

Studying Bose-Einstein Condensates with a linear accelerator

Christian Buggle, Jeremie Leonard, Wolf von Klitzing, Tobias Tiecke, Jook Walraven Van der Waals – Zeeman Institute FOM-Institute AMOLF University of Amsterdam

Les Houches: 14 February 2005

- 1. Production and Acceleration of two clouds
 - Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J. OPT. B 5 (2003) 119
 - Thomas, Wilson, Foot PRA 65 (2002) 063406
- 2. Observing the collision of two condensates
 - Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202
 - Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201
- 3. Getting the elastic scattering amplitudes at any low energy
 - Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202
- 4. Interference observed in Feshbach-dissociation of ultra-cold molecules
 - Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083

Ioffe Quadrupole Trap

- 10

- 5

0

z cm

5

10

Ioffe-Pritchard Quadrupole Trap

radial level splitting 23 nK

Rotating the Trap Axis (TOP-field)

Add a rotating magnetic field perpendicular to Z:

Petrich, Anderson, Ensher, Cornell, PRL 74 (1995) 3352

Thomas, Wilson, Foot PRA 65 (2002) 063406

Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J. OPT. B 5 (2003) 119

Producing two clouds

1) Pre-cooling in standard Ioffe-Pritchard trap

3) Final cooling to BEC

Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J. OPT. B 5 (2003) 119

Double BEC

Production of a Double cloud.

Acceleration Principle

Acceleration Principle

collision of two ultracold clouds

3D spatial distribution to be retrieved

FOM

Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201

=>TOMOGRAPHY transformation

tomography

Reconstruction of 3D images from a set of 2D x-ray pictures (scanner) Nobel prize in medicine in 1979 (A. M. Cormack and G. N. Hounsgield)

AXIAL SYMMETRY: only ONE picture is needed

see *e.g.*: M. Born and E. Wolf, Principles of Optics, 7th (expanded) Edition, Cambridge University Press, Cambridge 1999.

collision energy = 138 μ K

collision energy = 1.23 mK

Otago results

Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201

collision energy = 1.23 mK

(almost) pure d-wave

Scattered waves and Phase shifts

$$H\psi(\vec{r}) = \frac{\hbar^2 k^2}{m} \psi(\vec{r}) \qquad \text{with} \quad \psi(\vec{r}) = \frac{\chi_l(r)}{kr} \cdot Y_l^m(\theta, \phi)$$

Radial Schrödinger Equation :

$$\ddot{\chi}_l(k,r) + \left[k^2 - V(r) - \frac{l(l+1)}{r^2}\right] \chi_l(k,r) = 0$$

Asymptotic solution (r $\rightarrow \infty$):

$$V(r) \approx -\frac{C^6}{r^6} \mathop{\longrightarrow}\limits_{r \to \infty} 0$$

$$\frac{l(l+1)}{r^2} \mathop{\longrightarrow}\limits_{r\to\infty} 0$$

$$\Rightarrow \chi_l \approx \sin(kr + \eta_l - l\frac{\pi}{2})$$
Phase Shift

• Scattering amplitude, differential cross section $\sigma(\theta) \approx \frac{8\pi}{k^2} \left| e^{i\eta_0} \sin\eta_0 + \frac{5}{2} e^{i\eta_2} (3\cos^2\theta - 1) \sin\eta_2 \right|^2$ • Obtained from the experiments

Obtaining the differential cross section at ANY (low) energy ...

for $r \to \infty$

s-waves

 $\eta_0(k)$

d-waves

 $\eta_2(k)$

Long-range part only:

 $V(r) = -\frac{C_6}{r^6}$

$$\ddot{\chi}_l(k,r) + \left[k^2 - \frac{l(l+1)}{r^2} + \frac{C_6}{r^6}\right] \chi_l(k,r) = 0$$

Integrating the Schrödinger equation

knowing only C_6/r^6 we extract ONE accumulated phase at $r_{in} = 20 a_0$ It allows us to calculate the phase shifts at ANY (low) energy

Results

knowing only C_6/r^6 we extract ONE accumulated phase at $r_{in} = 20 a_0$ It allows us to calculate the phase shifts at ANY (low) energy

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

Results

knowing only C_6/r^6 we extract ONE accumulated phase at $r_{in} = 20 a_0$ It allows us to calculate the phase shifts at ANY (low) energy

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

Van Kempen, Kokkelmans, Heinzen, Verhaar PRL **88**, 93201 (2002)

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

FO

Comparison with the Otago results

PRL 93 (2004) 173201

Comparison with the Garching results

Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083

Molecular association by Feshbach tuning

Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083 FON

1

Т

Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083

$$\Psi(\vec{r}) = g(\vec{r},t) \{ e^{i\delta_0} \sqrt{\beta_0} Y_0^0 - e^{i\delta_2} \sqrt{\beta_2} Y_2^0(\theta) \}$$

 β_0, β_2 = branching ratios $\beta_0 + \beta_2 = 1$

Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083

$$\Psi(\vec{r}) = g(\vec{r},t) \{ e^{i\delta_0} \sqrt{\beta_0} Y_0^0 - e^{i\delta_2} \sqrt{\beta_2} Y_2^0(\theta) \}$$

$$\beta_0, \beta_2$$
 = branching ratios $\beta_0 + \beta_2 = 1$

dissociation versus collision

Molecular dissociation:

$$\Psi(\vec{r}) = g(\vec{r},t) \{ e^{i\delta_0} \sqrt{\beta_0} Y_0^0 - e^{i\delta_2} \sqrt{\beta_2} Y_2^0(\theta) \}$$

 β_0, β_2 = branching ratios $\beta_0 + \beta_2 = 1$

Collision between free atoms (plane incident wave):

$$\Psi(\vec{r}) = g'(\vec{r},t) \{ e^{i\delta_0} \sin \delta_0 Y_0^0 - e^{i\delta_2} \sqrt{5} \sin \delta_2 Y_2^0(\theta) \}$$

$$\beta_0 = 1 - \beta_2$$
 and $\beta_2 = \frac{5 \sin^2 \delta_2}{\sin^2 \delta_0 + 5 \sin^2 \delta_2}$

Comparison with the Garching results

=> The Feshbach resonance shifts the d-wave shape resonance towards lower energies

'New' method to determine scattering amplitudes

Summary

- Requires very little a priori knowledge of the potential Only C6 (single-atom property)
- Provides fairly accurate results
- Provides good agreement with other determinations

Group Quantum Gases

Wolf von Klitzing, Paul Cleary, JTMW, Jeremie Leonard, Christian Buggle

Join us in Amsterdam!

