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Exact quantum phase model for mesoscopic Josephson junctions
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Starting from the two-mode Bose-Hubbard model, we derive an exact version of the standard Mathieu
equation governing the wave function of a Josephson junction. For a finite number of particlesN, we find an
additional cos 2f term in the potential. We also find that the inner product in this representation is nonlocal in
f. Our model exhibits phenomena, such asp oscillations, which are not found in the standard phase model,
but have been predicted from Gross-Pitaevskii mean-field theory.
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Exploring the quantum classical frontier is a major unif
ing theme of contemporary physics. An established che
point on this frontier is the Josephson junction~JJ!, where in
the limit of a very large number of particlesN, the quantum
phase differencef becomes an effectively classical degr
of freedom. Recent experiments@1# have approached the me
soscopic regime of intermediateN, in which f may possibly
be classical enough to manipulate, but quantal enoug
exploit for such technologies as quantum computation@2#.
Similar experiments have been proposed using trapped d
Bose-Einstein condensates, in whichN;1032109; and the
manipulation of phase fluctuations in an array of wea
coupled Bose-Einstein condensates has been reported in@3#.
The standard quantum theory of a JJ is the quantum p
model ~QPM! @5#, which treatsf as a quantum-mechanica
coordinate with a periodic potential. As well as explaini
basic results, this theory is tractable enough to guide work
more complex problems~e.g., quantum computation in@2#,
phase cooling in@4#!; but it is only derived for largeN. In
this paper, we provide an exact quantum phase mo
~EQPM!, valid for all N. We thus extend the applicability o
a useful quantum theory into the mesoscopic regime. We
provide a quantum-mechanical theory for mesoscopic p
nomena that have previously been predicted semiclassic
using the Gross-Pitaevskii mean-field theory~MFT!—
another widely used theory@6# whose ratio of tractability to
accuracy makes it extremely useful, and whose applicab
in the mesoscopic regime needs more investigation. Jos
son oscillations aboutf5p, which do not appear in the
QPM, have been predicted from MFT@7#, and compared@8#
with those recently observed in3He @9#. Our exact and fully
quantum-mechanical EQPM may exhibit thesep oscillations
in a wide regime.

Our derivation begins with the idealization of a meso
copic JJ as a two-mode bosonic system. Generalization
incorporate more modes may obviously be required for so
realistic scenarios, but such generalizations may be m
straightforwardly~if perhaps laboriously!, and we will re-
strict ourselves to two modes for illustration.~Regimes in
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which the two-mode model is actually an accurate appro
mation, to describe condensates in double-well traps, or t
component condensates, have recently been discussed@10–
15#.! We assume the Hamiltonian

Ĥ5
Ec

4
~ â1

†â1
†â1â11â2

†â2
†â2â2!2

EJ

N
~ â1

†â21â2
†â1!, ~1!

whereâ1,2
† ,(â1,2) creates~destroys! a particle in modes 1,2

respectively,~modes 1 and 2 referring to the two effectiv
‘‘sides’’ of the junction!. Here, N5n̂11n̂25â1

†â11â2
†â2

commutes withĤ, and so may be taken as ac number. ForN
up to the order of 103 or so it is easy to diagonalizeĤ
numerically. This direct approach will afford a check on o
results in one limit, but it fails for largerN, which may be
required for experimental observation, but that may nev
theless be within the mesoscopic range. And, of course
numerical solution affords no conceptual picture that may
applied beyond the idealized model itself.

Before constructing our EQPM, we briefly describe t
two alternative theories for this system, which do offer ge
eralizable concepts, and to which our formulation will b
compared. In the two-mode version of the Gross-Pitaev
MFT, we assume that for large enoughN, we can replace the
operatorsâ j→Anje

if j with c numbers. Defining the relative
phasef5f12f2 and numbern51/2(n12n2), we obtain
the classical Hamiltonian of a nonrigid pendulum@7#

Hcl5
Ec

2
n22EJA12S 2n

N D 2

cosf. ~2!

