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Exact steady-state Wigner function for a nondegenerate parametric oscillator
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We consider the model of a nondegenerate parametric oscillator, in the adiabatic limit of strongly damped
pump mode, and find anexact analyticsolution for the joint two-mode Wigner function in the steady-state
regime. The one-mode Wigner functions for the individual signal and idler modes are derived as well. This
gives an explicit and complete phase-space representation of this two-mode nonequilibrium quantum system.
Simple examples are given illustrating the phase-space images of optical bistability and the phase diffusion
effect.

PACS number~s!: 42.50.2p, 42.65.Yj
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The concept of quantum-mechanical phase space an
sociated quasiprobability distributions has proven to be
tremely useful and appealing in many fundamental appl
tions of quantum mechanics. The oldest and most fam
phase-space quasiprobability is the Wigner function@1#. Re-
cently, there have been major experimental successes i
constructing the Wigner function for a number of quantu
mechanical systems. The original proposal—referred to
quantum state tomography—was suggested by Vogel
Risken@2# for measuring the quantum state of light in qua
tum optics. The technique was then successfully realized
series of experiments@3#. This in turn has greatly increase
the interest in employing and further developing the Wign
function and phase-space methods~see, e.g.,@4#!. The prob-
lems under investigation have now been extended to mol
lar vibrational states@5#, motional states of atoms in trap
and atomic beams@6#, and Bose-Einstein condensates@7#.

Despite these achievements, there is a kno
disadvantage—from the methodological and theoret
points of view—of the Wigner function method, which co
tinues to serve as a challenging problem. The disadvanta
in the difficulty of solving realistic problems directly in
terms of the Wigner function, which is due to the complex
of the corresponding evolution equation. Even for the s
plest models involving nonlinear interactions~such as those
due to quadratic or cubic nonlinearities in quantum opti!
and dissipation, the Wigner function evolution equation co
tains third- or higher-order derivative terms. While nume
cal techniques can routinely be employed here~see, e.g.,@8#!,
no generalanalytic methods are known for solving this typ
of partial differential equation to find the Wigner function

This is in contrast to employing generalizedP represen-
tations @9,10# of the density matrix. TheP-representation
method often produces a Fokker-Planck evolution equa
~having no higher than the second-order derivatives! which
can be treated using well-known methods@10,11#. Of espe-
cial importance here are the models that possess exact
lytic solutions in either the positive or complexP represen-
tation @9,12,13#. The disadvantage of theP representations
however, is that the positiveP method requires a double
number of phase-space variables, while the complexP rep-
resentation is defined on specific contours in complex pla
of the phase space. This is not the case of the Wigner fu
tion; hence~together with the historical reasons! its wider
usage and popularity.
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In this paper we employ an indirect method to find
exact analyticsolution for the Wigner function for one of th
basic models in nonlinear and quantum optics—the non
generate parametric oscillator~NDPO! @13–16#. In the limit
of adiabatically eliminated pump mode, and provided th
the damping rates and cavity detunings for the signal
idler modes are equal, the reduced model has an e
steady-state solution@13,16# to the corresponding Fokker
Planck equation in the complexP representation.

We use this solution to derive an exact and rather sim
analytic result for the joint two-mode Wigner function d
scribing the steady state of this nonequilibrium dissipat
quantum system. Single-mode Wigner functions for the in
vidual signal and idler modes are derived as well. To o
best knowledge, this is the first example of an exact anal
Wigner function solution for atwo-modenonlinear dissipa-
tive problem. Earlier solutions of this type were only foun
for single-mode models of a degenerate parametric oscill
@17,18# and a driven anharmonic oscillator@19#. The phase-
space representation of the individual signal and idler mo
is itself a result for the model of a NDPO that has not be
discussed before to our knowledge.

The model of NDPO that we consider describes th
quantized modes of the radiation field—the pump, sign
and idler. The modes interact via a quadratic nonlinearity
a triply resonant cavity. The pump mode is driven externa
by a coherent driving field, and all three modes are assum
to be coupled to zero-temperature reservoirs, resulting in
usual single-photon losses. This system can be modele
the following Hamiltonian, in the rotating-wave approxim
tion @13,15#:

H5(
i 50

2

\v iai
†ai1 i\k~a1

†a2
†a02a1a2a0

†!

