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Abstract
In this work, we analyse and compare the continuous variable tripartite
entanglement available from the use of two concurrent or cascaded χ(2)

nonlinearities. We examine both idealized travelling-wave models and more
experimentally realistic intracavity models, showing that tripartite entangled
outputs are readily producible. These may be a useful resource for applications
such as quantum cryptography and teleportation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a property which is central to quantum mechanics, with continuous variable
bipartite entanglement being readily producible experimentally. A two-mode system is
considered to be bipartite entangled if the system density matrix cannot be expressed as
a product of the density matrices of each of the two modes. The definition of tripartite
entanglement for three-mode systems is a little more subtle, with different classes of
entanglement having been defined, depending on how the system density matrix may be
partitioned [1]. The classifications range from fully inseparable, which means that the density
matrix is not separable for any grouping of the modes, to fully separable, where the three
modes are not entangled in any way. For the fully inseparable case, van Loock and Furusawa
[2], who call this genuine tripartite entanglement, have derived inequalities which are easily
applicable to continuous variable processes. These are the inequalities which we shall evaluate
in this work.

While there has been some experimental progress in the production of tripartite entangled
beams, this entanglement is often obtained by mixing squeezed vacua with linear optical
elements [3, 4]. Other methods which create the entanglement in the actual nonlinear
interaction have been proposed, using both cascaded and concurrent χ(2) processes [5–7].
In this paper, we investigate the fundamental limits to the achievable tripartite entanglement
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available from two processes which utilize twin nonlinearities in the concurrent and cascaded
configurations. We evaluate the continuous variable tripartite entanglement criteria of van
Loock and Furusawa [2] for two different interaction Hamiltonians and then calculate the
performance of the corresponding intracavity systems which contain the interactions described
by these Hamiltonians. We will show that fully inseparable tripartite entanglement is predicted
for a range of parameters.

2. Criteria for tripartite entanglement

We will first describe the inequalities whose violation is sufficient to demonstrate that a system
demonstrates true continuous variable tripartite entanglement. For three modes described by
the annihilation operators âj , where j = 1, 2, 3, we define quadrature operators for each mode
as

X̂j = âj + â
†
j , Ŷ j = −i

(
âj − â

†
j

)
, (1)

so that the Heisenberg uncertainty principle requires V (X̂j )V (Ŷ j ) � 1. A set of conditions
which are sufficient to demonstrate tripartite entanglement have been derived by van Loock
and Furusawa [2], without making any assumptions about Gaussian statistics. Note that a
set of conditions often used to demonstrate continuous variable bipartite entanglement, which
were developed by Duan et al using the properties of the covariance matrix [8] (see also [9]),
are both necessary and sufficient for Gaussian variables.

The general van Loock–Furusawa inequalities are expressed in terms of linear
combinations of the quadrature operators. In this work, we will confine our attention to
a particular linear combination (corresponding to h1 = g1 = g2 = g3 = 1 = −h2 and h3 = 0
in the van Loock–Furusawa notation). This choice leads to symmetric conditions for modes
i and j to be separable, so that each inequality actually addresses the separability of two
modes. Using these operator combinations and our quadrature definitions, the van Loock and
Furusawa conditions give a set of inequalities,

V12 = V (X̂1 − X̂2) + V (Ŷ 1 + Ŷ 2 + Ŷ 3) � 4,

V13 = V (X̂1 − X̂3) + V (Ŷ 1 + Ŷ 2 + Ŷ 3) � 4,

V23 = V (X̂2 − X̂3) + V (Ŷ 1 + Ŷ 2 + Ŷ 3) � 4,

(2)

where V (A) ≡ 〈A2〉−〈A〉2. As shown in [2], the violation of the first condition still leaves the
possibility that mode 3 could be separated from modes 1 and 2, but this possibility is negated
by violation of the second inequality. Starting with any one of the conditions thus shows
that, if any two of these inequalities are violated, the system is fully inseparable and genuine
tripartite entanglement is guaranteed. We note that genuine tripartite entanglement may still
be possible when none of these inequalities is violated, due to the criteria being sufficient but
not necessary.

We note here that, although states which violate these inequalities are sometimes called
continuous variable GHZ states, actual GHZ states rely on perfect correlations [10, 11]. This
terminology would be accurate if the states involved were eigenstates of amplitude quadrature
differences and phase quadrature sums. This would, however, require infinite squeezing of
the electromagnetic field which in turn would require infinite energy. As this is physically
impossible, we will not use the GHZ terminology in this paper.
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3. Travelling-wave models

In this section, we will examine simplified models of two processes which utilize two
concurrent or cascaded nonlinearities to produce tripartite entanglement. We will proceed by
solving both stochastic equations which are equivalent to the Heisenberg equations of motion
derived from the interaction Hamiltonians and approximate operator equations obtained by
ignoring pump depletion. While these procedures are not intended to model realistic physical
processes with propagating waves, which would need a more complicated treatment [12], they
do give some idea of the degree of entanglement available from these Hamiltonians. In the
next section, we will perform more realistic analyses of the same processes inside pumped
optical cavities.

