Stability of an atom laser in the presence of pumping and feedback

Joe Hope, Mattias Johnsson, Simon Haine Australian Centre for Quantum Atom Optics, Australian National University, ACT

Continuous atom lasers:

Why pump an atom laser?

- Continuous source
- Modal stability
- Gain-narrowing (linewidth reduction)

Atom laser models

- Semiclassical (Gross-Pitaevskii equation)
 - No quantum statistics
 - Tractable with full spatial structure
- Quantum
 - Only tractable models are single (or few) mode

An ideal atom laser in an ideal world

When the atom laser is in single mode operation:

- Semiclassical model predicts infinitely narrow output
- Quantum model necessary to determine linewidth
- Fortunately, single mode quantum model is tractable

$$\hat{H} = \hbar \omega_0 \hat{b}_0^{\dagger} \hat{b}_0 + U_0 \hat{b}_0^{\dagger} \hat{b}_0^{\dagger} \hat{b}_0 \hat{b}_0 + \int d\mathbf{p} \ \hbar \omega_\mathbf{p} \ \hat{c}_\mathbf{p}^{\dagger} \hat{c}_\mathbf{p}$$

$$+ \hbar \int d\mathbf{p} \left(\chi(\mathbf{p}) \hat{b}_0^{\dagger} \ \hat{c}_\mathbf{p} + \chi^*(\mathbf{p}) \hat{b}_0 \ \hat{c}_\mathbf{p}^{\dagger} \right) + \hat{H}_{\text{pump}} (\hat{b}_0, \hat{b}_0^{\dagger})$$
output modes
$$\hat{c}_\mathbf{p}(t) = \hat{c}_\mathbf{p}(0) \ e^{-i\omega_\mathbf{p} \ t} - i \ \chi^*(\mathbf{p}) \int_0^t e^{-i\omega_\mathbf{p} \ (t-u)} \hat{b}_0(u)$$

An ideal atom laser in an ideal world

The spectrum of the output atom laser flux

$$\frac{\partial \langle \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} \rangle}{\partial t} = \langle \hat{c}_{\mathbf{p}}^{\dagger}(0) \hat{c}_{\mathbf{p}}(0) \rangle + \langle \hat{B}_{lah} \hat{c}_{\mathbf{p}}(0) \rangle + \langle \hat{c}_{\mathbf{p}}^{\dagger}(0) \hat{J}_{unk} \rangle$$
$$+ 2 |\chi(\mathbf{p})|^{2} \Re e \left(\int_{0}^{t} du \ e^{-i \omega_{\mathbf{p}}(t-u)} \langle \hat{b}_{0}^{\dagger}(t) \hat{b}_{0}(u) \rangle \right)$$
Two time correlation: $g(\tau) \equiv \lim_{t \to \infty} \langle \hat{b}_{0}^{\dagger}(t+\tau) \hat{b}_{0}(t) \rangle$

 $g(\tau) \approx e^{i(\omega_0 + \Delta)\tau}$

For a system in a coherent state:

Monoenergetic output

An ideal atom laser in an ideal world

The spectrum of the output atom laser flux

$$\frac{\partial \langle \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} \rangle}{\partial t} = \langle \hat{c}_{\mathbf{p}}^{\dagger}(0) \hat{c}_{\mathbf{p}}(0) \rangle + \langle \hat{B}_{lah} \hat{c}_{\mathbf{p}}(0) \rangle + \langle \hat{c}_{\mathbf{p}}^{\dagger}(0) \hat{J}_{unk} \rangle$$
$$+ 2 |\chi(\mathbf{p})|^{2} \Re e \left(\int_{0}^{t} du \ e^{-i\omega_{\mathbf{p}}(t-u)} \langle \hat{b}_{0}^{\dagger}(t) \hat{b}_{0}(u) \rangle \right)$$
Two time correlation: $g(\tau) \equiv \lim_{t \to \infty} \langle \hat{b}_{0}^{\dagger}(t+\tau) \hat{b}_{0}(t) \rangle$

For a highly pumped system with a wise choice of pumping mechanism: $g(\tau) \approx e^{i(\omega_0 + \Delta)\tau} e^{-r|\tau|/4(\overline{n} + n_s)^2}$ \overline{n} mean lasing mode number n_s spontaneous loss

Gain narrowing

Output flux $\propto r \propto \overline{n}$

Output linewidth

$$\propto \frac{r}{4(\overline{n}+n_s)^2} \propto \frac{\gamma_{unpumped}}{\overline{n}}$$

Phase diffusion increases with interactions - Controllable by feedback

H.M.Wiseman and L.K.Thomsen, PRL 86, 1143 (2001)

This model, and the narrow linewidth require:

- Well chosen pumping mechanism
- Stable, single mode operation
- Low interactions

Semiclassical atom laser model:

No interactions, strong pumping

Stability with spatially independent pumping: $(\sigma = \infty)$

Stability depends on scattering length and pumping rate

Stability phase diagram (a = 0)

Frequency analysis of stable points

Frequency analysis of the unstable points

...so what were the green points?

Conclusions of the semiclassical model:

Only three important parameters

Stability increases with:

- spatially narrow pumping mechanism
- increasing pump rate
- increasing interactions

The first modifies the gain profile

The second two modify the loss profile

Gain narrowing (reprise)

Output flux $\propto r \propto \overline{n}$

Output linewidth o

$$\propto \frac{r}{4(\overline{n}+n_s)^2} \propto \frac{\gamma_{unpumped}}{\overline{n}}$$

Phase diffusion increases with interactions - Controllable by feedback

H.M.Wiseman and L.K.Thomsen, PRL 86, 1143 (2001)

This model, and the narrow linewidth require:

- Well chosen pumping mechanism
- Stable, single mode operation +
- Low interactions

Requires high interactions!

