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Since 1995, we have become familiar with BEC in trapped gases
of Bose atoms. These atomic Bose condensates are macroscopic
matter waves which behave like other waves. How to manipulate
these matter waves is one of the major
themes of this summer school .

Fermi gases have become the hot topic in ultracold atom physics
in the last year.The goal of these four lectures is to introduce you to
the new Bose condensates that arise in such trapped atomic
Fermi gases.

Lecture 1



                       THE ESSENTIAL IDEAS
Interactions between the Fermi atoms can produce bound states 
(pairs) which act as Bosons. These molecules can then Bose 
condense below a certain transition temperature, giving rise to
what is called a Fermi superfluid.
 
These molecular Bose condensates are the analogue of
metallic superconductors, which involves a Bose condensate 
of Cooper pairs ( a bound state of two electrons). Indeed, one 
of the goals of these lectures is to argue that there is no real
distinction between a Fermi superfluid with a molecular 
condensate and one with a BCS Cooper pair condensate.
This is what is involved in the famous BCS-BEC crossover.

The end result is that we now have molecular matter waves 
which involve a condensate of Bosons composed of bound states 
of atoms (molecules). These are like atomic matter waves. 



1. Compare the properties of non-interacting Bose and Fermi gases.
General discussion of modern theory of a Bose superfluid.

2.   Introduction to idea of a condensate in a interacting Fermi gas
   - Two-body effects : A Feshbach resonance between two  atoms, and

the formation of molecules.
    - Many-body effects: some key ideas of the BCS theory of

superconductivity in Fermi gases.
3.  Review the crossover from the usual BCS state of large overlapping

Cooper pairs to a BEC gas with small Cooper
      pairs, the BCS-BEC crossover.
4.  Discuss an interacting Fermion-Boson model which allows
     one to neatly imbed molecules (produced by a two-body Feshbach

resonance) into an interacting Fermi gas of atoms.

Plan of four lectures:



How do we produce quantum fluids and matter waves?

 Quantum effects are smeared out at high temperatures due
to thermal motion. This is why physicists have been on a long quest to go
to lower and lower temperatures. Life is more interesting as T → 0,
where more delicate phases of matter can become stabilized.
Superfluidity only lives at low T.

 BEC and ultracold atomic gases are just the latest spectacular discovery
in this quest for absolute zero over the last 100 years.
The first quantum fluid systems studied were superfluid 4He and
superconductors.
What do we mean by low temperatures?
                                          milli          micro       nano
  273 K               1K                 10-3 K          10-6 K         10-9 K
( < 1875)     (1910 -1960)         ~ 1970         ~ 1980        > 1995



Quantum statistics

• Two classes of particles in nature: Bosons and
Fermions

• Fermions: - integral spin particles – electrons,
protons, neutrons, atoms with an odd number of
neutrons.

• Bosons: integral spin particles – photons,
mesons, atoms with an even number of
neutrons.



- probability of finding 1 at r1 , 2 at r2 , …

- probability of finding 1 at r2 , 2 at r1 , …

Particles are indistinguishable, these two probabilities

must be the same, and hence we must have:

+ sign:  Bosons

− sign:  Fermions

What is the origin of the physical difference
between Fermions and Bosons?
At the microscopic level, it is associated with the behaviour of
the many-body wave function under the exchange of identical
particles:



Some consequences

• For non-interacting atoms, each atom occupies  some
quantum state ϕα. For example, atoms in a box of volume V
are in a planewave eigenstate, specified by the momentum k

• Two such non-interacting particles have a wave function

•  If α = β , this two-particle wave function vanishes for Fermions,
but not for Bosons. Thus any number of Bosons can occupy a
given single particle state but only one Fermion can occupy this
state.We see the origin of the Pauli exclusion principle for
Fermions, which determines everything!



This distinction leads to two different kinds of
quantum fluids: Bose and Fermi

Both isotopes are chemically equivalent and have the same
atomic spectra

• However, in liquid form at low temperatures, they behave
completely differently!

• 4He becomes a superfluid below T ~ 2 K while 3He is a
viscous liquid, before finally becoming a (different kind of)
superfluid below T ~ 2 mK

4He  ( 2 protons, 2 neutrons and 2 electrons)  → Boson
3He  ( 2 protons, 1 neutron, 2 electrons)  → Fermion



Most recent ultracold atom studies have used alkali atoms,since they
have a very simple electronic structure, ie, one s-electron outside a
closed shell. Net spin of an alkali atom is F = I ±1/2 .
    Bose atoms of choice: 87Rb , 85Rb  23Na , 7Li , 133Cs
   Fermi atoms of choice: 6Li , 40K
Rule: Even number of neutrons gives a Boson, since the number of
protons equals the number of electrons. Check this! Because
an even number of neutrons gives a more stable nucleus, about 80%
of the periodic table are Bose atoms.

Atoms, atoms and more atoms!