3.1. Two cascaded nonlinearities

Ferraro et al have proposed a linked nonlinear process which links five different modes [6]
and was first investigated in terms of photon statistics by Smithers and Lu [13]. It has recently
been analysed in terms of its nonlocal properties by Ferraro and Paris [14], with the theoretical
analyses of all these works using the undepleted pump approximation. However, it is known
that the squeezing and bipartite entanglement in travelling-wave χ(2) processes do not become
perfect as the interaction strength increases, but reach some finite limit and then decrease
[15–17]. We will therefore quantize the pump modes and analyse this system using the full
stochastic equations of motion, which must be done numerically. The process involves modes
which we will describe using the operators b̂1(ω1), b̂2(ω2), â1(ω3), â2(ω4) and â3(ω5) where
the frequencies obey

ω1 = ω3 + ω4, ω5 = ω2 + ω4. (3)

The interaction Hamiltonian can then be written as

Hint = ih̄
(
χ1b̂

†
1â1â2 + χ2b̂

†
2â

†
2â3

)
+ h.c., (4)

which we see describes the same process as [6], once all the interacting fields are quantized.
Note that we have changed the indices of modes 2 and 3 compared with those used by Ferraro
et al, so that both our 1 and 2 are produced by the χ1 interaction. This Hamiltonian describes
a downconversion process cascaded with a sum-frequency generation process where one of
the downconverted modes becomes a pump mode for the frequency generation process.

Before we develop and investigate the full equations from (4), it is instructive to examine
the analytical solutions which may be obtained using an undepleted pump approximation.
Setting κ1 = χ1〈b̂1(0)〉 and κ2 = χ2〈b̂2(0)〉 as real positive constants, we find the Heisenberg
equations of motion,

dâ1

dt
= κ1â

†
2,

dâ2

dt
= κ1â

†
1 − κ2â3,

dâ3

dt
= κ2â2. (5)

We find that there are two classes of solutions, depending on whether κ2
2 > κ2

1 or κ2
2 < κ2

1 . In

the first case, where κ2
2 > κ2

1 , we set � =
√

κ2
2 − κ2

1 to find

â1(t) = κ2
2 − κ2

1 cos �t

�2
â1(0) +

κ1 sin �t

�
â
†
2(0) +

κ1κ2(cos �t − 1)

�2
â
†
3(0),

â2(t) = κ1 sin �t

�
â
†
1(0) + â2(0) cos �t − κ2 sin �t

�
â3(0),

â3(t) = κ1κ2(1 − cos �t)

�2
â
†
1(0) +

κ2 sin �t

�
â2(0) +

κ2
2 cos �t − κ2

1

�2
â3(0),

(6)
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Figure 1. The analytical solutions of the van Loock–Furusawa correlations for the Ferarro scheme,
with κ2 = 1.8κ1. Any two of the correlations falling below 4 are sufficient to demonstrate that
genuine tripartite entanglement is present.

which, beginning with all the a modes initially as vacuum, gives the solutions for the intensities
as〈
â
†
2â2

〉 = κ2
1 sin2 �t

�2
,

〈
â
†
3â3

〉 = κ2
1 κ2

2 (cos �t − 1)2

�4
,

〈
â
†
1â1

〉 = 〈
â
†
2â2

〉
+

〈
â
†
3â3

〉
. (7)

We see that these are the same as the analytical solutions given by Ferraro et al [6], once the
change of indices is taken into account.

We can use the solutions of (6) to find expressions for the quadrature variances and
covariances,

V (X̂1) = V (Ŷ 1) = 1 +
4κ2

1 κ2
2 (1 − cos �t) − 2κ4

1 sin2 �t

�4
,

V (X̂2) = V (Ŷ 2) = 1 +
2κ2

1 sin2 �t

�2
,

V (X̂3) = V (Ŷ 3) = 1 +
2κ2

1 κ2
2 (1 − cos �t)2

�4
,

V (X̂1, X̂2) = −V (Ŷ 1, Y2) = 2κ1 sin �t

�3

(
κ2

2 − κ2
1 cos �t

)
,

V (X̂1, X̂3) = −V (Ŷ 1, Ŷ 3) = 2κ1κ2

�4

[
κ2

1 cos2 �t + κ2
2 − (

κ2
1 + κ2

2

)
cos �t

]
,

V (X̂2, X̂3) = V (Ŷ 2, Ŷ 3) = 2κ2
1 κ2

�3
sin �t (1 − cos �t) .