In this classical theory, there is no difficulty whatever abo
the fact thatf andn are canonically conjugate, and the c
nonical equations of motion derived fromHcl are integrable
in terms of Jacobi elliptic functions@7#. It will suffice for our
purposes to note the motion in the vicinity of the fixe
points. The global minimum ofHcl is alwaysn5f50; and
orbits about it have frequencyN21AEJ(4EJ1N2Ec), span-
ning the range from Bloch to Josephson oscillations
N2Ec /EJ increases.~Note that in dilute Bose-Einstein con
densates,EcN will be on the order of the chemical potentia
m, and one can haveEJ5Nv/2 for Bloch frequencyv es-

-
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sentially arbitary in comparison withm, so thatN2Ec /EJ can
range from much less to much more than one.! For
N2Ec /EJ,4, (n,f)5(0,p) is a maximum; but for
N2Ec /EJ.4 it is a saddle point, and there are two maxim
at (n,f)5(6nm ,p). The frequency of oscillations abou
(0,p) ~or rate of dynamical instability when it is a saddl
point! is N21AEJ(u4EJ2N2Ecu). And when the two degen
erate maxima exist, there are orbits about each of them s
that n is always either positive or negative, andf remains
close top ~except possibly for large radius orbits!.

If we attempt to go beyond the classical approximation
this MFT, the classical conjugacy off andn motivates the
standard QPM@12,16–19,21#, in which we quantize naively
by setting (n̂12n̂2)/2→ i (]/]f). This leads to a Schro¨dinger
equation i\Ċ5ĤfC for the 2p-periodic wave-function
C(f), with

Ĥf52
Ec

2

]2

]f2
2EJ cosf, ~3!

so that theC of energy eigenstates are Mathieu function
Standard inner productŝCuC8&5rdf C(f)* C8(f) and
expectation valueŝ Â&5rdfC(f)* A(f,t)C(f) are as-
sumed. The problem with this approach is that the na
quantization has in fact been too naive: there are ser
problems with makingf andn into canonically commuting
operators@20#. And even to obtain~2! from ~3! by our naive
quantization, we have neglectedn2 in comparison withN2/4
under the root. This naive approach does allow us, howe
to obtain a second-order equation forC, which is simple
enough to be solved exactly as a quantum problem, but
nevertheless reproduces some of the behaviors predicte
the MFT. There can be low-energy Josephson states loca
in the well aboutf50, and also high-energy running stat
C; exp(6ikf), corresponding to the MFT orbits~of large
radius! about one of the two maxima, having either positi
or negativen. Although the QPM and MFT are both based
largeN, however, some of their predictions differ. IfEc /EJ
*1, the QPM implies that there will be no localized eige
states, and hence, no small-amplitude Josephson phase
lations. And although in running statesuCu2 will be slightly
larger nearf5p, the QPM does not allow truep oscilla-
tions.

The questions therefore arise, which if either of the
theories is correct where they disagree, and what correct
may appear for each in the mesoscopic regime of smalleN.
The convenience and familiarity of the single-particle Sch¨-
dinger equation, and the wealth of approximations and g
eralizations that are available in this context, motivate us
seek a formulation of~1! similar to the QPM; but we will
also demand exactness at allN.

Our construction proceeds as follows. An arbitrary state
the Hilbert space of our two-mode system may be written

uc&5
1

~2p!2E2p

p

df1df2f ~f1 ,f2!uf1 ,f2&, ~4!

where the~un-normalized! Bargmann states@22# are
06360
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uf1 ,f2&5 (
l ,m50

`

ei ( lf11mf2)
1

Al !m!
u l &um&, ~5!

with um&,u l & being particle number eigenstates of modes
respectively.~This Bargmann representation is over com
plete, and from this over completeness arise serious com
cations in some uses of our EQPM, which may be regar
as the inevitable price of its advantages–a price that will
cheap in some applications, and excessive in others. We
discuss these issues below.! The action of any operators o
any stateuc& can be represented in terms of differential o
erators acting on the associatedf (f1 ,f2), using

f ~f i !âi→eif i f ~f i !

f ~f i !âi
†→ i

]

]f i
@e2 if i f ~f i !#. ~6!

