistability or
turning points, become meaningless.
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1. Introduction

Recent developments in quantum optics have resulted in
significantly increased interest in the Wigner function [1].
Being a joint quasiprobability distribution for the position
and momentum observables, the Wigner function has a one-
to-one correspondence to the density matrix, thus providing
complete information about a given quantum system. It also
allows us to visualize the quantum dynamical image of a
quantum state in the phase space—an important problem
since the early stages of quantum mechanics. As compared
with other quasiprobability distributions, the Wigner function
has the advantage of best describing nonclassical states of
light in quantum optics, including the quantum superposition
and interference phenomena (see, e.g., [2] and references
therein). Most significantly, the Wigner function has
been shown to be experimentally reconstructible, by a
measurement of a set of probability distributions of the light
quadrature-phase amplitudes, using the method of quantum
tomography [3–5]. These quadrature probabilities are simply
the marginal distributions of the Wigner function.

A number of model Hamiltonians and particular
idealized nonclassical states of light has been successfully
described with use of the Wigner function. However,
very few realistic quantum optical systems that include
dissipation, and lead to generation of nonclassical light, are
known to be analysed in terms of the Wigner function. This
is especially true, if we look for exact analytic results. The
difficulty here is that nonlinear optical interactions usually
generate unsolvable Fokker–Planck-type equations for the
Wigner function, that contain third- or higher-order derivative
terms. To stress the importance of incorporating the
dissipation effects into the idealized models and underlying
nonclassical states, we only mention the crucial sensitivity of
the famous Schrödinger-cat states to losses.

An example of a quantum optical dissipative model that
has been analysed in terms of the Wigner function is the well
known parametric oscillator (PO) model. An approximate
result for the corresponding Wigner function, based on the
solution of the truncated Fokker–Planck equation, has been
given in [6]. Another approach, based on the relation of the
Wigner function to the known solution of the Fokker–Planck
equation in positiveP -representation, has been used in [7]
to analyse quantum superposition and interference effects in
PO. This approach has been further developed in [8], to utilize
a complexP -representation solution for a generalized model
of PO, thus allowing one to obtain a simple analytic result for
the corresponding Wigner function. Numerical techniques to
analyse the Wigner function for the PO subjected to both one-
and two-photon loss mechanisms, and recently for the model
of three-photon down-conversion, have also been used [9,25].
In addition, we mention a recent paper [10] which provides
a novel approach for the direct computation of the Wigner
function from phase space.

In this paper we present a new Wigner-function
solution for a dissipative quantum mechanical system. We
consider the well known model of a driven anharmonic
oscillator (AHO), and derive an exact analytic result for the
corresponding Wigner function in the steady state.

The AHO is one of the most fundamental models in
quantum optics [11–17]. It describes a self-interaction (self-
phase modulation or Kerr interaction) of a mode of radiation
field in a cavity filled by aχ(3)-nonlinear medium. The model
is known to be responsible, in particular, for dispersive optical
bistability and for amplitude squeezing, and has also been
used to describe formation of Schrödinger-cat states. The
effective interaction Hamiltonian of the AHO model has also
a relevance in description of Bose–Einstein condensates, in
a simple single-mode approximation [18].
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With dissipation included, the driven AHO model has
been solved exactly in the steady-state regime, in terms of the
Fokker–Planck equation in complexP -representation [11].
Using this solution we derive here an exact and surprisingly
simple analytic result for the corresponding Wigner function.
This provides explicit phase-space images of the steady state
of the system and of the underlying nonclassical effects.

Since our results are based on the exact nonlinear
treatment of quantum fluctuations, it is particularly
interesting to focus on the extreme quantum regime of
operation, corresponding to extremely high nonlinearities
or low dissipation. This brings out a rather rich variety
of phase transition images in the bistable operation regime,
qualitatively different to what one would expect from the
corresponding semiclassical analysis. We also calculate
the photon number probability distribution function which
provides a better insight to the qualitative changes in the
transition from the semiclassical to the extreme quantum
regime.