(8)

These expressions contain all the information necessary to express the van Loock–Furusawa
correlations, since V (X̂i − X̂j ) = V (X̂i) + V (X̂j ) − 2V (X̂i, X̂j ) and V (Ŷ 1 + Ŷ 2 + Ŷ 3) =
V (Ŷ 1) + V (Ŷ 2) + V (Ŷ 3) + 2(V (Ŷ 1, Ŷ 2) + V (Ŷ 1, Ŷ 3) + V (Ŷ 2, Ŷ 3)). The expressions for the
van Loock–Furusawa correlations obtained by combining these variances and covariances
are shown in figure 1, for κ2 = 1.8κ1. We see that this Hamiltonian provides tripartite
entanglement over a range of scaled interaction time.

If κ2
1 > κ2

2 , the solutions are not periodic so that the undepleted pump approximation is
of limited validity, being expected to give accurate answers only for short times. However,
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setting ζ =
√

κ2
1 − κ2

2 , we find

â1(t) = κ2
1 cosh ζ t − κ2

2

ζ 2
â1(0) +

κ1 sinh ζ t

ζ
â
†
2(0) +

κ1κ2(1 − cosh ζ t)

ζ 2
â
†
3(0),

â2(t) = κ1 sinh ζ t

ζ
â
†
1(0) + â2(0) cosh ζ t − κ2 sinh ζ t

ζ
â3(0),

â3(t) = κ1κ2(cosh ζ t − 1)

ζ 2
â
†
1(0) +

κ2 sinh ζ t

ζ
â2(0) +

κ2
1 − κ2

2 cosh ζ t

ζ 2
â3(0),

(9)

with the mean intensities being, again with these modes beginning as vacuum,

〈
â
†
2â2

〉 = κ2
1 sinh2 ζ t

ζ 2
,

〈
â
†
3â3

〉 = κ2
1 κ2

2 (cosh ζ t − 1)2

ζ 4
,

〈
â
†
1â1

〉 = 〈
â
†
2â2

〉
+

〈
â
†
3â3

〉
.

(10)

We note here that these solutions have previously been given by Smithers and Lu [13] and
that we have presented them here because we intend to use them to find analytical expressions
for the correlation functions of interest. In this case, the solutions for the variances and
covariances are found as

V (X̂1) = V (Ŷ 1) = 1 +
2κ2

1

[
κ2

1 sinh2 ζ t + κ2
2 (2 − 2 cosh ζ t)

]
ζ 4

,

V (X̂2) = V (Ŷ 2) = 1 +
2κ2

1 sinh2 ζ t

ζ 2
,

V (X̂3) = V (Ŷ 3) = 1 +
2κ2

1 κ2
2 (cosh ζ t − 1)2

ζ 4
,

V (X̂1, X̂2) = −V (Ŷ 1, Ŷ 2) = 2κ1 sinh ζ t

ζ 3

(
κ2

1 cosh ζ t − κ2
2

)
,

V (X̂1, X̂3) = −V (Ŷ 1, Ŷ 3) = 2κ1κ2

ζ 4

[(
κ2

1 + κ2
2

)
(1 − cosh ζ t) + κ2

1 cosh2 ζ t
]
,

V (X̂2, X̂3) = V (Ŷ 2, Ŷ 3) = 2κ2
1 κ2

ζ 3
sinh ζ t (cosh ζ t − 1) .

(11)

The system also exhibits tripartite entanglement in this regime, as can be seen in figure 2.
However, as the solutions for the intensities are hyperbolic, they quickly increase to the point
where the undepleted pump approximation will lose its validity. Neither of the analytic
treatments used above is useful for the case where κ2

1 = κ2
2 , for which we will employ

stochastic integration.
In developing our full equations of motion, we will follow the approach of Huttner et al

[18] (see also [19]) treating the interacting fields in terms of the photon fluxes rather than in
terms of energy densities. As stated in [18], this approach avoids problems which could arise,
especially with the quantization volume, if we were to work with the normal Hamiltonian
approach. With the appropriate momentum-space operators, we use the well-known mapping
onto stochastic differential equations in the positive-P representation [20] to calculate the
development of the fields as they traverse the medium. We note here that this phase-space
representation allows for an exact and complete mapping of our Hamiltonian onto stochastic
differential equations. We consider here the case of one-dimensional propagation, which is
valid for the case of collinear pumping. We also note here that this approach assumes that the
medium is not dispersive for the interacting fields, which is a difficult condition to meet with
existing materials. In this approach, the operator

N̂(z0, ωm) ≡ â†(z0, ωm)â(z0, ωm), (12)
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Figure 2. The analytical solutions of the van Loock–Furusawa correlations for the Ferarro scheme,
with κ1 = 1.2κ2. Any two of the correlations falling below 4 are sufficient to demonstrate that
genuine tripartite entanglement is present.

for example, is the number operator for photons at frequency ωm which pass through a plane
at z = z0 during a chosen time interval. The operators â†(z, ωm) and â(z, ωm) then obey
bosonic spatial commutation relations,

