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We propose macroscopic generalizations of the Einstein–Podolsky–Rosen
paradox in which the completeness of quantum mechanics is contrasted with
forms of macroscopic reality and macroscopic local reality defined in relation
to Schrödinger’s original ‘cat’ paradox.

1. Introduction

In his famous 1935 essay, Schrödinger [1] discussed how ‘ridiculous’ it would be to

set up a case where a cat would be described by a superposition of dead and alive

states. The underlying assumption in Schrödinger’s remark is what we might call

‘macroscopic realism’. This premise states that, even if we accept that microscopic

systems do not possess predetermined values for all physical quantities, as quantum

mechanics tells us, there can be no such lack of a macroscopic predetermined value,

so that the cat must be dead or alive.

Leggett [2] discussed the possibility of tests of the existence of macroscopic

superpositions. He introduced the idea of macroscopic variables, whose only essential

characteristic is that ‘appreciably’ different values of the variable should correspond

to macroscopically distinguishable states. In some cases, indeed, two states can be

considered macroscopically distinguishable even when the number of particles is not

strictly macroscopic. This view has in fact become increasingly frequent in the

literature, as pointed out, for example, by Laloë [3].

The work of Leggett and Garg [4] addressed the fundamental issue of proving an

incompatibility of quantum mechanics with the premise of ‘macroscopic realism’

defined in conjunction with a ‘macroscopic non-invasive measurability’. This work

illustrates the strength and simplicity of the fundamental approach along the

lines considered by Bell [5], in which predictions of quantum mechanics are shown

to disagree with those of well-defined classical premises, so that an experiment
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could in principle be performed to directly refute those classical premises, without
invoking assumptions based on the correctness of quantum mechanics.

With this in mind, we point out that the proof of a macroscopic quantum
superposition or entanglement may not be enough to prove a failure of a
‘macroscopic reality’ as defined for example in the sense of Leggett and Garg,
in the same way that the proof of entanglement is not generally enough to disprove
the local hidden variable theories (‘local realism’) considered by Bell.

In this paper we therefore take several criteria that can be shown to be signatures
of macroscopic (entangled) superpositions, and explicitly discuss the extent to
which we can claim an incompatibility with the premise of ‘macroscopic realism’
(or a ‘macroscopic local reality’). In doing so, we realize that we cannot prove
a falsification of macroscopic realism (macroscopic local reality) directly, but we
can prove a macroscopic Einstein–Podolsky–Rosen (EPR) paradox [6] in which
a ‘macroscopic reality’ (‘macroscopic local reality’) is found to be inconsistent with
the completeness of quantum mechanics.

2. Some criteria for macroscopic superpositions

We first summarize criteria that can be used in the case of squeezed states [7] to
detect macroscopic superpositions with respect to the basis states associated with
a macroscopic variable.

Suppose that we have two subsystems A and B. Suppose that the results of a
measurement of an observable ÔO (say, position x̂x) performed at A can be mapped
onto two possible and distinct sets of outcomes, designated by �c ¼ �1 or �c ¼ 1.
The outcomes are macroscopically distinct in the values of the observable ÔO when
the regions �c ¼ �1 (‘dead’) and �c ¼ 1 (‘alive’) are macroscopically different in x so
that there is zero probability for a result in a middle region (figure 1).

Figure 1. Probability distribution for measurement x̂x which gives two macroscopically
separated outcomes �c ¼ �.
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The probability distribution for x becomes PðxÞ ¼ P�P�ðxÞ þ PþPþðxÞ where
P�ðxÞ is the distribution (with variance �2

�x) for x, given that the result indicates
�c ¼ �1.

Any density operator for the composite system can be written in terms of the
basis states joiiA of ÔO and joriB of an observable ÔOB of B as

� ¼
X

R

PR  R

�� �
 R

� �� ð1Þ

where the pure states are

j Ri ¼
X

i, r

cRi, r oij iA orj iB: ð2Þ

To prove that the system exists in the superposition state joiiAjopiB þ jojiAjoqiB
(where oi and oj are meso- or macroscopically different) with some non-zero
probability, we need to prove that for at least one of the R with non-zero PR,
there must be a superposition of the type

 R

�� �
¼ cRþ  þ

�� �
þ cR�  �

�� �
, ð3Þ

where j þi ¼
P

oi2�þ, r
cRi, rjoiiAjoriB and j �i ¼

P
oj2��, s

cRj, sjojiAjosiB and it being
the case that at least one of the cRi, r is non-zero (for r¼ p, say), and also one of the cRj, s
is non-zero (for s¼ q, say). (Here oi 2 �þ means oi gives a result �c ¼ þ1.)

If the macroscopic superposition state (3) does not appear in the expansion (1)
then the density operator is expressible as

�mix ¼ P0
þ�þ þ P0

��� ð4Þ

where the only restriction placed on the density operator �� is that the prediction for
the result of the measurement x̂x say at A is to always give, respectively, �c ¼ �1. This
follows because we are able to express each component pure state j Ri as either one
of j þi or j �i.

