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Theory of decoherence in Bose-Einstein condensate interferometry
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A full treatment of decoherence, dephasing and trap fluctuation effects for double-well BEC interferom-
etry using condensates with large boson numbers N has been developed [1]. This extends a simple
theory of double-well BEC interferometry [2] based on a two mode approximation, which allows for pos-
sible fragmentations of the condensate into two modes [3] (these may be localized in each well), but is
restricted to small condensates and only allows for transitions within the condensate modes and certain
dephasing processes. The bosonic field operator is the sum of condensate and non-condensate mode
contributions, the Hamiltonian being expanded in decreasing powers of

√
N , correct to the Bogoliubov

approximation [4]. The density operator is mapped onto a phase space distribution functional, with the
highly occupied condensate modes described via a generalized Wigner representation and the mainly
unoccupied non-condensate modes described via a positive P representation. A similar hybrid ap-
proach has been applied to treat two coupled anharmonic oscillators [5]. An interferometry regime with
macroscopic occupancy in only one condensate mode is assumed - the conditions to be found using
the two-mode theory [2]. A functional Fokker-Planck equation (FFPE) for the distribution functional
based on the truncated Wigner approximation is obtained, from which coupled Ito stochastic equations
for condensate and non-condensate field functions are found. These equations contain deterministic
and random noise terms - identifiable from the FFPE. Stochastic averages of the field functions give the
quantum correlation functions that are used to describe interferometry experiments, and which exhibit
decoherence and dephasing effects.

The Ito stochastic equations for the condensate field ψC(s,t) are
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the terms being displayed in decreasing powers of
√
N . In these equations V is the trap potential, the

boson-boson interaction strength is gN/N , the condensate wave function is φ1(s, t) and satisfies a time-
independent Gross-Pitaevskii equation. The ΓC , ..,ΓNC+ are stochastic noise fields, and the matrix
elements dC,C , ..,dC,NC+ are related to the diffusion matrix in the functional Fokker-Planck equation.
A similar equation applies for the non-condensate field ψNC(s,t). The first line of the condensate
equation is the time-dependent Gross-Pitaevskii equation, the mean field being depleted by one boson.
The stochastic condensate and non-condensate fields are coupled together, each being affected by
stochastic noise fields.
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