[â(z, ωi), â
†(z′, ωj )] = δij δ(z − z′), (13)

and similarly for the b̂j operators. The nonlinear momentum operator for this system is found
as

Ĝnl(z) = ih̄
(
χ1b̂

†
1â1â2 + χ2b̂

†
2â

†
2â3

)
+ h.c. (14)

As shown by Shen [21], we can write an equation of motion for the density matrix of the
system,

ih̄
∂ρ(z)

∂z
= [ρ(z), Ĝnl(z)], (15)

which allows for the calculation of steady-state propagation, exactly as required for continuous
pumping. Physically, the density matrix, ρ(z), describes an ensemble of steady-state systems
which has all the statistical properties of the fields at point z. Equation (15) provides a full
description of the interacting fields of our model, but is extremely difficult to solve directly.

Therefore, following the standard procedures [22], we map the master equation onto the
Fokker–Planck equation for the positive-P pseudoprobability distribution,

dP

dz
=

{
−

[
∂

∂α1
χ1α

+
2 β1 +

∂

∂α+
1

χ1α2β
+
1 +

∂

∂α2

(
χ1α

+
1 β1 − χ2α3β

+
2

)
+

∂

∂α+
2

(
χ1α1β

+
1 − χ2α

+
3 β2

)

+
∂

∂α3
χ2α2β2 +

∂

∂α+
3

χ2α
+
2 β+

2 +
∂

∂β1
(−χ1α1α2) +

∂

∂β+
1

(−χ1α
+
1 α+

2

)

+
∂

∂β2

(−χ2α2α
+
3

)
+

∂

∂β+
2

(−χ2α
+
2 α3

)]
+

1

2

[
∂2

∂α1∂α2
2χ1β1 +

∂2

∂α+
1 ∂α+

2

2χ1β
+
1

− ∂2

∂α2∂β2
2χ2α3 − ∂2

∂α+
2 ∂β+

2

2χ2α
+
3

]}
P(α̃, z), (16)
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where α̃ = (
α1, α

+
1 , α2, α

+
2 , α3, α

+
3 , β1, β

+
1 , β2, β

+
2

)
. As always with the positive-P

representation, stochastic averages of products of the variables represent normally ordered
operator expectation values, with there being correspondences between αj , α

+
j , βj , β

+
j and

âj , â
†
j , b̂j , b̂

†
j . We now map this Fokker–Planck equation onto the following set of stochastic

differential equations in Itô calculus:

dα1

dz
= χ1α

+
2 β1 +

√
χ1β1

2
(η1 + iη3) ,

dα+
1

dz
= χ1α2β

+
1 +

√
χ1β

+
1

2
(η2 + iη4) ,

dα2

dz
= χ1α

+
1 β1 − χ2α3β

+
2 +

√
χ1β1

2
(η1 − iη3) −

√
χ2α3

2
(η7 − iη5) ,

dα+
2

dz
= χ1α1β

+
1 − χ2α

+
3 β2 +

√
χ1β

+
1

2
(η2 − iη4) −

√
χ2α

+
3

2
(η8 − iη6) ,

dα3

dz
= χ2α2β2,

dα+
3

dz
= χ2α

+
2 β+

2 ,

dβ1

dz
= −χ1α1α2,

dβ+
1

dz
= −χ1α

+
1 α+

2 ,

dβ2

dz
= −χ2α2α

+
3 +

√
χ2α3

2
(η7 + iη5) ,

dβ+
2

dz
= −χ2α

+
2 α3 +

√
χ2α

+
3

2
(η8 + iη6) ,

(17)

which we may solve using stochastic integration. The real Gaussian noise terms have the
correlations

ηj (z) = 0, ηj (z)ηk(z′) = δjkδ(z − z′). (18)

The results of stochastic integration in two different parameter regimes are presented in
figures 3–5. All show genuine tripartite entanglement over some interaction range and all begin
with the output modes as vacuum. For the parameters used in figure 3, with χ1β1(0) = χ2β2(0),
the output intensities increase monotonically over the range shown and the entanglement
disappears. This is unlike the situation of figure 4, where χ2β2(0) = 2χ1β1(0), and both the
output fields and the van Loock–Furusawa correlations oscillate over a short interaction length.
Although the field intensities for the first situation obviously cannot increase indefinitely, this
contrast between monotonically increasing and periodic behaviour of the intensities, depending
on the ratios of the pumping and interaction strengths, was mentioned by Smithers and
Lu [13].