Trapped Atomic Fermi Gases
 Many groups can now cool Fermi gases down to
    0.05TF , where TF  is the Fermi temperature (10-6 K).

 Two different atomic hyperfine states  F, mF 〉 are
     used, where mF = - F, .., -1, 0, 1,.., F denotes the 
     different Zeeman levels. F denotes the total spin of 
     the atom(nuclear and electronic). For Fermions, 
     F must be an odd multiple of 1/2. 

40 K ( F =  9/2) - Jin (JILA, Boulder).  
    6 Li ( F  = 1/2) - Grimm (Innsbruck), Ketterle (MIT) , 

                    Hulet (Rice) , Salomon (ENS, Paris). 



Occupation of single particle quantum states in traps



Finite Temperatures

   The average number of particles in a given single particle
state is given by either the Bose of Fermi distribution
function:

(+)  Fermions

(−)  Bosons

   Since the way the states are occupied is different in the two
cases, the thermodynamic properties of systems of Bosons
and Fermions will be quite different.

The chemical potential µ(n) is determined by



Below TBEC , the number of atoms in the lowest energy level
of the harmonic trap abruptly starts to increase( Einstein, 1925) All
the atoms occupy this state when T << TBEC .These atoms are the
Bose condensate of a trapped non-interacting
gas , with N ~ 106   atoms in the same
single-particle state.This is the atomic
matter wave, given by the Gaussian
ground state wavefunction of a SHO.

At temperatures just above TBEC  , all the the lowest lying
energy states are occupied according to the Bose distribution
function
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A Bose-condensed gas is NOT a gas!!



When does a gas become a quantum gas?

 The average distance between the atoms in the gas = d(n)
•  The average thermal de Broglie wavelength  = λ(T)

The average density n ~ (the volume per atom) -1  ~ 1/ d3

  At high T         →    λ(T)  <<  d(n)
  At low T          →    λ(T)   ≈   d(n)   ← quantum features
  At ultralow T   →    λ(T)  >>  d(n)

 Clearly the wavelike nature of the atoms in the gas becomes crucial.
The wavefunctions of different atoms now overlap, and
the atoms move in a highly correlated collective manner.
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         λ(T)   ≈   d(n)   ← quantum features

This simple formula contains all the physics! 
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In the case of a Fermi gas, we have used the well known
result that at T = 0, Fermions fill all the momentum states
up to the Fermi momentum pF, with an atom density
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It is useful to study some single-particle properties 
of a non-interacting Fermi gas in a harmonic trap. 

A good first approximation is to use the semi-classical
 equilibrium distribution of atoms,
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At T = 0, the filled momentum states are given by
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The T = 0 density profile of a degenerate Fermi gas
is not much modified at finite T << TF or by interatomic
interactions. This is typical of what is called a normal
Fermi liquid in condensed matter physics.

You can check yourself that by integrating f (r, p) over 
both r and p that
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The size of the trapped Fermi gas is determined by RF.
It is larger than than the size of a trapped Bose gas, since
Fermions of the same species tend to repel each other as
a result of the Pauli exclusion principle. 



Quantum field theory( or second quantization)
The most efficient way of handling quantum statistics
is to describe the interacting gas of atoms in terms of
quantum field operators which creat and destroy atoms,

 ψ+(r)  creats an atom at position r
 ψ(r)    destroys an atom at r

These field operators satisfy the key commutation relations:
                  

      ψ(r)ψ+(r’) ± ψ+(r’) ψ(r) = δ (r - r’) 
      ψ(r)ψ(r’) ± ψ(r’)ψ(r) = 0
      ψ+(r)ψ+(r’) ± ψ+(r’)ψ+(r) = 0

− sign for Bosons, operators commute at different positions.
+ sign for Fermions, operators anticommute at different positions.

These commutation relations guarantee the correct symmetry
and antisymmetry of the quantum states in the two cases! 
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2. The “grand canonical” Hamiltonian of a non-interacting 
    gas in a trap Vtr(r) is given by
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Each kind of atom α has its own field operators ψα (r).
Moreover, if we are dealing with molecules which are Bosons,
we can introduce molecular quantum field operators ψM (r). 

All observables of the system can be written in terms of 
these field operators

! 

V = dr d " r ## $%
+
(r)$%

+
( " r )v%% (r & " r )$% ( " r )$% (r)

%

'

3. The interaction energy between atoms of type α is

 1. Local density operator is



     Atomic Bose condensates can involve millions of atoms all occupying
the identical single-particle quantum state.This is because the atoms are
Bosons, and the Pauli exclusion principle does not hold. As a result
these millions of atoms are now described
by a macroscopic single particle wavefunction Φ(r).This is a
macroscopic de Broglie matter wave.
      These matter waves are best thought of as a macroscopic quantum
order parameter, describing a new kind of condensed matter, like a
solid or a liquid. Using external fields, these condensates can move,
change shape, oscillate, and scatter off each other, producing spectacular
interference patterns. They allow one to see quantum effects with our
eyes!