1 i\~Ee2 ivLta0
†2E* eivLta0!1(

i 50

2

~aiG i
†1ai

†G i !. ~1!

Hereai
† andai are boson creation and annihilation operato

for the cavity modes at frequenciesv i , wherei 50, 1, and 2
refer to the pump, signal, and idler, respectively. The pa
metric couplingk is due to the second-order susceptibili
(x (2)) of the nonlinear medium, and we assume a pha
©2000 The American Physical Society01-1
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matching condition so thatv0.v11v2. In addition,E is the
amplitude of the coherent driving field with the carrier fr
quency vL.v0, and G i

† , G i are the reservoir operator
which give rise to the cavity losses with decay ratesg i .

In the limit of strongly damped pump mode,g0@g1,2, the
pump mode can be adiabatically eliminated@13#. The re-
duced model can then be described by the following inter
tion picture master equation for the density operatorr of the
signal and idler modes:

]r

]t
5 i (

i 51,2
D i@ai

†ai ,r#1
1

i\
@He f f ,r#

1 (
i 51,2

g i~2airai
†2ai

†air2rai
†ai !

1g~2a1a2ra1
†a2

†2a1
†a2

†a1a2r2ra1
†a2

†a1a2!. ~2!

Here the effective interaction Hamiltonian is given by

He f f5 i\~ma1
†a2

†2m* a1a2!1\xa1
†a2

†a1a2 . ~3!

In addition,D05v02vL is the cavity detuning for the pum
mode andD1,25v1,22(vL/26e) are the cavity detunings
for the signal and the idler modes, withvL/26e being their
characteristic rotating-frame frequencies. We have also
fined

m5
kE

ḡ0

, x52
k2D0

uḡ0u2
, g5

k2g0

uḡ0u2
, ~4!

whereḡ05g01 iD0.
The above form of the master equation and the effec

Hamiltonian~3! simply implies that, after adiabatic elimina
tion of the pump mode, we are dealing with a two-mo
model that describes two cavity modes~signal and idler! that
are driven parametrically with a driving strengthm, and are
subject to the usual one-photon~linear! losses at ratesg i and
to a nondegenerate two-photon~nonlinear! loss mechanism
with a rateg. In addition, the two modes are coupled by
Kerr type interaction due to an effective cubic ‘‘nonlinea
ity’’ x, causing cross-phase modulation. Thisx term would
be absent in the case of exact resonance,D050. We note
that the cross-phase modulation and nondegenerate
photon absorption terms could explicitly be included into t
original Hamiltonian~1!, representing the possibility of com
bining different nonlinear optical processes in a single c
ity. The corresponding nonlinear constants would then
simply added to the above ‘‘effective’’ couplingsx and g,
thus providing additional degrees of freedom for the con
over the system parameters.

Using the complexP representation@9# of the density
operator, the above master equation is transformed into
Fokker-Planck equation, which can then be solved exa
for a steady state@13#, using the method of potential equa
tions. The solution is available for the case of symme
decay ratesg15g2[g and cavity detuningsD15D2[D.
The resulting steady-stateP function has the following form
@13,16#:
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P~b1 ,b2 ,b1
† ,b2

†!5N~b1b22«!n21~b1
†b2

†2«* !n* 21

3exp@2~b1b1
†1b2b2

†!#. ~5!

Here b1 , b2 , b1
† , and b2

† are independent complex var
ables, corresponding to the operatorsa1 , a2 , a1

† , and a2
† ,

respectively,N is the normalization constant, and we ha
introduced the following dimensionless parameters:

«[
m

g1 ix
5

E

k
, n[

2ḡ*

g2 ix
5

2ḡ* ḡ0*

k2
, ~6!

whereḡ5g1 iD.
The two-mode Wigner function that we are interested

is defined as follows:

W~a1 ,a2!5S 1

p2D 2E E d2d1d2d2

3Tr~red1a1
†
2d1* a11d2a2

†
2d2* a2!