3.2. Two concurrent nonlinearities

Another possibility for a travelling-wave model is to have a single crystal with two concurrent
nonlinearities, each pumped by different modes. This could be achieved either with
different polarizations or with different frequencies. In this section, we will consider a
crystal which is pumped at frequencies ω1 and ω2 to produce modes at ω3, ω4 and ω5,
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Figure 3. The scheme of [6] with everything symmetric, β1(0) = β2(0) = 103 and
χ1 = χ2 = 10−2, averaged over 1.06 × 106 stochastic trajectories. The horizontal axis is
the scaled interaction length, ξ = |β0|χz. Any two of the correlations falling below 4 are sufficient
to demonstrate that genuine tripartite entanglement is present.
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Figure 4. The scheme of [6] as in figure 3, but with χ2 = 2χ1, averaged over 3.35×106 stochastic
trajectories.

where ω1 = ω3 + ω4 and ω2 = ω4 + ω5. With all modes quantized with the operators
b̂1(ω1), b̂2(ω2), â1(ω3), â2(ω4), â3(ω5), the interaction Hamiltonian for this scheme becomes

Hint = ih̄
(
χ1b̂1â

†
1â

†
2 + χ2b̂2â

†
2â

†
3

)
+ h.c., (19)

where χj represent the nonlinear interactions.
We will first examine a simplified analytical model for the propagation of fields described

by this Hamiltonian. Assuming perfect phase matching and ignoring pump depletion, we may
set γ1 = χ1〈b̂1(0)〉 and γ2 = χ2〈b̂2(0)〉, where the pump fields are initially intense coherent
states, to find the Heisenberg equations of motion,

dâ1

dt
= γ1â

†
2,

dâ2

dt
= γ1â

†
1 + γ2â

†
3,

dâ3

dt
= γ1â

†
2. (20)
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Figure 5. The intensities produced by the interaction of the scheme of [6] for the same parameters
as used in figure 4.

Setting � =
√

γ 2
1 + γ 2

2 , we may solve these linear operator equations to find the solutions

â1(t) = â1(0)
γ 2

2 + γ 2
1 cosh �t

�2
+ â

†
2(0)

γ1 sinh �t

�
+ â3(0)

γ1γ2 (cosh �t − 1)

�2
,

â2(t) = â
†
1(0)

γ1 sinh �t

�
+ â2(0) cosh �t + â

†
3(0)

γ2 sinh �t

�
,

â3(t) = â1(0)
γ1γ2 (cosh �t − 1)

�2
+ â

†
2(0)

γ2 sinh �t

�
+ â3(0)

γ 2
1 + γ 2

2 cosh �t

�2
,

(21)

which contain all the information required to calculate the desired correlations. With all the
output modes initially vacuum, we find the average intensities

〈
â
†
1â1

〉 = γ 2
1 sinh2 �t

�2
,

〈
â
†
2â2

〉 = sinh2 �t,
〈
â
†
3â3

〉 = γ 2
2 sinh2 �t

�2
, (22)

with the variances and covariances for the quadratures being found as

V (X̂1) = V (Ŷ 1) = 1 + 2
γ 2

1 sinh2 �t

�2
,

V (X̂2) = V (Ŷ 2) = 1 + 2 sinh2 �t,

V (X̂3) = V (Ŷ 3) = 1 + 2
γ 2

2 sinh2 �t

�2
,

V (X̂1, X̂2) = −V (Ŷ 1, Ŷ 2) = γ1 sinh 2�t

�
,

V (X̂1, X̂3) = V (Ŷ 1, Ŷ 3) = 2γ1γ2 sinh2 �t

�2
,

V (X̂2, X̂3) = −V (Ŷ 2, Ŷ 3) = γ2 sinh 2�t

�
.

(23)
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We can now calculate the van Loock–Furusawa correlations, finding

V (X̂1 − X̂2) = 2

[
1 +

(
1 +

γ 2
1

�2

)
sinh2 �t − γ1

�
sinh 2�t

]
,

V (X̂1 − X̂3) = 2

[
1 +

(
1 − 2γ1γ2

�2

)
sinh2 �t

]
,

V (X̂2 − X̂3) = 2

[
1 +

(
1 +

γ 2
2

�2

)
sinh2 �t − γ2

�
sinh 2�t

]
,

V (Ŷ 1 + Ŷ 2 + Ŷ 3) = 3 +

(
4 +

4γ1γ2

�2

)
sinh2 �t − 2(γ1 + γ2)

�
sinh 2�t,

(24)

which, for γ1 = γ2 = γ , simplify to give

V12 = V23 = 5 + 9 sinh2 �t − 3
√

2 sinh 2�t,

V13 = 5 + 6 sinh2 �t − 2
√

2 sinh 2�t,
(25)

from which we can see that tripartite entanglement is definitely present for shortish interaction
times, but does not increase with �t . In fact, the minimum of V12 and V23 is found at
�t = cosh−1

√
2 and has a value of 2.