2. Hamiltonian and exact quantum
(quasi)probabilities

The anharmonic oscillator model we consider describes
a single intracavity mode which is driven by an external
coherent field and which undergoes the process of self-phase
modulation (Kerr interaction) in aχ(3)-nonlinear medium.
We allow for usual one-photon losses for the cavity mode,
and, in addition, incorporate a two-photon absorption. This
nonlinear system can be modelled, in the rotating wave
approximation, by the following Hamiltonian [11,19]:

H = h̄ωca†a + h̄χ ′′a†2a2 + ih̄(Ee−iωLta†− E∗eiωLta)

+a0†
1 + a†01 + a20

†
2 + a†202. (1)

Here a† (a) is the creation (annihilation) operator for the
cavity mode with the frequencyωc, χ ′′ is the nonlinear
coupling constant for the self-phase modulation process,
proportional to the third-order susceptibilityχ(3), E is the
amplitude of the coherent driving field with the frequency
ωL. In addition,01, 0†

1 and02, 0†
2 are reservoir operators

describing one-photon and two-photon losses, which will
give rise to the damping ratesγ andχ ′, respectively.

Utilizing standard techniques (see, e.g., [20, 21]) to
eliminate the reservoir operators, one may obtain the
following interaction picture master equation for the density
matrixρ of the cavity mode:

∂ρ

∂t
= −i1[a†a, ρ] − iχ ′′[a†2a2, ρ] + [Ea†− E∗a, ρ]

+γ (2aρa†− ρa†a − a†aρ)

+χ ′(2a2ρa†2− ρa†2a2 − a†2a2ρ), (2)

where1 = ωc − ωL is the cavity detuning. The master
equation is then transformed into a Fokker–Planck equation.
We follow here the approach of [11], utilizing the complexP -
representation of the density matrix. The resulting Fokker–
Planck equation for the quasiprobability distribution function
P(α, α†) has the following form:

∂P (α, α†)

∂t
=
{
∂

∂α
(γ α + 2χα2α†− E)

+
∂

∂α†
(γ ∗α† + 2χ∗α†2α − E∗) +

1

2

∂2

∂α2
(−2χα2)

+
1

2

∂2

∂α†2
(−2χ∗α†2)

}
P(α, α†), (3)

where γ and χ are defined as follows:γ = γ + i1,
χ = χ ′ + iχ ′′. We note that in the complexP -representation
the amplitudesα, α† are independent complexc-number
variables corresponding to the operatorsa, a†, and their
integration domains are to be chosen as contour integrals in
the individual complex planes. The Fokker–Planck equation
(3) can be solved exactly, in the steady-state regime, using the
method of potential equations. This results in the following
form of steady-stateP -function [11]:

Ps(α, α
†) = Nαλ−2(α†)λ

∗−2 exp

(
ε

α
+
ε∗

α†
+ 2αα†

)
, (4)

where N is the normalization constant, and we have
introduced the following parameters:

ε = E

χ
, λ = γ

χ
. (5)

The steady-state solution (4) has been used in [11] to
derive the normally ordered operator moments〈a†mam〉,
yielding at:

〈a†mam〉 = |ε|
2m0(λ)0(λ∗) 0F2(m + λ,m + λ∗, 2|ε|2)
0(m + λ)0(m + λ∗) 0F2(λ, λ∗, 2|ε|2) ,

(6)
where0F2(a, b, z) is a hypergeometric function

0F2(a, b, z) =
∞∑
k=0

zk0(a)0(b)

k!0(k + a)0(k + b)
. (7)

Together with the semiclassical steady states, showing
bistability (hysteresis) in the amplitude of the cavity mode
versus the driving field amplitude, the exact quantum
mechanical mean amplitude〈a〉 and the second-order
correlation function have been analysed in [11]. This
was able to show the non-equilibrium nature of the phase
transition in the system, and to predict nonclassical effects
of reduction of photon number fluctuations and photon
antibunching, within the exact nonlinear treatment of
quantum fluctuations. In terms of the mode quadrature-phase
amplitudes, the nonclassical photon statistics in the AHO
model is manifested also as an amplitude squeezing [12].

In what follows, instead of describing the quantum
statistical properties of the cavity mode via operator
moments, we present an analysis in terms of quantum
(quasi)probability distributions. Using the steady-state
solution (4), we derive exact analytical results for the photon
number probability distribution function and the Wigner
function.

The photon number probability distributionp(n) =
〈n|ρ|n〉 can be expressed in terms of the complexP -
representation as follows:

p(n) = 1

n!