We summarize the following theorem [8].

Theorem 1: Where the position x of system A distinguishes �c ¼ �1, we can derive
straightforwardly from the assumption (4) the relation

�avex�infp � 1: ð5Þ

The proof, and extensions applying to spin measurements, have been presented
elsewhere [7], but are based on the assumption that the individual �� are quantum
densities and satisfy the uncertainty relation �x�p � 1. We define the measurable
variances �2

I x of PIðxÞ (I ¼ �1) and their average �2
avex ¼

P
I PI�

2
I x. We define

an average inference variance �2
infp ¼

P
pBPð p

BÞV ½ pjpB�: V ½ pjpB� is the variance of
conditional distribution Pð pjpBÞ for the result p at A, given a result pB for a
measurement at B, and Pð pBÞ is the probability of pB.

Violation of the inequality (5) then implies the superposition (3).
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3. Criterion for macroscopic entanglement

We present a new criterion which will enable proof of a macroscopic entanglement.
To prove a macroscopic entanglement [1] we want to prove the existence of the
state (3) where p 6¼ q, in the density matrix expansion (1), and we prove below
a sufficient condition for such a state.

If such a macroscopic entangled state does not appear in (1) we are able to
express each component pure state j Ri as either one of j þi or j �i, or as a
separable state of type f

P
mi2�þ

cRi, rjmii þ
P

mj2��
cRj, rjmjigAjmriB. In this case the

density operator is expressible as

� ¼ Pm�mix þ Ps�sep: ð6Þ

Here �mix represents any quantum mixture of the form (4) and �sep represents any
separable density operator expressible as �sep ¼

P
l Pl�

A
l �

B
l , where �

A
l and �Bl are

density operators for systems A and B respectively.

Theorem 2: Where one has maximum correlation between þ1 and �1 outcomes
at A and a measurement at B, so that we can infer with certainty the � result at A by
measuring at B, then the assumption that the density operator is of the form (6) will
imply inequality (5). The violation of these constraints in conjunction with proof of
correlation will therefore imply the existence of macroscopic entanglement.

Proof: Firstly we note that for a system described by �mix the inequality (5) holds,
as proved by Theorem 1. The correlation implies the conditional probability
Pð�jOB

i Þ for an outcome in the set � ¼ �1 at A given a result OB
i for a measurement

at B will either be 0 or 1. For a separable system �sep

P �jOB
i

� �
¼

P � \OB
i

� �

P OB
i

� �

¼

P
l PlP

A
l �ð ÞP

B
l OB

i

� �
P

l PlP
B
l OB

i

� �

so that if Pð�jOB
i Þ ¼ 1, then for each l, either PA

l ð�Þ ¼ 1, in which case we label
l with a þ, or PlðO

B
i Þ ¼ 0, in which case we label l with a �1, since it must be the case

that here the outcome for A would be �1. With this we see that the expansion for
�sep takes the form of a mixture of þ and � quantum states for A. If this is the case,
then the density operator of (6) can be written in the form of �mix and therefore
the constraint (5) follows.

4. Macroscopic superpositions in squeezed entangled states

We consider the Gaussian EPR states which are of considerable experimental
interest [9–14], and for which entanglement, at least a microscopic entanglement,
has been confirmed experimentally. An optimal theoretical quantum model
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is the two-mode squeezed state [8, 15–17]

j i ¼
X1

n¼0

cn nj iAjniB ð7Þ

where cn ¼ tanh nr=cosh r and jniA and jniB are the number states for the fields at A
and B, which have boson operators âa and b̂b respectively. Measurements are of the
amplitudes: x̂x ¼ ðâay þ âaÞ, p̂p ¼ iðâay � âaÞ, x̂xB ¼ ðb̂by þ b̂bÞ, p̂pB ¼ iðb̂by � b̂bÞ where
�2x�2p � 1. The results of an amplitude measurement x̂x are classified as �c ¼ þ1
if x� 0, and �c ¼ �1 if x<0.

The probability distribution (figure 2) for x is the Gaussian

PðxÞ ¼
1ffiffiffiffiffiffiffiffi
2��
p e�x

2=2�

where � ¼ cosh 2r. As the squeeze parameter r increases, this variance increases, the
system becoming macroscopic in amplitude and photon number. The probability
distribution for x where �c ¼ � is the half-Gaussian. This gives �2

avex ¼ 0:36�. The
two-mode squeezed state predicts [15–17] for infinite r the EPR correlation x ¼ xB,
and p ¼ �pB. For arbitrary r V ½xjxB� ¼ V ½ pjpB � ¼ 1=cosh 2r for all xB, pB. The
result for measurement p̂pa at A may be inferred from a measurement p̂pB at B, but the
average inference variance is �2

infp ¼ 1=cosh 2r. This gives �2
infp�2

ave x ¼ 0:36.