We will now turn to stochastic integration of the full equations, without using the
undepleted pump approximation. In what follows, we will set the interaction strengths equal,
χ1 = χ2 = χ , as these are the conditions which give the maximum violation of the inequalities
for this system. We define the nonlinear momentum operator for this process as

Ĝnl(z) = ih̄χ
(
b̂
†
1â1â2 + b̂

†
2â2â3

)
+ h.c. (26)

From this operator we may make a mapping onto a Fokker–Planck equation for the positive-P
pseudoprobability distribution, from which we find the Itô stochastic differential equations,

dα1

dz
= χα+

2 β1 +

√
χβ1

2
(η1 + iη6) ,

dα+
1

dz
= χα2β

+
1 +

√
χβ+

1

2
(η2 − iη5) ,

dα2

dz
= χ

(
α+

1 β1 + α+
3 β2

)
+

√
χβ1

2
(η1 − iη6) +

√
χβ2

2
(η3 + iη7) ,

dα+
2

dz
= χ

(
α1β

+
1 + α3β

+
2

)
+

√
χβ+

1

2
(η2 + iη5) +

√
χβ+

2

2
(η4 + iη8) ,

dα3

dz
= χα+

2 β2 +

√
χβ2

2
(η3 − iη7) ,

dα+
3

dz
= χα2β

+
2 +

√
χβ+

2

2
(η4 − iη8) ,

dβ1

dz
= −χα1α2,

dβ+
1

dz
= −χα+

1 α+
2 ,

dβ2

dz
= −χα2α3,

dβ+
2

dz
= −χα+

2 α+
3 ,

(27)
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Figure 6. Positive-P solution averaged over 2.68 × 106 stochastic trajectories for the tripartite
entanglement criteria with the doubly concurrent Hamiltonian of section 3.2. The solid line is
V12 and V23, while the dashed line is V13. The horizontal axis is the scaled interaction length,
ξ = |β0|χz.
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Figure 7. Output intensities for the same system and parameters as figure 6.

where the real Gaussian noise terms have the correlations

ηj (z) = 0, ηj (z)ηk(z′) = δjkδ(z − z′). (28)

As in the previous section, stochastic averages of products of the variables represent normally
ordered operator expectation values, with there being correspondences between αj , α

+
j , βj , β

+
j

and âj , â
†
j , b̂j , b̂

†
j .

The results of stochastic integration of (27) are shown in figure 6 for the tripartite
entanglement criteria, for parameter values χ = 10−2, β1(0) = β2(0) = 103 and α1(0) =
α2(0) = α3(0) = 0. We see that the correlations are not symmetric, but that tripartite
entanglement is available. The output intensities are shown in figure 7, from which we again
see that the inequalities are violated for relatively weak fields. For this system, the analytic
results which we presented above give the same results as the stochastic integration over the
interaction range shown.
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4. Doubled intracavity nonlinearities

Now that we have demonstrated that the two Hamiltonians of section 3 can produce
entanglement, we will examine the more realistic physical situations where the processes
described happen inside pumped optical cavities. As optical cavities can be tuned to be
resonant with only a certain number of modes, a fuller description of the physics involved can
be given in a simple manner.

4.1. Cascaded nonlinearities in a cavity

To consider the scheme described by the interaction Hamiltonian of (4) inside a resonant
pumped optical cavity, we must add terms to the Hamiltonian, so that

H = Hint + Hpump + Hdamp, (29)

where Hint has the same form as the interaction Hamiltonian of (4), and

Hpump = ih̄
(
ε1b̂

†
1 + ε2b̂

†
2

)
+ h.c.,

Hdamp = h̄


∑

k

�̂k
a â

†
k +

∑
j

�̂
j

b b̂
†
j


 + h.c.,

(30)

where k = 1, 2, 3 and j = 1, 2. In the above, εj are the classical pump amplitudes at
the two input frequencies and �k

a,b are bath operators. The field operators now refer to the
intracavity fields. This now becomes equivalent to the scheme of Guo et al [5], who analysed
it using quantum Langevin equations in an undepleted pump approximation. Following the
same procedures used in deriving (17) and making the usual zero-temperature Markovian bath
approximation, we find the positive-P equations which give a full quantum description of this
system,

dα1

dt
= −γ1α1 + χ1α

+
2 β1 +

√
χ1β1

2
(η1 + iη3),

dα+
1

dt
= −γ1α

+
1 + χ1α2β

+
1 +

√
χ1β

+
1

2
(η2 + iη4),

dα2

dt
= −γ2α2 + χ1α

+
1 β1 − χ2α3β

+
2 +

√
χ1β1

2
(η1 − iη3) −

√
χ2α3

2
(η7 − iη5),

dα+
2

dt
= −γ2α

+
2 + χ1α1β

+
1 − χ2α

+
3 β2 +

√
χ1β

+
1

2
(η2 − iη4) −

√
χ2α

+
3

2
(η8 − iη6),

dα3

dt
= −γ3α3 + χ2α2β2,

dα+
3

dt
= −γ3α

+
3 + χ2α

+
2 β+

2 ,

dβ1

dt
= ε1 − κ1β1 − χ1α1α2,

dβ+
1

dt
= ε∗

1 − κ1β
+
1 − χ1α

+
1 α+

2 ,

dβ2

dt
= ε2 − κ2β2 − χ2α2α

+
3 +

√
χ2α3

2
(η7 + iη5),

dβ+
2

dt
= ε∗

2 − κ2β
+
2 − χ2α

+
2 α3 +

√
χ2α

+
3

2
(η8 + iη6).