∫ ∫
C

dα dα† αn(α†)n exp(−αα†)P (α, α†), (8)
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Figure 1. (a), (b) A quantum mechanical mean intensity (full curve), the semiclassical intensity (the curve with a broken part), and the
locations of local maxima (full circles) and minima (empty circles) in thep(n)-function as depending on|ε|, for: (a) 1/χ ′′ = −20 and
γ /χ ′′ = 2; (b)1/χ ′′ = −3 andγ /χ ′′ = 0.3. (c), (d) The Wigner functionW(x, y) for the same values of1/χ ′′ andγ /χ ′′ as in (a), and
for: (c) |ε| = 12, and (d) |ε| = 17.

whereC is an appropriate integration contour for each of
the variablesα and α†, in the individual complex planes.
Substituting the steady-stateP -function, equation (4), we
then expand the resulting exponential term exp(−αα†), thus
arriving at a separation of variables in the two integrals.
Transforming next to new variablesδ = ε/α and δ† =
ε∗/α†, we find that the integrals are identical to the Hankel
representation of the0-function [22]:

1

0(z)
= 1

2π i

∫
C

dt t−zet , (9)

whereC is the integration contour (Hankel path), which
starts at (−∞) on the real axis, encircles the origin in an
anticlockwise direction, and returns back to (−∞). Also
taking into account the normalization [11], these give the
following final result for the steady-state photon number
probability distribution function:

p(n) = |ε|2n0(λ)0(λ∗)
n! 0F2(λ, λ∗, 2|ε|2)

×
∞∑
k=0

|ε|2k
k!0(k + n + λ)0(k + n + λ∗)

. (10)

The Wigner functionW(α) is found as follows. Using a
standard definition

W(α) = 2

π
e−2|α|2

∫
d2γ Tr(ρeγ a

†−γ ∗a)eγ
∗α−γα∗ , (11)

one can express the Wigner function in terms of theP -
representation:

W(α) = 2

π
e−2|α|2

∫ ∫
C

dβ dβ†P(β, β†)

× exp(2α∗β + 2αβ†− 2ββ†). (12)

Substituting the steady-state solution (4), we note that the
mutual cancellation of the exponential terms exp(−2ββ†)

and exp(2ββ†) directly leads to the separation of variables in
the integrals. The variable changeδ = ε/β andδ† = ε∗/β†

allows us then to recognize an integral representation of the
Bessel function [23]:

2π iJν(z) =
( z

2

)ν ∫
C

dt t−ν−1 exp

(
t − z

2

4t

)
, (13)

whereC is the same Hankel path as above.
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Figure 2. The same as in figure 1 but for1/χ ′′ = −2 andγ /χ ′′ = 0.2; (b) |ε| = 0.8.

The final result for the steady-state Wigner function takes
the following explicit form:

W(α) = Ne−2|α|2
∣∣∣∣∣Jλ−1

(√−8εα∗
)

(α∗)
λ−1

2

∣∣∣∣∣
2

, (14)

whereN is the normalization constant.

3. Results and discussion

In our numerical analysis of the probability distribution
function p(n) and the Wigner function we focus, for
simplicity, on the caseχ ′ = 0, that isχ = iχ ′′, and therefore
λ = (1/χ ′′) − i(γ /χ ′′) . (The influence of a nonzeroχ ′ is
discussed at the end of this section.) In addition, we choose,
without loss of generality, the phaseφ of the driving field
E = |E| exp(iφ) equal toφ = −π/2, so that−ε = |ε|.

In figures 1(a), 1(b) and 2(a)–4(a) we plot the cavity
mode steady-state quantum mechanical mean intensity
n = 〈a†a〉 (in photon number units; full curves), the
corresponding semiclassical result [11] (the curve with a
broken segment), and also the locations of the local maxima
(full circles) and local minima (empty circles) in thep(n)-
function, as depending on|ε|. The graphs are given for
different values of the relative detuning1/χ ′′ and the relation
of the damping constant to the nonlinearityγ /χ ′′. The values
of 1/χ ′′ andγ /χ ′′ are chosen to lead to bistability [11], in
terms of the semiclassical steady-state solutions as depending
on |ε|. This requires that(1/γ )2 > 3 and1/χ ′′ < 0; the
broken segments of the semiclassical curves correspond to
the unstable solution, while the full parts correspond to the
lower and upper branches of the stable solutions.

