Superfluidity in interacting Fermi gases

Quantum many-body system in attractive interaction

Molecular

condensate

BEC

Laboratoire Kastler Brossel, Ecole Normale Supérieure

Cooper

pairs

BCS

Outlook

- Molecule Formation
 - Interaction control: Feshbach resonance
 - Reversible process
- Bose-Einstein Condensation of molecules

– Measurement of a_{mol-mol}

- BEC-BCS Crossover
 - Decription
 - Expansion of the gas

Feshbach resonance: |1/2,-1/2>+|1/2,1/2>

Experimental approch

Glass cell

2 isotopes MOT

T=1 mK

Ioffe-Pritchard Magnetic trap

Sympathetic cooling of ⁶Li by evaporation of ⁷Li

T=10 μ**K**

Optical trap power: 3W waists ~25 μm

RF tranfers: 50-50 mixture

at 1060 G: T < 1 μ K T_F = 5 μ K T/T_F < 0.2 N_{total} = 1 10⁵

Formation of molecules is energetically favorable

-Conversion efficiency
close to 100% (10%)
-Lifetime: ~ 1 s (1ms)
 slow sweep though
resonance (fast)

Reversing the ramp: back to initial conditions

Process is **reversible**

Quasi-static thermodynamic equilibrium between atoms and molecules during the ramp

A simple thermodynamic model

No heat transfert, reversible

BEC-BCS Crossover

Molecular condensate Size a << n^{-1/3} n^{-1/3}: mean interparticule distance Close to resonance $na^3 > 1$ or $k_Fa > 1$ Paires are overlapping They are stabilized by the Fermi sea BCS Regime: k_F|a|<<1 Cooper pairs: k, -k Large compared to interparticule distance

BEC-BCS Crossover: images after expansion

Condensate @770G: 4 10⁴ mol., $N_0/N \ge 60\%$ Slow change of B: 1-2 G/ms Images after time of flight

BEC-BCS Crossover: images after expansion

Condensate @770G: 4 10⁴ mol., $N_0/N \ge 60\%$ Slow change of B: 1-2 G/ms Images after time of flight

BEC-BCS Crossover: Anisotropy

Superfluid or highly collisionnal
 → hydrodynamic expansion
 η =1.7
 At 730 G, on the BEC side, n.,a.

At 730 G, on the BEC side, $n_m a_m^{-3} << 1$ Measured anisotropy: $\eta = \sigma_Y / \sigma_X = 1.6$ (1)

Going toward a<0, the gas losses its hydrodynamic behavior

Decrease of the superfluid fraction

Another explaination: rapide loss of the superfluid character in the expansion

Perspectives: BEC-BCS Crossover

- Numerous experimental studies
 - Expansion measurement (ENS)
 - Collective modes (Duke, Innsbruck)
 - Pair binding energy (Innsbruck, JILA)
 - Condensation of fermionic pairs (JILA, MIT)

Theory (Holland, Kokkelmans, Levin, Ohashi, Griffin, Strinati, Stoof, Bruun, Pethick, Combescot, Stringari, Shlyapnikov, Giorgini, ...)

 Direct proof of superfluidity (vortex)

• Long range order, interference experiment

Perspectives

- *p*-wave pairing (³He)
- Heteronuclear molecules
 - Fermionic molecules
 - Polar molecules (long range interaction)
- Simulation of hamiltonians from condensed matter (Fermions in an optical lattice)

Dispositif expérimental

Transition BEC-BCS: Autres Résultats

50-

40

30

20

Condensation des paires de Fermions: (JILA, MIT)

Mesure de l'énergie des paires (Innsbruck, JILA)

Quantum gases

atom \longrightarrow wave-function of size $\lambda_{dB} = h/(2\pi m k_B T)^{1/2}$

Quantum regime in a **dilute** gas: n~10¹³ cm⁻³ «Very clean» **quantum many-body** System Difference between **bosons** et **fermions**

Quantum statistics

Molecules velocity distribution

- Optical trap off: expansion of the molecular gas
- At the end of the time of flight: dissociation of pairs

Pure Condensates: measurement of *a_{mm}*

By lowering the trap power, we optain a pure condensate

TOF=1.2 ms

 $\begin{cases} T < T_c / 3 \\ \lambda = 0.1 \\ N = 4 \times 10^4 \text{ atoms} \end{cases}$

Thomas-Fermi fit, no thermal cloud

Hydrodynamic expansion Ellipticity: -mesured: 2.0 (1) -theory: 1.98

Scattering length measurement

à 770 G:

In agreement with a_{mm}=0.6 a

(Petrov, Salomon, Shlyapnikov, PRL, 2004)

Interaction control: Feshbach Resonance

Formation of molecules is energetically favorable

Only free atoms are detected

Presence of **molecules** is detected by a **diminution of atomic signal**

Only free atoms are detected

Presence of **molecules** is detected by a **diminution of atomic signal**

This is not due to losses

Molecular condensate lifetimeRelaxation toward deeply bound
statesImage: Colspan="2">Image: Colspan="2" Image: Colspan="2" I

 R_e Fermions: β ~ a^{-2.55}

Temperature of atom-molecule mixture

Temperature of atom-molecule mixture

Temperature of atom-molecule mixture

Atoms — Molecules : heating 3 body recombinaison: $|\mathsf{E}_{\mathsf{B}}| \longrightarrow \mathsf{E}_{\mathsf{C}}$ Molecules atoms : Cooling Process is **reversible Entropy conservation** Quasi-static thermodynamic equilibrium between atoms and molecules during the ramp