(31)
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Note that the correlations of the noise terms are now in time rather than in the spatial variable.
These equations can be integrated numerically in any parameter regime, including near to
any critical points of the system. However, as we will not be concerned with the behaviour
of this system in the neighbourhood of any critical points, we will proceed via a linearized
fluctuation analysis. This involves separating the variables of the positive-P equations into
their mean-field steady-state solutions plus a fluctuating part, e.g. α1 = αss

1 + δα1. Solving the
classical equations of motion to find the steady-state solutions, we may then write equations
for the fluctuations from which we can calculate the output spectral quantities of interest [23].
Neglecting the noise terms in (31), we find the following classical equations for the interacting
fields:

dα1

dt
= −γ1α1 + χ1α

∗
2β1,

dα2

dt
= −γ2α2 + χ1α

∗
1β1 − χ2α3β

∗
2 ,

dα3

dt
= −γ3α3 + χ2α2β2,

dβ1

dt
= ε1 − κ1β1 − χ1α1α2,

dβ2

dt
= ε2 − κ2β2 − χ2α2α

∗
3 ,

(32)

where γj (κj ) are the cavity damping rates for αj (βj ).
We see that one possible set of solutions to these equations is

αss
j = 0, (33)

βss
j = εj /κj , (34)

which are reminiscent of those found for the well-known OPO below threshold. To examine
the stability of these solutions, we write the linearized equation for the fluctuations,

dδα̃ = Aδα̃ dt + B dW, (35)

where α̃ = [
δα1, δα

+
1 , δα2, δα

+
2 , δα3, δα

+
3 , δβ1, δβ

+
1 , δβ2, δβ

+
2

]T
, B is the matrix of the noise

terms of (17), but with the classical steady-state solutions used in place of the stochastic
variables and dW is a vector of Wiener increments. The drift matrix is found as

A = [A1 A2] , (36)

where

A1 =




−γ1 0 0 χ1β
ss
1 0 0

0 −γ1 χ1(β
∗
1 )ss 0 0 0

0 χ1β
ss
1 −γ2 0 −χ2(β

∗
2 )ss 0

χ1(β
∗
1 )ss 0 0 −γ2 0 −χ2β

ss
2

0 0 χ2β
ss
2 0 −γ3 0

0 0 0 χ2(β
∗
2 )ss 0 −γ3

−χ1α
ss
2 0 −χ1α1 0 0 0

0 −χ1(α
∗
2)

ss 0 −χ1(α
∗
1)

ss 0 0

0 0 −χ2(α
∗
3)

ss 0 0 −χ2α
ss
2

0 0 0 −χ2α
ss
3 −χ2(α

∗
2)

ss 0




(37)
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and

A2 =




χ1(α
∗
2)

ss 0 0 0

0 χ1α
ss
2 0 0

χ1(α
∗
1)

ss 0 0 −χ2α
ss
3

0 χ1α
ss
1 −χ2(α

∗
3)

ss 0

χ2α
ss
2 0 0 0

0 χ2(α
∗
2)

ss 0 0

−κ1 0 0 0

0 −κ1 0 0

0 0 −κ2 0

0 0 0 −κ2




. (38)

As long as none of the eigenvalues of this drift matrix has a positive real part, the solutions
are stable and the linearized fluctuation analysis should be valid. Although general analytical
expressions for the eigenvalues can be found, these are rather complicated. In the simplifying
case below threshold where we set the output loss rates equal, γj = γ and κj = κ , we find a
degenerate eigenvalue which can be positive,

λ = −γ +

√
χ2

1 ε2
1 − χ2

2 ε2
2

κ
. (39)

This eigenvalue sets a condition for the relative strengths of the pump,

χ2
1 ε2

1 − χ2
2 ε2

2 < γ 2κ2. (40)

When this condition is violated, the below threshold solutions are unstable.
The spectral correlations are found in the normal manner, via the equation

S(ω) = (A + iω)−1D(AT − iω)−1, (41)

where D is the diffusion matrix with the steady-state values of the fields and the standard
input–output relationships [24]. We will denote the output spectral correlations equivalent to
Vij of (2) as Sij . Although we were able to find analytic expressions for the correlations, these
were extremely complicated and gave little insight, therefore we have presented numerical
results in figure 8. Our numerical investigations over a range of parameters did not find any
violation of the inequalities noticeably better than that presented. We found that when the
pumping rates increase above the value of εj = γ κ/χj , the violations rapidly disappear. What
is immediately visible is that the inequalities are not all violated equally, although true tripartite
entanglement is demonstrated. We note that numerical investigations show that this system
exhibits a range of behaviours, with self-pulsing type oscillations and possible bistability for
particular parameter regimes, but here we are only interested in its suitability as a source
of tripartite entanglement and an investigation of these effects is outside the scope of this
work.