The monotonic increase (no hysteresis) of the quantum
mechanical mean intensity, which includes quantum
fluctuations, is a usual consequence of quantum statistical
averaging. The presence or absence of bistability, within
the exact quantum statistical treatment, can still be revealed
by analysing the photon number distribution functionp(n)
for different values of|ε|. In this case the bistability
is manifested in the coexistence of two local maxima in
p(n). For relatively small nonlinearities and strong damping

(γ /χ ′′ � 1), when the usual linearized treatment of quantum
fluctuations around the stable semiclassical steady states is
valid, the locations of the maxima coincide with the stable
branches of the semiclassical intensity. The minimum in
p(n), located between the two maxima, corresponds to the
unstable semiclassical solution.

With decrease in the relationγ /χ ′′, the nonlinear effects
of quantum fluctuations become essential (the linearization
starts to fail), and as a consequence the locations of
the maxima/minima in thep(n)-function depart from the
semiclassical curve. This is already seen in the example of
figure 1(a), while further shifts of the curves, corresponding
to entering into an extreme quantum regime of operation
(smallerγ /χ ′′), are represented in figures 1(b) and 2(a)–4(a).
As we see, the shifts between the quantum and semiclassical
curves are not simply of a quantitative character. In the
extreme quantum regime we observe (figures 2(a)–4(a))
qualitative changes, so that the bistability (in semiclassical
terms) does not now manifest itself through the structure
of the p(n)-function, as it only has one maximum. In
other words this implies that the term bistability (and,
correspondingly, the associated turning points or threshold)
becomes meaningless in this regime. Instead, the most
probable values ofn versus|ε| are simply represented as
a sequence of relatively wide plateaux.

While the analysis of the photon number probability
distribution provides rather detailed understanding of the
nonlinear dynamics of the system, this still is incomplete
since thep(n)-function is a phase-insensitive quantity.
Instead, a complete phase-space quantum statistical treatment
of our model can be achieved via the Wigner function given
by equation (14).

Examples of the Wigner functionW(α) = W(x, y),
wherex = Reα and y = Im α, are given in figures 1–
4, for the same values of the parameters1/χ ′′ andγ /χ ′′

as in the corresponding graphs (a). Different plots of the
Wigner function correspond to different values of|ε|, chosen
to monitor the bistability region or the transition from the
lower to the upper level of excitation. The graphs in figure 1
are far from representing the extreme quantum regime, and
we see expected images of rather adequate correspondence
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Figure 3. The same as in figure 1 but for1/χ ′′ = −2 andγ /χ ′′ = 10−5; (b) |ε| = 0.025, (c) |ε| = 0.03, (d) |ε| = 0.04, (e) |ε| = 0.08, and
(f ) |ε| = 1.

to the semiclassical steady states. The radial (amplitude)
squeezing of the upper brunch, which represents the known
property of the AHO model to produce quadrature amplitude
or photon number squeezing [11,12,16], is also clearly seen
in the figures.

The graph of figure 2(b) is given for a smaller value of
γ /χ ′′, corresponding to entering into an extreme quantum

regime of operation. The value of1/χ ′′ is chosen so that
the relation between1/χ ′′ andγ /χ ′′ is kept the same as in
figure 1, leading to the same shape (except for a scaling factor)
of the semiclassical intensity curves. We see here that the two
coexisting humps in the Wigner function are overlapping, and
an additional complicated structure becomes prominent.

The most dramatic change in the scenario of the
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Figure 4. The same as in figure 1 but for1/χ ′′ = −0.5 andγ /χ ′′ = 0.05; (b) |ε| = 0.4, (c) |ε| = 0.55, and (d) |ε| = 0.8.

transition from the lower to the upper level of excitation,
in the extreme quantum regime, is represented in the phase-
space images of figures 3(b)–(f ) and 4(b)–(d). In figure 4
the relation between1/χ ′′ and γ /χ ′′ is chosen as in the
cases of figures 1 and 2, while in figure 3 we chooseγ /χ ′′

much smaller. The structure of the Wigner function contains
now oscillating features and may show more than two local
maxima and minima which clearly cannot be identified with
the semiclassical steady states.