~Simply integrate by parts.! In particular, the number opera
tors assume the familiar formsf (f i)n̂i5 f (f i) âi

†âi

→2 i (]/]f i) f (f i), without any approximation.
For a fixed total number of atomsN, we may write

f ~f11f/2,f12f/2!5e2 iNf1c~f!, ~7!

with f151/2(f11f2), and f5f12f2 as above. The
functionc(f) is 2p ~anti-!periodic if N is ~odd! even. Inte-
grating over f1 in Eq. ~4! then yields uc&N

5(1/2p)*2p
p dfc(f)uf&, for

uf&5 (
n52N/2

N/2 exp~ inf!

AS N

2
1nD ! S N

2
2nD !

un&

5N! ~ â1
†ei (f/2)1a2

†e2 i (f/2)!Nuvacuum& ~8!

~which may be considered a finiteN generalization of a pure
phase state@18#!. The action of the Josephson Hamiltonia
Eq. ~3! on the state vector Eq.~8! may thus be represented a
Ĥuc&5(1/2p)*2p

p dfuf&(H̃c) for

H̃ [2
Ec

2

]2

]f2
2EJS 11

2

ND cosf 22
EJ

N
sinf

]

]f
,

~9!

where ~as also in the standard QPM! we have dropped a
constant energy shift, in this caseEcN(N22)/8. As will be
clear after our discussion of over completeness below,
fact thatH̃ is not Hermitian is actually no cause for alarm
because we have maintained Hermiticity within the physi
subspace. Because Hermitian Schro¨dinger equations are
more familiar, however, we will finally obtain~1! by defining
c(f)5C(f)exp@(2EJ /EcN)cosf#. The result is that we can
represent~1! by the EQPM equation
5-2
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i\
]C

]t
5F2

Ec

2

]2

]f2
2EJS 11

1

ND cosf2
EJ

2

N2Ec

cos 2fGC,

~10!

dropping another constantEJ
2/N2Ec ~just to turn a sin2f term

into the cos 2f). So, in place of the QPM Mathieu equatio
setting i\] tC5EC in our EQPM gives the three-term Hi
equation@23#.

Equation~10! is our central result. It is exact, in the sen
that the lowestN11 frequencies in its eigenspectrum a
exactly the spectrum of our original two-mode Hamiltoni
with fixed N. ~We will show below why only these lowes
N11 states are physical.! Since, in very many cases, it i
only this spectrum that is experimentally probed, the sub
ties in computing expectation values that are due to the o
completeness of our representation, will often be irreleva
Before dealing with those subtleties, therefore, we will fi
present some deductions from Eq.~10! that are unaffected by
them.

We can immediately see that in the limit of largeN for
fixed EJ /Ec , we obtain the standard QPM. Alternatively,
the limit Ec→0, we recover simple Rabi oscillations, whic
are described by the MFT but not by the QPM. To see t
we first use time-independent perturbation theory inEc /EJ
to find the energy of themth energy eigenstate of~1! to be

Em5E01S EJ

N
1

NEc

4 Dm2
Ec

4
m21O~Ec

2!. ~11!

If we consider Eq.~10! in this same limitEc→0, then we
can expand the cosines about the two potential minimaf
50,p, writing f5AEc /Nx ~or f5p2AEc /Nx), to see
that to leading order inEc we have two harmonic wells
centered onf50,p, with 1/Ec playing the role of the mass
We may also compute perturbatively the next-to-leading
der correction to the energy levels, due to thex4 anharmo-
nicity. The spectrum for the well atf50 agrees with Eq.
~11!, while that for the well atf5p is

E m
p5E01~N11! f tS EJ

N
2

Ec

4 D1S EJ

N
2

~N12!Ec

4 Dm

2
Ec

4
m21O~Ec

2!. ~12!