Semiclassical model of spatial feedback:

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = \left(\hat{H}_0 + \hat{H}_f\right) \psi(\mathbf{r},t)$$

$$\hat{H}_0 = -\frac{\hbar^2}{2m}\nabla^2 + V_0(\mathbf{r}) + U_0|\psi|^2$$

uncontrolled trap potential

What is our feedback goal?

Energy itself is not a good metric (feedback dependent)

$$E_0(\psi) = \left\langle \frac{-\hbar^2}{2m} \nabla^2 + V_0 \right\rangle + \frac{1}{2} \left\langle U_0 |\psi|^2 \right\rangle$$

$$\begin{aligned} \frac{dE_0}{dt} &= \frac{i}{\hbar} \langle [\hat{H}, \ \hat{T} + V_0] \rangle + \frac{U_0}{2} \frac{d}{dt} \int |\psi|^4 d^3 \mathbf{r} \\ &= \frac{-i\hbar}{2m} \int \sum_i a_i f_i(\mathbf{r}) (\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*) d^3 \mathbf{r} \\ &- \frac{i\hbar}{2m} \int \sum_i b_j g_j(\mathbf{r}) |\psi|^2 (\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*) d^3 \mathbf{r} \\ &= -\sum_i a_i(t) \frac{d\langle f_i(\mathbf{r}) \rangle}{dt} - \frac{1}{2} \sum_j b_j(t) \frac{d\langle g_j(\mathbf{r}) |\psi|^2}{dt} \end{aligned}$$

The feedback scheme

Choose
$$a_i(t) = c_i \frac{d}{dt} \langle f_i(\mathbf{r}) \rangle$$
 $b_i(t) = u_i \frac{d}{dt} \langle g_i(\mathbf{r}) | \psi |^2 \rangle$

Where c_i and u_i are positive constants so that

$$\frac{dE_0}{dt} = -\sum_i c_i \left(\frac{d\langle f_i(\mathbf{r})\rangle}{dt}\right)^2 - \frac{1}{2} \sum_j u_j \left(\frac{d\langle g_j(\mathbf{r})|\psi|^2\rangle}{dt}\right)^2$$

$$\frac{dE_0}{dt} = -c_1 \left(\frac{d\langle x \rangle}{dt}\right)^2 - c_2 \left(\frac{d\langle x^2 \rangle}{dt}\right)^2 - u_1 \left(\frac{d\langle |\psi|^2 \rangle}{dt}\right)^2$$

Feedback:

Feedback to a BEC

PRA 69, 013605 (2004)

Pumped atom laser with feedback

$$i\hbar\frac{\partial}{\partial t}\psi_{t}(\mathbf{x}) = \left(-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{trap}(\mathbf{x}) + U_{tt}\left|\psi_{t}\right|^{2} + U_{tu}\left|\psi_{u}\right|^{2} - i\hbar\gamma_{t}^{(1)} - i\hbar\gamma_{tt}^{(2)}\left|\psi_{t}\right|^{2} - i\hbar\gamma_{tu}^{(2)}\left|\psi_{u}\right|^{2} + i\kappa\rho\right)\psi_{t} + \hbar\Omega e^{i\mathbf{k}\cdot\mathbf{x}}\psi_{u}$$

$$i\hbar\frac{\partial}{\partial t}\psi_{u}(\mathbf{x}) = \left(-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{gravity}(\mathbf{x}) + U_{uu}\left|\psi_{u}\right|^{2} + U_{tu}\left|\psi_{t}\right|^{2} - i\hbar\gamma_{u}^{(1)} - i\hbar\gamma_{uu}^{(2)}\left|\psi_{u}\right|^{2} - i\hbar\gamma_{tu}^{(2)}\left|\psi_{t}\right|^{2}\right)\psi_{u} + \hbar\Omega e^{-i\mathbf{k}\cdot\mathbf{x}}\psi_{t}$$

$$\frac{\partial}{\partial t}\rho(\mathbf{x}) = r - \gamma_{res}\rho - \kappa(\mathbf{x})\left|\psi_{t}\right|^{2}\rho + \lambda\nabla^{2}\rho$$

$$\frac{dE_0}{dt} = -c_1 \left(\frac{d\langle x \rangle}{dt}\right)^2 - c_2 \left(\frac{d\langle x^2 \rangle}{dt}\right)^2 - u_1 \left(\frac{d\langle |\psi|^2 \rangle}{dt}\right)^2 + \text{coupling terms} + \text{pumping terms} + \text{damping terms}$$

A ridiculous number of computer hours later...

Pumped atom laser with feedback

Effect of feedback on the phase plot

Conclusions:

1. Atom lasers are single mode for large interactions

2. Single mode atom lasers are better for low interactions

3. Spatial feedback for pumped atom lasers
•Highly effective over a finite timescale
•Hardly affects the long term stability

Future issues:

- Reality of pumping processes
- Detection
- Few mode atom laser model combining **both** feedback schemes
- More advanced feedback schemes on modal/phase stability

[Job!] Postdoctoral position available

Overview:

Pumping atom lasers

- Multimode pumped atom laser models
- If atom lasers were stable:
- An ideal laser in an ideal world
- ... with interactions
- ... and feedback

Feedback

Pumping atom lasers with active feedback The future

- Reality of pumping processes
- Detection
- Few mode atom laser model combining both schemes
- More advanced feedback schemes on modal/phase stability

Pumped atom laser

No interactions, weak pumping

Moderate interactions, weak pumping

Moderate interactions, strong pumping

A simple diagnostic: density at a point

QuickTime[™] and a Animation decompressor are needed to see this picture.

Example: linear system, linear feedback

Example: linear system, linear feedback

Example: linear system, general feedback

Pumped atom laser with feedback