Noticing the complicated structure and oscillating
features in the Wigner function, it is natural to treat these
within the context of quantum superposition and interference
phenomena. The quantum superposition, in the case of pure
states, is known to lead to manifestly oscillating behaviour of
the Wigner function, with interference fringes being spread
even into negative-valued regions [2]. Regarding to this point
we emphasize, however, that one of the main properties of our
result for the Wigner function, is that it is positive everywhere.
In addition, due to the presence of dissipation it corresponds
to a statistical mixture. Nevertheless, quantum superposition
and interference effects are still relevant here. The simplest
argument is that the effective quartic interaction Hamiltonian
in equation (1) is known to have photon number eigenstates,
and also to produce, in the case of evolution from an initial

coherent state, superposition of coherent states (Schrödinger
cats). In both these cases the Wigner function has manifestly
oscillating behaviour and negative-valued regions [2]. With
the dissipation included, the interference effects in the AHO
model evolving from the initial coherent state have been
analysed in [17], in terms of theQ-function dynamics.

Returning to our model, it is natural to expect that these
quantum coherences contribute in the resulting mixture state,
even if we do not specify what kind of mixture of what
kind of superposition states we end up with. We note here
that an exact analytic expression for the steady-state density
matrixρ of the cavity mode, in the Fock states basis, can be
obtained using the above complexP -solution and the contour
integration technique, yielding at:

ρ = 0(λ)0(λ∗)

0F2(λ, λ∗, 2|ε|2)
×
∑
n,m

(ε)n(ε∗)m√
n!
√
m!

0F2(λ + n, λ∗ +m, |ε|2)
0(λ + n)0(λ∗ +m)

|n〉〈m|, (15)

but this is more difficult to analyse than the Wigner function,
equation (14).

To examine the manifestation of the quantum
interference in our Wigner function, we firstly consider for
simplicity the limit γ /χ ′′ → 0 and1/χ ′′ = 1

2. In this
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caseλ = 1
2, and the Bessel function in equation (14) can be

expressed in terms of elementary functions [23]:J−1/2 =√
2/(πz) cosz. This gives:

W(x, y)|λ=1/2 = N

π
√

2|ε|e
−2(x2+y2)

∣∣∣cos
(√

8|ε|(x + iy
)∣∣∣2 .
(16)

The x-dependence of the Wigner function, in the
region x > 0, is simply given by: W(x, y =
0) ∝ exp(−2x2) cos2(

√
8|ε|x). This clearly demonstrates

the character of oscillations in the Wigner function.
For negative valuedx we have: W(x, y = 0) ∝
exp(−2x2)[exp(

√
8|ε||x|) + exp(−√8|ε||x|)]2, which is a

single peaked function, with the maximum value being much
greater than the values in the regionx > 0. With the
dissipation included, a phase-space image of oscillations in
the Wigner function is given in figure 5(a). The characteristic
amplitude of the oscillations is, however, small compared
with the main contribution located in the regionx < 0, so that
the fringes are not seen in the entire domain ofx (figure 5(b)).

More information on the structure of our Wigner function
can be gained by considering a set of integer values of1/χ ′′,
together with the limitγ /χ ′′ → 0. This case results in
integer values ofλ (λ ≡ m = 0,±1,±2, . . .), with thex-
dependence of the Wigner function being given by:

W(x, y = 0)|λ=m = Ne−2x2|x|m−1
∣∣∣Jm (√8|ε|x

)∣∣∣2 . (17)

Here the cases withm < 0 are treated using the property
thatJ−m(x) = (−1)mJm(x). Forx < 0 the Bessel function
Jm(
√

8|ε|x) is transformed into the modified Bessel function
of the first kindIm(

√
8|ε||x|) through the relationJm(ix) =

imIm(x). The functionIm(x) is known to be monotonically
increasing, so that together with the factors e−2x2

and|x|m−1

this results in a single-peaked shape of the resulting Wigner
functionW(x, y = 0) for x < 0. The oscillating structure
in theW(x, y = 0)-function occurs in the regionx > 0,
due to the well known oscillating properties of the Bessel
functionJm(x) and hence of|Jm(

√
8|ε|x)|2. The oscillations

are of aperiodic (with an increasing ‘period’) character due
to the square root dependence onx, and have decreasing
amplitudes. The distances between the oscillation peaks also
depend on|ε|, and all these are modulated be the factor
e−2x2|x|m−1. This modulation curve has a single peak, for
m > 1, located at

√
m− 1/2, or is monotonically decreasing

form 6 0. In either case this strongly suppresses oscillations
at largex, however the modulation peak (in the casem > 1)
may also have a ‘resonantly’ enhancing influence on the
interference fringes that are within the width of the peak.