3ed1* a12d1a1* 1d2* a22d2a2* . ~7!

This can be expressed in terms of the complexP repre-
sentation as

W~a1 ,a2!5S 2

p D 2

e22(ua1u21ua2u2)

3E
Cb1

E
Cb2

E
Cb1

†
E

Cb2
†
db1db2db1

†db2
†

3P~b1 ,b1
† ,b2 ,b2

†!

3e22(b1b1
†
1b2b2

†)12(a1* b11a1b1
†)12(a2* b21a2b2

†),

~8!

where the integrals are contour integrals in the individ
complex planes for the independent variablesb1 , b2 , b1

† ,
andb2

† , according to the way the complexP representation
is defined@9#.

Substituting the steady-state complexP function ~5! into
Eq. ~8!, and assuming that the integrations overb j and b j

†

variables are along the same contours in the respective c
plex planes~i.e., the contourCb1

is the same asCb
1
†, and the

contourCb2
is the same asCb

2
†), one can express the Wigne

function W(a1 ,a2) as follows:

W~a1 ,a2!5NS 2

p D 2

e22(ua1u21ua2u2)uI u2, ~9!

where we have defined
1-2
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I[I ~a1* ,a2* ;«,n* !

5E
Cb1

E
Cb2

db1db2~b1b22«!n* 21e2(a1* b11a2* b2),

~10!

so thatI * 5@ I (a1* ,a2* ;«,n* )#* 5I (a1 ,a2 ;«* ,n).
To evaluate the integralI we transform to new variable

t52«a2* /b1 andt52a2* (b1b22«)/b1:

I 52~«!n* E
Ct

dttn* 21etE
Ct

dtt2n* 21et14«a1* a2* /t. ~11!

The integrals overt and t can now be identified, respec
tively, with contour integral representations of the gam
function G(n* ) and the Bessel functionJn* (A216«a1* a2* )
@20#, where both the integration contoursCt andCt start at
infinity on the negativet (t) axis, encircle the origin coun
terclockwise, and return to2`. As a result, we obtain the
result that I}Jn* (A216«a1* a2* )/(216«a1* a2* )n* /2. The
steady-state Wigner functionW(a1 ,a2) is then given by

W~a1 ,a2!5Ne22(ua1u21ua2u2)UJn~A216«* a1a2!

~216«* a1a2!n/2 U2

, ~12!

where N is the normalization constant to be found fro
**d2a1d2a2W(a1 ,a2)51. Using the expansion of th
Bessel function

Jn~At !5
tn/2

2nG~n!
(
k50

`
~2t/4!kG~n11!

k!G~k1n11!
, ~13!

one can rewrite the above Wigner function as

W~a1 ,a2!

5N8e22(ua1u21ua2u2)U(
k50

`
~4«* a1a2!k G~n11!

k!G~k1n11! U2

.

~14!

The constantN85Nu2nG(n)u22 can now be easily found
from the normalization condition by carrying out the integr
tions in polar coordinates@a j5r jexp(iwj)# and using
*0

2pdw exp@i(k2m)w#52pdkm:

N85S 2

p D 2F (
k50

`
~4u«u2!kuG~n11!u2

uG~k1n11!u2 G21

. ~15!

Equations~12! and~14! are the key results of the prese
paper. We point out that the Wigner functionW(a1 ,a2) is
positive everywhere. Therefore it can act as a local hid
variable theory for quadrature phase measurements and
cannot violate a Bell inequality, in contrast to the results t
can be obtained with a nondissipative model of NDPO~see,
e.g.,@21–23#!.

We next use the two-mode Wigner functionW(a1 ,a2) to
calculate the Wigner function for each of the individual~sig-
01580
a
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nal or idler! modes. This is obtained by integratin
W(a1 ,a2) with respect to one of the phase-space variab
a2 or a1. Due to the symmetry ofW(a1 ,a2) with respect to
a1 anda2, the one-mode Wigner functions for the signal a
the idler modes are equal to each other and are given, f
Eq. ~14!, by

W1~a!5E d2a2W~a,a2!