4.2. Intracavity concurrent twin nonlinearities

In a similar manner to the preceding (section 4.1), we will now investigate the performance of
an intracavity version of the system described by (19). We again find the classical equations
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Figure 8. Tripartite entanglement criteria for the system of section 4.1, for κ = γ = 1, χ1 = χ2 =
10−2 and ε1 = ε2 = 0.9γ κ/χ1.

by dropping the noise terms in the appropriate positive-P equations and solve these for the
mean fields in the steady state. The equations for the mean fields are

dα1

dt
= −γaα1 + χα∗

2β1,
dα2

dt
= −γaα2 + χ(α∗

1β1 + α∗
3β2),

dα3

dt
= −γaα3 + χα∗

2β2,
dβ1

dt
= ε1 − γbβ1 − χα1α2,

dβ2

dt
= ε2 − γbβ2 − χα2α3,

(42)

where γa,b are the cavity damping rates for the appropriate modes and εj are the classical
pumping terms. Although we have chosen the simple case where both pump modes have
the same loss rate, as do the three signal modes, this is not essential, although it does serve
to simplify our analysis. We may now solve the above equations to find the steady-state
mean-field solutions and the conditions for the stability of the linearized fluctuation analysis.

To find analytical expressions, we will set ε1 = ε2 = ε. We find that there is an oscillation
threshold at the value εth = γaγb/2χ , below which αss

1 = αss
2 = αss

3 = 0 and βss
1 = βss

2 = ε/γb.
Above this threshold, we find

αss
2 = ±

√
2

χ
(ε − εth), αss

1 = αss
3 = ±

√
1

χ
(ε − εth), βss

1 = βss
2 = γa

2χ
, (43)

where all αj must have the same sign. What is unusual about this system in comparison with
the normal optical parametric oscillator is that it is stable at threshold, with the critical point
for the below threshold solutions being at a pump amplitude of εc = γaγb/

√
2χ , which means

that εc = √
2εth. For this pumping strength, the actual above threshold solutions are stable,

so that this system, at least for the parameter regimes we consider here, is always stable.
With these steady-state solutions, we have all the information we need to calculate the output
spectral correlations of interest.
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Figure 9. Tripartite entanglement criteria for the system of section 4.2, for γa = γb = 1, χ = 10−2

and ε = 0.9εth.
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Figure 10. Tripartite entanglement criteria for the system of section 4.2, for γa = γb = 1,

χ = 10−2 and ε = 2εth.

Below the oscillation threshold, we can find relatively simple expressions for the output
spectral correlations,

S12(ω) = S23(ω) = 5 − 24γaγbχε
(
γ 2

a γ 2
b − 3γaγbχε + 2χ2ε2 + γ 2

b ω2
)

γ 4
a γ 4

b +
(
2χ2ε2 + γ 2

b ω2
)2

+ 2γ 2
a γ 2

b

(
γ 2

b ω2 − 2χ2ε2
) ,

S13(ω) = 5 − 16γaγbχε
(
γ 2

a γ 2
b − 3γaγbχε + 2χ2ε2 + γ 2

b ω2
)

γ 4
a γ 4

b +
(
2χ2ε2 + γ 2

b ω2
)2

+ 2γ 2
a γ 2

b

(
γ 2

b ω2 − 2χ2ε2
) ,

(44)

whereas above threshold the analytical expressions become more complicated.
We show results for the tripartite criteria in figure 9 immediately below the oscillation

threshold and in figure 10 for ε = 2εth. We find that the violations of the inequalities are
strongest at threshold, with S12 = S23 and S13 showing a lesser violation of the criterion. We
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also found that, well above threshold, the individual quadratures X1 and X3 become squeezed,
although X2 remains above the shot-noise level.

5. Conclusions

We have examined two different interaction schemes in terms of their potential for creating
continuous variable tripartite entanglement. We have used a set of inequalities whose violation
is sufficient to show that genuine tripartite entanglement is present. One of the schemes is
based on two cascaded nonlinearities and the other on two concurrent nonlinearities. Although
the scheme based on cascaded linearities has been analysed previously, we have extended these
analyses to include depletion of the pumping fields in a full quantum treatment. Both these
schemes were shown to exhibit a good degree of violation of the van Loock and Furusawa
inequalities, and are therefore suitable candidates for practical applications. The concurrent
scheme has the possible advantage that two of the outputs are of equal intensity and is
symmetric in two of the correlations, whereas the cascaded scheme produces three different
intensities and all three correlations give different values. Although both schemes perform
well, which one is preferable in a given situation may come down to the preferences and
experiences of the experimenters wishing to use them.
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