All these features build up into a variety of resulting
shapes of the modulated oscillations, the overall visibility of
which, in the entire domain ofx, will depend on the relative
weights of the contributions in thex < 0 andx > 0 regions.
A general conclusion is that the structure of theW(x, y)-
function may contain either only few visible fringes (peaks),
or several interference fringes which are however invisible
on the scale of the leading peak.

Let us focus now on the characteristic values of
parameters and the relevance of our results to physically
accessible regimes. Considering, for example, a high-
Q cavity with γ ∼ 106 s−1 and conventional values

of cubic nonlinearities in atomic gases would lead to the
relation γ /χ ′′ ∼ 107–108. These are typical values to
employ successfully a semiclassical analysis and linearized
treatment of quantum fluctuation. Correspondingly, the most
interesting and nontrivial effects studied here for the extreme
quantum regime (γ /χ ′′ 6 1) are far from being observable,
in this case.

However, a recent analysis [24] suggests a new scheme
for the AHO model, which utilizes atomic dark resonances
and allows to achieve giant optical nonlinearities. According
to this proposal such a scheme can decrease the relationγ /χ ′′

by several orders of magnitude, leading toγ /χ ′′ ∼ 0.05.
In terms of our results for the intracavity photon number
probabilities and the Wigner function, this particular regime,
studied in [24] for the case of zero cavity detuning, is
represented in figure 6.

The concept of the so-called photon blockade,
introduced in [24], can easily be interpreted and seen here
via the dynamics of the most probablen-values in thep(n)-
function, as depending on|ε| (circles in figure 6(a)): despite
the increase of|ε| over a relatively wide domain, the injection
of an additional photon into the cavity is blocked. It should
be also noted here that the parameter|ε| = |E|/χ ′′ can be
expressed in terms of the cavity input fields as follows. Since
|E| = √2γ |〈ain〉|, whereain is an annihilation operator
for the coherent driving field at the input of the cavity (so
that 〈a†

inain〉 = |〈ain〉|2 ≡ fin represents the photon flux or
average number of photons per unit time), then we obtain that
|ε|2 = 2γfin/(χ ′′)2. This can also be rewritten in terms of
the relationγ /χ ′′ andγ as follows:fin = γ |ε|2(γ /χ ′′)−2/2,
implying that for|ε| ∼ 1 and the above-mentioned values of
γ ∼ 106 s−1 andγ /χ ′′ ∼ 0.05, the corresponding cavity
input photon flux isfin ∼ 2× 108 photons per second.

Finally, let us discuss the influence of the two-photon
loss or absorption mechanism which is incorporated in our
general results through the damping rateχ ′, the real part
of the coefficientχ = χ ′ + iχ ′′. Mathematically, complex
values ofχ allowed us to treat both the effects of the Kerr
nonlinearity (χ ′′) and two-photon absorption (χ ′) within a
unified theory. In practical terms, this can be applied to
physically different nonlinear systems, where the intracavity
medium has a third-order polarizability (thenχ = iχ ′′), or
is a two-photon absorber (χ = χ ′), or else one may even
consider a combination of these two types of nonlinearity
within a single cavity (χ = χ ′ + iχ ′′). (In each case, the
one-photon damping constantγ is due to losses through the
input–output mirror of the cavity.)