5
pN8

2
e22uau2(

k50

`
~8u«u2uau2!kuG~n11!u2

k! uG~k1n11!u2
. ~16!

This expression can be rewritten in a compact form, in ter
of the hypergeometric function0F2 @20#:

W1~a!5
pN8

2
e22r 2

0F2~n11,n* 11,8u«u2r 2!, ~17!

wherer 5uau.
Examples ofW1(a) are plotted in Fig. 1. The Wigne

function W1(a) depends only on the radial coordinater
5uau, and is uniformly distributed with respect to the pha
w. The phase distribution function, defined as an integ
over the radial coordinateF1(w)5*0

`r dr W1(a5reiw), can
be found directly using the normalization condition, givin
the result thatF1(w)51/(2p). This radial symmetry of
W1(a) reflects the known phenomenon of phase diffus
occurring in NDPOs@15#, according to which the phases o
the signal and idler modes do not have well-defined valu

In Fig. 1~a!, the coexistence of the central peak togeth
with the outer ring represents the phenomenon of bistab
known to occur in the NDPO forDD0.gg0 and experimen-
tally observed in@24#. In terms of the semiclassical stead
state solutions@14–16# for the intensities of the signal an

FIG. 1. One-mode Wigner function for Ren5230, Imn
5230, and two values of the driving field parameter:u«u516.5~a!,
and u«u545 ~b!.
1-3
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idler modes,n1
(0)5n2

(0)[n(0), the bistability is referred to the
overlap of the stability regions for the below-threshold so
tion n(0)50 and the above-threshold solution withn(0)5” 0.
Using the parametersn and«, the above-threshold solutio
can be written as

n(0)52Re~n/2!6Au«u22@ Im~n/2!#2. ~18!

The bistability in the NDPO occurs if Re(n/2),0, and the
corresponding region—as a function of the scaled driv
field intensity u«u2—is determined byu« (2)u2,u«u2,u« thu2.
Here u« thu25unu2/4 gives the threshold value ofu«u2, while
u« (2)u25@ Im(n/2)#2 is the turning point where the syste
returns from the above-threshold regime of oscillation to
below-threshold regime. In Fig. 1~a! the value ofu«u is cho-
sen to be within the bistability region, so that the cent
peak corresponds to the below-threshold solution, while
outer ring represents the above-threshold solution. For s
values ofu«u the Wigner function only has the central pea
while large values ofu«u lead to disappearance of the cent
peak, and we observe only the above-threshold outer ring
in Fig. 1~b!.

Thus, the Wigner function solutions found here provi
us with an explicit phase-space representation of the ste
state of this two-mode nonequilibrium quantum system,
t

n

01580
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,
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r

arbitrary values of relevant parameters. These are the
objects for quantum tomographic applications@25#, and the
results might be especially useful for analyzing Bell ty
inequalities where the knowledge of phase-space proba
ties to a great degree of accuracy can often be of cru
importance@23,26,27#. We note that the results presente
here are valid in the threshold region and in the extre
quantum regime of operation characteristic of high nonl
earities and low damping rates. We also point out a rema
able spin-off~from the methodological point of view! of the
solution found here. This follows from the comparison of t
two-modeWigner function with the earlier known solution
to single-modemodels of the degenerate parametric oscil
tor and anharmonic oscillator: Quite surprisingly, the stru
ture of the Wigner functions in all these three quite distin
exactly soluble models appears similar, once the soluti
are expressed@18,19# in terms of Bessel functions. This sug
gests an intriguing possibility of finding adirect method of
solving at least a class of Wigner function evolution equ
tions with third-order derivative terms, having the form g
neric to these models. Hopefully this would provide pre
ously unknown solutions to other problems.

One of the authors~K.V.! gratefully acknowledges P. D
Drummond, M. D. Reid, and W. Munro for stimulating dis
cussions.
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