Hence, we haveE 0
p.EN to O(Ec

2), so that all of theN11
physical states are in thef50 well.

If Ec /EJ is of orderN22, then we are beyond the Rab
regime, but EQPM still provides corrections to the QP
Expanding the potential around the two extremaf50,p, we
find the oscillator frequenciesN21AEJ(4EJ6N2Ec), in
agreement with the MFT as discussed above, and in con
to the resultsA6EJEc of the standard QPM. However, on
may show that as long as there is a second local minimum
f5p, the highest physical state has energy below that m
mum. It is therefore not obvious, at this point, how t
EQPM admitsp states any more than does the QPM. To s
06360
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that indeed it does admit them, we must finally address
consequences of Bargmann overcompleteness.

The main consequence of overcompleteness is that
inner product on the EQPM wave functionc(f) is not the
standard one of single-particle quantum mechanics, but
nonlocal

^cuc8&5
1

~2p!2 R du R dfc* ~u!c8~f!^uuf&,

where

^uuf&5 (
n52N/2

N/2
ein(f2u)

S N

2
1nD ! S N

2
2nD !

5
2N

N!
cosNS f2u

2 D

52p
2N

~N!! !2
dN~f2u!. ~13!

In the infinite N limit, ^uuf& becomes proportional~in the
interval f,uP@2p,p#) to a delta function

lim
N→`

dN~f2u!5d~f2u!, ~14!

and so for largeN, the nonstandard inner product can oft
be ignored. Even for very largeN, however, the inner prod
uct ~13! has the effect of eliminating all Fourier componen
eikf having uku.N/2. In fact, it is clear from the early ste
~8! in our derivation that this is as it should be. For high
energies, of orderN2Ec , projecting out these unphysica
Fourier components can drastically alter the shape of
eigenfunctions. In fact, one may prove, by examining~9! in
Fourier space, that projecting out unphysical Fourier com
nents will annihilate all energy eigenfunctions above t
lowestN11. For the higher physical states, we can use
WKB approximation to~9!, to see that the phase ofc(f)
will vary more rapidly nearf50 than nearf5p, so that
the nonvanishing amplitude aroundf50 will actually be
unphysical, and the physical part ofc(f) will be concen-
trated aroundf5p.

This effect can be shown quantitatively by computi

^a,f0 ,NuC&, where AN! ua,f0 ,N&5(â1
†eif0/2 cos(a/2)

1â2
†e2 if0/2 sin(a/2))Nuvac& is the SU~2! coherent state on

which the number-conserving MFT is based. In the ene
range where the MFT predictsp states, we can use WKB fo
c(f), and for largeN, we can evaluate the inner produ
using steepest descents. The result confirms the MFT pre
tion. An exception is the extreme high-N limit N2Ec
.2NEJ , where we may see from the WKB approximatio
to c(f) that its wave number does not vary significan
with f, and so projecting out unphysical frequencies eith
annihilates eigenfunctions entirely, or else has little effect
them. Consequently, there are nop states in this regime, and
the standard QPM is essentially vindicated over MFT, ev
at very highN: the usualN21/2 improvement in MFT accu-
racy is overwhelmed by strong number squeezing due to
predominance of the nonlinear interaction@24#.
5-3
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In conclusion, we have derived an exact version of
phenomenological quantum phase model, from the tw
mode Bose-Hubbard model for a Josephson junction.
have shown that this exact quantum phase model reprod
the time scales and~except for very largeN) the p states of
the Gross-Pitaevskii mean-field theory. The corrections
find to the standard QPM include a cos 2f term in the po-
tential, and the fact that the inner product must be nonlo
in f, because of the need to project out unphysically h
Fourier components in the wave functions. For some com
e
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tations, the nonlocal inner product may introduce too sev
complications; but in general, our formalism, and its gen
alizations, should provide valuable additional tools for u
derstanding quantum effects in mesoscopic Josephson
tems.
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