In the discussion and examples given above, the two-
photon absorption coefficient was set to zero, for the sake of
simplicity. Once, however, the characteristic behaviour of
the system in different operation regimes is revealed, then it
can be easily generalized to the cases with nonzeroχ ′. This
is simply seen from the fact that the actual parameters that
govern the behaviour of the system (and have been used in
the analyses) are Reλ, Im λ, and|ε| (see equation (5)):

Reλ = γχ ′ +1χ ′′

(χ ′)2 + (χ ′′)2
, (18)

Im λ = 1χ ′ − γχ ′′
(χ ′)2 + (χ ′′)2

, (19)
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Figure 5. Wigner functionW(x, y) for 1/χ ′′ = 0.5, γ /χ ′′ = 0.05, and|ε| = 6; (a) and (b) are plotted in different windows ofx andy.

Figure 6. The same as in figure 1 (in (a) curves (1) and (2) correspond to quantum mechanical and semiclassical intensities, respectively)
but for1/χ ′′ = 0 andγ /χ ′′ = 0.05; (b) the corresponding Wigner function for|ε| = 3.

|ε| = |E|/
√
(χ ′)2 + (χ ′′)2. (20)

Therefore the above discussion and examples, given for
specific values of Reλ = 1/χ ′′, Im λ = −γ /χ ′′, and
|ε| = |E|/|χ ′′|, can equally be viewed as describing the
cases with nonzeroχ ′, as long as the parametersγ , 1, χ ′,
χ ′′, and|E| result in the same values of Reλ, Im λ, and|ε|, as
defined by equations (18)–(20). For example, the graphs of
figure 3, where Reλ ≡ a = −0.5 and Imλ ≡ b = −10−5,
can be viewed as representing the case with nonzeroχ ′ and
χ ′′ if we choose1 = aχ ′′ + bχ ′ and γ = aχ ′ − bχ ′′.
Obviously, there are additional limitations to be included in
the consideration, such as the requirement that the cavity
damping constantγ should remain positive valued. In the
above example (a = −0.5, b = −10−5) this may require
rather large values ofχ ′′, or the magnitude of the two-photon
absorption rateχ ′ must be limited, so thatχ ′′/χ ′ > a/b.

More generally, the interplay between theχ ′ and χ ′′

effects can easily be established by considering the behaviour
of the system in terms of the semiclassical steady states and
bistability regions. Following [11] these can be found to be

given by the following state equation:

|ε| = 4n3 + 4(Reλ)n2 + |λ|2n, (21)

with turning points

n± =
[
−2(Reλ)±

√
4(Reλ)2 − 3|λ|2

]/
6. (22)

These results generalize equations (2.18) and (2.19) of [11]
to the case of nonzeroχ ′ (or arbitrary values of the complex
parameterχ = χ ′ + iχ ′′). Correspondingly, the bistability
requires now that Reλ ∝ γχ ′ + 1χ ′′ < 0, and(Reλ)2 >
3(Im λ)2. It is easily seen now that if the cavity is only filled
by a two-photon absorber (i.e.χ ′′ = 0, andχ = χ ′) then
we obtain Reλ = γ /χ ′ > 0, and therefore the bistability (as
well as the examples of figures 1–4, where Reλ < 0) cannot
be realized.

In the general case of bothχ ′ andχ ′′ being nonzero, the
overall influence of the two-photon absorption mechanism
is that it reduces the bistability region, leading the
system towards the monostable (in the limit of largeχ ′)
behaviour. Alternatively speaking, when including the two-
photon losses, to guarantee the observation of the effects
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characteristic for a manifestly bistable regime, one would
need to employχ ′′ values and cavity detunings1 of opposite
signs and of larger absolute values.

4. Summary

In summary, we have presented an exact Wigner-function
solution to the model of a driven anharmonic oscillator, in the
steady state regime. This allowed us to explicitly visualize
the phase-space images of the state of the cavity mode,
which demonstrate, in particular, a rich variety of transition
scenarios from the low to higher level of photon excitation.
An analysis of the system in terms of the photon number
probability distribution has been provided as well.

Of particular interest is the behaviour of the system
in the extreme quantum regime (corresponding to strong
nonlinearities or low damping), where intuitive predictions
are likely to fail. The results in this regime show
qualitative departure of the steady state of the cavity mode
from behaviour in the semiclassical regime, thus making
meaningless such conventional attributes of the model
as bistability or turning points. In addition, while the
dissipation washes out as, usually, quantum superposition
and interference effects, nevertheless their contribution in the
resulting Wigner function can still be clearly tracked via the
obtained analytic form of the solution.
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