Figure 2. Probability distribution for measurement x for a two-mode or simple one-mode
squeezed state. For fixed S, no matter how large, there is a vanishing probability Po, for
�S=2 < x < S=2, as the variance � increases. This indicates that in the limit of infinite � the
outcomes þ and � are macroscopically distinct.
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As r becomes large, the outcomes �c ¼ þ1 and �c ¼ �1 become macroscopically
distinct [8] (see argument given in figure 2). Since here the limiting value of
�infp�avex is distinctly different to (and less than) one, there is a macroscopic
superposition of type (3): the system cannot be in a mixture of the type (4)
(Theorem 1). It is also possible to prove a macroscopic entanglement (Theorem 2).
As r increases, the result xBi of measurement x̂xB at B will (absolutely) imply the result
x ¼ xBi for x̂x at A with no error, and similarly the result pB at B will imply the result
p ¼ �pB at A; we have perfect EPR correlations [15–17] and a macroscopic
entanglement.

5. Macroscopic paradoxes

5.1 Schrödinger’s reality and EPR

While the signature of a macroscopic superposition or entanglement proves the
impossibility of the macroscopic system being in any mixture (4) of quantum states
�þ and ��

�ABmix ¼ Pþ�
AB
þ þ P��

AB
� ð8Þ

it does not exclude mixtures where the components are hidden variable states, as
considered by Bell [5]. This is the essence of an EPR-type argument [6], where the
assumption of a form of reality (in this case Schrödinger’s ‘macroscopic reality’)
gives an argument for the ‘completion’ (hidden variable interpretation) of quantum
mechanics.

5.2 Direct macroscopic EPR paradox for entangled systems

The bipartite entangled systems, where we satisfy conditions for macroscopic
entanglement as given by Theorem 2, allow a more direct macroscopic example
of the EPR paradox, if the two subsystems A and B are spatially separated. For the
infinite r, the measurement at B implies with certainty either the ‘alive’ or ‘dead’
result at A. The EPR premises of ‘local realism’ (here, the reader is referred to
previous papers of EPR [6] and Mermin [18]) lead to the conclusion that the state of
the ‘cat’ is predetermined to be ‘alive’ or ‘dead’ prior to its measurement. This
predetermined state of the cat may be represented by a macroscopic hidden variable
(or ‘element of reality’) �1: �1 ¼ 1 implies the predetermined state of ‘alive’; �1 ¼ �1
implies the predetermined state of ‘dead’. The variance of the conditional distri-
bution Pðxj þ 1Þ for the result x at A, given that the measurement at B implies the þ1
outcome at A, is �2

þx and this gives the degree of definiteness, in the prediction of x,
associated with the hidden variable �1 ¼ 1; similarly �2

�x. Note that �2
infx (defined

similarly to �2
inf p of theorem 2) is actually equal to �2

avex.
There is also a correlation between the momenta of the separated subsystems.

The EPR conclusion then is that the ‘cat’ system at A is also described by a
hidden variable �2, to predetermine the result for momentum. The prediction for
the momentum measurement at A given a measurement at B is narrow, so that
�infx�infp ¼ �avex�infp < 1. The state of the cat as given by the hidden variables
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�1 and �2 defines momentum and position more definitely than can be given
by a quantum state, and this is the situation of the EPR paradox [15–17], that
‘local realism’ can only be consistent with the correlations of this system through
a ‘completion’ of quantum mechanics, where non-quantum hidden variable states
are introduced to represent the ‘dead ’ and ‘alive’ states so that there can be a
realization of some sort of mixture.

The violation of (5) here however is a strong EPR paradox, because the ‘dead’
and ‘alive’ descriptions are macroscopically distinct, and the EPR conclusion that
the system is described by an ‘element of reality’ �1 is further justified by
Schrödinger’s ‘macroscopic reality’.

5.3 Gaussian EPR states

The violation of (5) for the two-mode squeezed state (7) could be predicted by
a mixture, where the ‘cat’ is in a hidden variable state �ðx, p, Þ. Such a hidden variable
mixture is perfectly consistent with the notion of the ‘cat’ being ‘dead’ or ‘alive’. The
Wigner function Wðx, p, Þ, being positive for the two-mode squeezed state, provides
the probability density for the hidden variable state of the ‘cat’, where we are able to
make the correspondence �1 ¼ x=jxj and �2 ¼ p, these being the predetermined
results of the x and p measurements. This description of the system as a hidden
variable mixture, however, cannot correspond to a quantum mixture, because of the
definiteness of the prediction of the measurements for x and p that is required of the
hidden variable states.

6. Conclusion

Violation of certain inequalities may be sufficient to prove a macroscopic
(entangled) superposition, so that the system cannot be described as a mixture
of dead and alive quantum states, but we cannot exclude the possibility of hidden
variable mixtures which give a consistency with Schrödinger’s and Leggett’s
‘macroscopic realism’.
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