       However, what is a BEC in an interacting system of Bosons? Not
so obvious! Useful to give a little history of BEC here.

A new kind of condensed matter



A Brief history of BEC 1938-1960

London (1938) first suggested that the transition at T = 2.17K in
liquid He4 was due to the formation of a BEC of He4 atoms.

Tisza (1938) then suggested that the spectacular superfluidity effects
first observed in 1938 were related to the coherent motion of this
condensate. It took time to “put clothes” on this concept.

Landau (1941) developed a very successful two-fluid theory of
superfluid He4 based on elementary excitations of the many-body
system. However, Landau’s beautiful theory made no mention of BEC (
or even mentioned atoms! ).This was puzzling for years!

In the period 1950 -1960, many-body theorists agreed that a Bose
condensate was the microscopic basis of the superfluidity in liquid He4

and of the Landau phenomenological theory.



BEC is a broken symmetry: modern theory
of the superfluid phase of matter
A good theoretical formalism always tries to capture the
key physical phenomena involved in a new phase of
matter, ie superfluidity. Bose condensation in an interacting
system of N atoms involves a finite fraction ( Nc/N ) of
atoms occupying the same “single particle” state Φ(r,t)

  Φ(r,t) = (nc)1/2 eiS  :  amplitude and phase variables

  The condensate density is nc(r, t ) = Φ(r, t)2

  The superfluid velocity is                                  .

   It is the phase of Φ(r,t) which is the origin of all the
   wavelike and superfluid properties of the condensate.
   Note that this motion is irrotational (curl vs = 0 ).
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The dynamics of the condensate matter wave is that of
superfluid, with no dissipation since we are dealing with
“millions” of atoms all in one single quantum state. This
is the same physics as in superconductors and in superfluid
4He. What is the meaning of Φ(r,t) ??
Crucial theoretical ideas came from
   Bogoliubov (1947,1963), Penrose and Onsager (1956)
   Beliaev (1958), Nozieres and Gavoret (1964)
   Hohenberg and Martin (1965), Anderson( ~ 1960).

These developed quantum field theory using Green’s
functions to define and deal with a Bose condensate in a
systematic way. It can deal with systems with strong
interactions and at finite temperatures(large depletion).

! 



Beliaev (1958) gave the general formulation of BEC by
identifying the macroscopic wavefunction with the broken
symmetry value of the quantum field operator,
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This anomalous average picks (symmetry-breaking) a 
specific phase of the superfluid phase, at the price of not 
dealing with states with a definite value of N. This is done 
by adding a small perturbation which creats and destroys 
atoms. Note that relation to the many particle wavefunction 
 Ψ(r1, r2, r3, …, rN) is non-trivial, but this is not needed.

This gives a systematic way of separating out the condensate 
part in an interacting system of Bosons,
   
                    
                          = condensate part + non-condensate part
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First application of BEC concept was to liquid 4He in 
1938 by Fritz London, where the superfluid transition is 
at Tc = 2.17K .

However, in liquid 4He with strong interactions, even at 
T = 0,  only 9% of the 4He atoms are in the condensate. 

The analogy between superfluid He4 and a dilute gas only 
appears at finite temperatures, where there are a lot of 
atoms thermally excited out of the condensate. If the 
collisions are strong enough to produce local equilibrium ,
one can derive the famous Landau two-fluid equations.

Superfluidity in liquid He4 and in Bose gases

Superfluid component => condensate atoms
Normal fluid component => non-condensate atoms



Research on Fermi Superfluids is published in
1. Physical Review A, in matter wave section.
2. Physical Review Letters, first section (general physics).
3. Important papers also appear in Nature and Science.
4. Nice reviews of recent results are given in the Search and 
      Discovery Section of Physics Today. Good for non-experts.

 For more details on my own research, see  
http://www.physics.utoronto.ca/~griffin

My work on Fermi superfluids is done in collaboration with
Prof. Yoji Ohashi , University of Tsukuba, Japan.

Contact: griffin@physics.utoronto.ca



More information on ultracold matter:
1. Two excellent textbooks have been published:

      BOSE-EINSTEIN CONDENSATION IN
      DILUTE GASES, by Pethick and Smith (Cambridge , 2002).

      BOSE-EINSTEIN CONDENSATION, by
Pitaevski and Stringari (Oxford, 2003).

2. Varenna Lectures, BOSE-EINSTEIN CONDENSATION IN
ATOMIC GASES, ed by Inguscio, Stringari and Wieman, (IOS
Press, Amsterdam, 1999). Excellent review articles.

3. Classic book on interacting Fermi and Bose gases:

QUANTUM THEORY OF MANY-PARTICLE SYSTEMS by A.
L. Fetter and J. D.Walecka (Available as a Dover book)


