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Exact steady-state Wigner function for a nondegenerate parametric oscillator
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We consider the model of a nondegenerate parametric oscillator, in the adiabatic limit of strongly damped
pump mode, and find aexact analyticsolution for the joint two-mode Wigner function in the steady-state
regime. The one-mode Wigner functions for the individual signal and idler modes are derived as well. This
gives an explicit and complete phase-space representation of this two-mode nonequilibrium quantum system.
Simple examples are given illustrating the phase-space images of optical bistability and the phase diffusion
effect.

PACS numbdss): 42.50—p, 42.65.Y]

The concept of quantum-mechanical phase space and as- In this paper we employ an indirect method to find an
sociated quasiprobability distributions has proven to be exexact analyticsolution for the Wigner function for one of the
tremely useful and appealing in many fundamental applicabasic models in nonlinear and quantum optics—the nonde-
tions of quantum mechanics. The oldest and most famougenerate parametric oscillattiDPO) [13—16. In the limit
phase-space quasiprobability is the Wigner funcfibh Re-  of adiabatically eliminated pump mode, and provided that
cently, there have been major experimental successes in rire damping rates and cavity detunings for the signal and
constructing the Wigner function for a number of quantum-jgler modes are equal, the reduced model has an exact
mechanical systems. The original proposal—referred to a8teady-state solutiofil3,16 to the corresponding Fokker-
quantum state tomography—was suggested by Vogel angjanck equation in the complex representation.

Risken[2] for measuring the quantum state of light in quan- \ya ;se this solution to derive an exact and rather simple

tum optics. The_ technique was then successfully realized in gnalytic result for the joint two-mode Wigner function de-
series of experiments3]. This in turn has greatly increased scribing the steady state of this nonequilibrium dissipative

the interest in employing and further developing the Wigner . . ) L
function and phaspe-sypa%e methdsee, e.g.[4]g. 'Ighe prob? quantum system. Single-mode Wigner functions for the indi-

lems under investigation have now been extended to molec idual signal and '_d'?f mod_es are derived as well. To our
lar vibrational state$5], motional states of atoms in traps est knowledge, this is the first example of an exact analytic

and atomic beamfs], and Bose-Einstein condensaf@é Wigner function splution fpr awo-mpdenonlinear dissipa-
Despite these achievements, there is a knowriVe problem. Earlier solutions of this type were o_nly fopnd

disadvantage—from the methodological and theoreticalor single-mode _models ofade_gener_ate parametric oscillator

points of view—of the Wigner function method, which con- [17,18 and a driven anharmonic oscillat9]. The phase-

tinues to serve as a challenging problem. The disadvantage $9ace representation of the individual signal and idler modes

in the difficulty of solving realistic problems directly in IS itself a result for the model of a NDPO that has not been

terms of the Wigner function, which is due to the complexity discussed before to our knowledge. _

of the corresponding evolution equation. Even for the sim- The model of NDPO that we consider describes three

plest models involving nonlinear interactiofsich as those duantized modes of the radiation field—the pump, signal,

due to quadratic or cubic nonlinearities in quantum optics and_ idler. The mode_s interact via a quad.ratlc.nonllnearlty in

and dissipation, the Wigner function evolution equation con-2 triply resonant cavity. The pump mode is driven externally

tains third- or higher-order derivative terms. While numeri- by @ coherent driving field, and all three modes are assumed

cal techniques can routinely be employed heee, e.g[8]), O be Cqupled to zero-temperature reservoirs, resulting in the

no generaknalytic methods are known for solving this type Usual single-photon losses. This system can be modeled by

of partial differential equation to find the Wigner function. the following Hamiltonian, in the rotating-wave approxima-
This is in contrast to employing generaliz€drepresen-  tion (13,15

tations [9,10] of the density matrix. TheP-representation

method often produces a Fokker-Planck evolution equation

(having no higher than the second-order derivatiwekich H:Z hwala;+ifk(ajaja,—a;a,af)

can be treated using well-known methdd$®,11]. Of espe- =0

cial importance here are the models that possess exact ana- 2

lytic solutions in either the positive or compléxrepresen- +ifi(Ee '“tal—E*e“llag)+ >, (al{+a/T). (1)

tation[9,12,13. The disadvantage of thié representations, 1=0

however, is that the positive method requires a doubled

number of phase-space variables, while the complerp- HereaiT anda; are boson creation and annihilation operators

resentation is defined on specific contours in complex plane®r the cavity modes at frequencieg, wherei=0, 1, and 2

of the phase space. This is not the case of the Wigner fungefer to the pump, signal, and idler, respectively. The para-

tion; hence(together with the historical reasoniés wider  metric couplingx is due to the second-order susceptibility

usage and popularity. (x®) of the nonlinear medium, and we assume a phase-
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matching condition so thao=w; + w,. In addition,E is the P(B1.B2,B1,B0) =M B1B,—e) M BiBL—e*)" 71
amplitude of the coherent driving field with the carrier fre- N N
quency o, =wo, and I'/, T; are the reservoir operators Xexd2(B1B1+ B2Bo) ] 5

which give rise to the cavity losses with decay rajes

In the limit of strongly damped pump modge> 11 ,, the  Here ,, B,, BI, and B} are independent complex vari-
pump mode can be adiabatically eliminatglB]. The re- ables, corresponding to the operaters a,, aI’ and aZ:
duced model can then be described by the following interacfespectiverN is the normalization constant, and we have

tion picture master equation for the density operataf the  jnyoduced the following dimensionless parameters:
signal and idler modes:

. 1 E 2y*
| 2, Ailala;,p]+ 7 [Herr.p] o=t = =

(?p_
S gtix o« g-ix  «

ot

2% 4
=== (6)

+ > yi(2apal—alap—pala)

i=1,2 wherey=y+iA.
fot ot ot The two-mode Wigner function that we are interested in
+0(2a;18,pa;3;— a13818p~ p21323132). (2) s defined as follows:

Here the effective interaction Hamiltonian is given by 5
1
Her=ih(nalal— u*a,a,) +fiyalala;a,. ) W(al,az)z(—z) f f d?5,d%s,
T

In addition,Ay= wy— w_is the cavity detuning for the pump
mode andA; ;= w;,— (w /2*+€) are the cavity detunings
for the signal and the idler modes, with /2= € being their
characteristic rotating-frame frequencies. We have also de-

T_ox T
X Tr( pe(sla17 61a1+ day— 0o, az)

K * X *
X @01 @1~ 17 + 85— 58, (7)

fined
This can be expressed in terms of the comferepre-
kE P P sentation as
M= ==, X:___Z' :—2: (4)
Yo | vol | ol
2 2 2 2
Where;(): ’}/0+|A0 W(alia2):(;) e_2(|al| +|a2‘ )
The above form of the master equation and the effective
Hamiltonian(3) simply implies that, after adiabatic elimina- M-
tion of the pump mode, we are dealing with a two-mode X L fc L Jc Tdﬁld'BZdﬂld'BZ
model that describes two cavity modssggnal and idlerthat N
are driven parametrically with a driving strengih and are X P(,31,,3L,32,ﬁ£)
subject to the usual one-phot@dmear) losses at rateg; and
to a nondegenerate two-photémonlineai loss mechanism ><e—2(B1ﬁ1+ﬁ252)+2(“f51+a1ﬁ1)+2(a§/32+a2ﬁ§),
with a rateg. In addition, the two modes are coupled by a
Kerr type interaction due to an effective cubic “nonlinear- (8)

ity” x, causing cross-phase modulation. Tkiserm would

be absent in the case of exact resonamges 0. We note  where the integrals are contour integrals in the individual
that the cross-phase modulation and nondegenerate tweemplex planes for the independent variabss 8., 81,
photon absorption terms could explicitly be included into thegnd 3;, according to the way the compléxrepresentation
original Hamiltonian(1), representing the possibility of com- s defined[9].

bining different nonlinear optical processes in a single cav- Sybstituting the steady-state compxXunction (5) into

it_y. The corresponding nonlinear t_:onstants _Would then bgq_ (8), and assuming that the integrations oy&grand BJ-T
simply added to the above “effective” couplings andg,  variables are along the same contours in the respective com-

thus providing additional degrees of freedom for the controlyjex planegi.e., the contouC, is the same a€ 41, and the
over the system parameters. ! 1

Using the complexP representatiorf9] of the density
operator, the above master equation is transformed into thginction W(a,a») as follows:
Fokker-Planck equation, which can then be solved exactly
for a steady statgl3], using the method of potential equa- 212 , ,
tions. The solution is available for the case of symmetric W(al,a2)=/\<—) e 2292, 9)
decay ratesy;=vy,=vy and cavity detunings\;=A,=A. ™
The resulting steady-staiefunction has the following form
[13,146]: where we have defined

contourCy_ is the same a§ﬁ§)7 one can express the Wigner
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I=1(a},a%;e,v*)

:f J dB1dB(B1Bo— )" ~LeX 1 Pitazba),
Cplcy,

(10

so thatl* =[I(a] a5 ;e,v*)]* =1(ay,as;e*,v).
To evaluate the integrdlwe transform to new variables
t=2eaj/B; andr=2a5 (B1B>—¢)!B1:

|:_(8)v*f dTTV*fleT dttfv*flet+4sa';a3/t. (11)
C, Cy

The integrals overr andt can now be identified, respec-
tively, with contour integral representations of the gamma
functionT'(v*) and the Bessel functiod,« (\—16eaj a3)
[20], where both the integration contouts. andC, start at
infinity on the negativer (t) axis, encircle the origin coun-
terclockwise, and return te-«. As a result, we obtain the

result that 1ocJ,«(\/—16eat af)/(—16eatal)” 2 The FIG. 1. One-mode Wigner function for Re=—30, Imv
steady-state Wigner functioW(«q,a5) is then given by = —30, and two values of the driving field paramefet:= 16.5(a),
and|e| =45 (b).

