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Overview

* Finite temperature Bose gases.
 Introduction to classical fields.
 Measuring condensate fractions.

o Shift in 7, for interacting Bose gases.

o Summary.
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The challenge for theorists

Can we come up with a practical non-equilibrium
formalism for finite temperature Bose gases?

Desirable features:
e Can deal with inhomogeneous potentials.
e Can treat interactions non-perturbatively.

e Calculations can be performed on a reasonable time
scale (say under one week).
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Potential applications

Topics of interest include:

e Condensate formation.

 \Vortex lattice formation, dynamics

* Low dimensional systems (fluctuations important)
« Correlation functions

e Atom lasers ...
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Classical field approximation %

An example: the classical theory of electromagnetic
radiation resulted in the Rayleigh-Jeans law.

Based on the equipartion theorem :

« Each oscillator mode has energy kg1 In equilibrium.

Lord Rayleigh Sir James Jeans
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The UV catastrophe

But we all know It doesn’t work . ..

So Planck says:
“Classical fields are no good”
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However ...

For the infra-red modes the RJ law
IS a good approximation.

Quantum and classical results are
similar for

Ephoton < kBT

Thus we require
e High occupancy per mode.

e An energy cutoff.
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Classical fields for matter waves

The Projected Gross-Pitaevskii equation:

di)(x) - 8maN

= = Hypp(x) + CaP {0 ()" P(x) ), Cn=——
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Classical fields for matter waves N\
The Projected Gross-Pitaevskii equation:
du(x SmTalN
) 00 + CuP {[000Pe0} . G = T

All modes assumed to be highly occupied.
Projection prevents higher energy modes becoming occupied :

P{F(x)} = Z b (X) /d3x’ o5 (x')F(x") — prevents UV catastrophe.
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Classical fields for matter waves

The Projected Gross-Pitaevskii equation:

) H(x) + CuP {0}, G = T

All modes assumed to be highly occupied.
Projection prevents higher energy modes becoming occupied :

P{F(x)} = Z b (X) /d3x’ o5 (x')F(x") — prevents UV catastrophe.

Advantages: 1. Relatively easy (i.e possible!) to simulate in 3D.

2. Method is non-perturbative.

However: Atoms above cutoff necessary for real calculations.
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Ergodicity
Begin simulations with random Iinitial conditions
= Result is thermal equilbrium

System Is ergodic: time average = ensemble average

NOIN =0.68
NOIN =0.25 |

NOIN =0.02
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Time-averaged column densities in momentum space, TOP trap
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Time-averaged column densities
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Theorists’ criterion for BEC: Penrose-Onsager

= Single-particle density matrix has a macroscopic eigenvalue.

Given ¥ (x,t) = >, ck(t)p(x) we can calculate

lim l

T— o0
T

I
)

pij = (¢ic))

/O ) ¢ (t)e; (1)t

Typically have ~ 2000 states below
cutoff

This can easily be diagonalized on
a workstation

[Also have a microcanonical mea-
sure of temperature]
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Experimentalists’ measure of BEC

= Fit a bimodal distribution to column density.

Compare the two measures from an

evaporative cooling calculation.
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Shift in critical temperature with interactions

A difficult problem: perturbation theory doesn’t work near 7.
Several competing phenomena:
* Finite size effects (downwards)

* Mean field effects (downwards)

e Critical fluctuations (upwards) 09t N\, cc;nizgez ]
* Cnl=2e3
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#* Cnl = 15e3
A Cnl=20e4| |

o
T

Homogeneous gas, thermodynamic
limit: AT,./T., = can'’?.

We findc = 1.3 + 0.4 — agrees with
Monte Carlo calculations.
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P. Arnold and G. Moore, PRL 87, 120401 (2001); _ . s
V. A. Kashurnikov et al., PRL 87, 120402 (2001). Temperature
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Critical temperature for trapped gas

L

Giorgini et al. estimate downwards shift in 7,. due to mean field.

1

~ 1.33N/
c0 Uho
iy _ | .
Are critical fluctuations important?

< 0.87

We compare PGPE calculations for 8 .

a TOP trap to mean-field HFB- g |
Popov calculations for the same g 0.4}
basis set. S0,

Answer:. maybe!
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Comparison with experiment I~
Careful measurements by Gerbier et al. Phys. Rev. Lett. 92, 030405 (2004).
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Analytic result is an estimate of mean fi eld shift. We will calculate this numerically.
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Other current topics

e Formation of vortices at the phase transition:
= Kibble / Zurek scenario for BECs?

= Only phenomenological time-dependent
Landau-Ginzburg theory to date.

e Vortices in 2D
= Pairing / Kosterlitz-Thouless transition?

e Trapped Bose gases with angular momentum.
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Summary

Finite temperature Bose gases.
Introduction to classical fields.

Measuring condensate fractions.

Shift in T,. for interacting Bose gases.

Brief mention of the road ahead.
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L

Summary P~

* Finite temperature Bose gases.
 Introduction to classical fields.

e Measuring condensate fractions.

o Shift in 7. for interacting Bose gases.

e Brief mention of the road ahead.

That’s all, folks!
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