3,(V=16* ayay)|*

(—16e* aya) 2|’

W(ay,ap)=Ne 20w +le (12 nal or idley modes. This is obtained by integrating
W(aq,as) with respect to one of the phase-space variables,
a, Or aq. Due to the symmetry ofV(a4,a5) with respect to

a1 andea,, the one-mode Wigner functions for the signal and

the idler modes are equal to each other and are given, from

where N is the normalization constant to be found from
[fd?a;d?a,W(aq,a5)=1. Using the expansion of the
Bessel function

Eq. (14), by
t"?2 2 (=t (v+1)
Jv(ﬁ)zzvp(,,) go KID(k+v+1) 13 Wl(a)=fd2azW(a,az)
one can rewrite the above Wigner function as N’ 1w (8l aHNT(v+1)[2
= ——e 2™ . (16)
W(ay,a,) 2 =0 KI|T'(k+v+1)]
2 as2+|ar]?) ” (4e* ajay)® T(v+ 1)‘ 2 This expression can be rewritten in a compact form, in terms
=N'e v kEO KIT(K+v+1) | . of the hypergeometric functiogF, [20]:
T ’
(14) Wi(a)=—5— e 2 Fy(v+10*+1,8e2r?), (17)
The constantN’=N|2"T'(v)|~2 can now be easily found
from the normalization condition by carrying out the integra-\yherer =|a|.
“%’JS in polar coordinates| @;=r;exp¢)] and using Examples ofW;(«) are plotted in Fig. 1. The Wigner
o de exdi(k—m)e]=2mm: function W,(a) depends only on the radial coordinate
o pk -1 =|eal, and is uniformly distributed with respect to the phase
N/ = 2 (4le[») T (v+1)] 15 ¢ The phase distribution function, defined as an integral
m k=0 |I(k+v+1)[? over the radial coordinat®(¢) = [or dr W (a=re'?), can

be found directly using the normalization condition, giving
Equations(12) and(14) are the key results of the present the result that®,(¢)=1/(27). This radial symmetry of
paper. We point out that the Wigner functiti(a,a,) is W, (a) reflects the known phenomenon of phase diffusion
positive everywhere. Therefore it can act as a local hiddewccurring in NDPOg15], according to which the phases of
variable theory for quadrature phase measurements and thtie signal and idler modes do not have well-defined values.
cannot violate a Bell inequality, in contrast to the results that In Fig. 1(a), the coexistence of the central peak together
can be obtained with a nondissipative model of ND@&e, with the outer ring represents the phenomenon of bistability
e.g.,[21-23). known to occur in the NDPO foh Ay> vy, and experimen-
We next use the two-mode Wigner functidi{ @, , ;) to  tally observed iN24]. In terms of the semiclassical steady-
calculate the Wigner function for each of the individ@sig-  state solutiong14—1§ for the intensities of the signal and
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idler modesn{®=n{®=n(®), the bistability is referred to the arbitrary values of relevant parameters. These are the key
overlap of the stability regions for the below-threshold solu-objects for quantum tomographic applicatid2], and the

tion n(®©=0 and the above-threshold solution witl?’#£0.  results might be especially useful for analyzing Bell type

Using the parameters and ¢, the above-threshold solution inequalities where the knowledge of phase-space probabili-
can be written as ties to a great degree of accuracy can often be of crucial

importance[23,26,27. We note that the results presented
n©®=—Regv/2) = J|e|>*—[Im(v/2)]?.

here are valid in the threshold region and in the extreme
quantum regime of operation characteristic of high nonlin-

The bistability in the NDPO occurs if Re(2)<0, and the  earities and low damping rates. We also point out a remark-
corresponding region—as a function of the scaled drivingable spin-off(from the methodological point of viewof the
field intensity |e|>—is determined bye(7)|?<|e|?<|e,|2.  solution found here. This follows from the comparison of the
Here|e|?=|v|?/4 gives the threshold value ¢f|%, while  two-modeWigner function with the earlier known solutions
|¢()]2=[Im(»/2)]? is the turning point where the system to single-modemodels of the degenerate parametric oscilla-
returns from the above-threshold regime of oscillation to thetor and anharmonic oscillator: Quite surprisingly, the struc-
below-threshold regime. In Fig(d) the value ofle| is cho-  ture of the Wigner functions in all these three quite distinct
sen to be within the bistability region, so that the centralexactly soluble models appears similar, once the solutions
peak corresponds to the below-threshold solution, while thare expressed 8,19 in terms of Bessel functions. This sug-
outer ring represents the above-threshold solution. For smaflests an intriguing possibility of finding direct method of
values of|¢| the Wigner function only has the central peak, solving at least a class of Wigner function evolution equa-
while large values ofe| lead to disappearance of the central tions with third-order derivative terms, having the form ge-
peak, and we observe only the above-threshold outer ring, aseric to these models. Hopefully this would provide previ-
in Fig. 1(b). ously unknown solutions to other problems.

Thus, the Wigner function solutions found here provide One of the author¢éK.V.) gratefully acknowledges P. D.
us with an explicit phase-space representation of the steadyrummond, M. D. Reid, and W. Munro for stimulating dis-

(18

state of this two-mode nonequilibrium quantum system, forcussions.
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