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Outline
1. What are analogue models of gravity?

• Hawking Radiation from acoustic black hole
• BEC’s good candidates

2. Configuration for acoustic black hole
• Laval Nozzle
• Hydrodynamic approximation

3. Classical field method (extend Hydrodynamic theory)
• Gross-Piteavskii Equation → ground states, background flow
• initial quantum noise → vacuum fluctuations

4. Some preliminary results:
• ground states
• dynamics
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Motivation: Analogue Models
The basic idea: consider fluid flow – Unruh (1981, 1995), Visser (1998)

Continuity:
∂ρ

∂t
+ ∇(ρv) = 0

Euler’s equation:
∂v

∂t
+ v · ∇v = −∇p

ρ
+ F

Assume fluid is irrotational (v = ∇φ), inviscid and barotropic (p = p(ρ)) and linearize:

ρ→ ρ0 + ρ1 φ→ φ0 + φ1 p → p0 + p1

Relativistic wave equation:

1√−g
∂

∂xµ

(√
−g gµν ∂

∂xν
φ1

)

= 0

with acoustic metric for massless scalar field:

where gµν =
ρ0

c





−(c2 − v2) −v
T

−v I



 g = [det(gµν)]−1
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Acoustic black holes
• admits acoustic horizons

• Lorentzian geometry with signature (-+++)

• when v = 0 get Minkowski metric for flat space

• No mention of Einstein’s field equations

Behaviour of sound waves determined by the acoustic metric.
Line element: ds2 = gµνdxµdxν (for observer at rest in lab frame)

• supersonic (v > c) → ds2 is +ve → spacelike separated – inside horizon

• subsonic (v < c) → ds2 is -ve → timelike separated – outside horizon

• transonic (v = c) → ds2 = 0 → sound waves on null geodesics
→ surface defines a horizon

subsonic/supersonic regions are“causally" separated:
→ sound waves can be trapped in a flowing fluid!

Careful: we are talking about “apparent" horizons
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Acoustic Hawking Radiation
Astrophysical BH: antiparticle + particle pairs formed (vacuum fluctuations) → near
event horizon, (-ve E) antiparticle drops into BH whereas (+ve E) particle is radiated.

Analogue of HR in transonic fluid flow first considered by Unruh (1981)
Acoustic BH: quasi-particle pairs (phonons) formed
→ energy into non-condensed fraction → reduces kinetic energy of base flow

Basic ingredients for acoustic Hawking Radiation:

• QFT ≡ Vacuum fluctuations

• curved space-time ≡ trapping horizon (event, apparent, ergo-region)

Should observe a thermal spectrum of phonons with Hawking temperature:

kBTH =
h̄gH

2πc

Surface gravity: see Visser (1998)

gH =
1

2

∂(c2 − v2
⊥

)

dr
= c

∂(c− v⊥)

dr
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Connection with Bose-Einstein condensates
Fluid dynamics → connection to the GPE:

ih̄
∂ψ

∂t
=

[

− h̄
2∇2

2m
+ V (r)

]

ψ + U0|ψ|2ψ U0 =
4πh̄2a

m

ψ(r, t) =
√
n exp(iθ) n = |ψ|2 v =

h̄

m
∇θ

Equations of motion for n and θ with hydrodynamic approximation
→ continuity and Euler’s equations where pressure and external force are:

p = 1
2
U0n2

F = − 1
m
∇Vext(r)

Why BEC’s?

• They are cold! - Hawking radiation might be observed since TH ∼ Tc

Estimate: TH ≈ 70 nK ∼ TC ≈ 90 nK (Visser (2001))

• Exhibit superfluid flow (inviscid, irrotational)

• Microscopic theory well understood

• Many experimental configurations are possible
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How do we make an acoustic BH?
Nozzle – Garay etal. (2001)
Laval Nozzle – Barceló etal. (2001), Sakagami and Ohashi (2002)
→ AHC from double Laval nozzle formed with external potential

consider Continuity and Euler’s equation
with external potential V (x)

→ gives “nozzle” equation:

dv

v
=

(

c2

c2 − v2

)

dV (x)

mc2
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x

V (x)

dV < 0dV < 0 dV > 0 dV < 0 dV > 0

Use potential:

V (x) = V0 cos2
(nπx

2L

)

− L ≤ x ≤ L

with n = 2 – need double nozzle for stable
flow: subsonic → supersonic → subsonic
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Classical field method
The truncated Wigner Method → GPE + initial noise

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ + U0N |ψ|2ψ

Vacuum fluctuations accounted for by initial noise in Wigner represention:

ψ(x, t = 0) = ψGS(x) + χ(x)

amplitudes of virtual particles given by (half particle per mode):

〈χ∗

i χj〉 =
1

2
δij , 〈χiχj〉 = 0, 〈χ∗

i χ
∗

j 〉 = 0

Truncated Wigner method – third order terms in equation of motion for Wigner function
neglected. Validity:

• physics given by interaction of highly occupied modes with vacuum modes

• initial noise leads to slight heating – Steel etal. (1998) → care required!

Similar formalism has recently been used to predict quantum turbulence in colliding
condensates – Norrie etal. (2004)
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Ground states (1D)
Assume stationary state:

ψ(x, t) = s(x) eiϑ(x)e−iµt/h̄

with constant current:

j = nv = s2v

time-independent GPE gives:

µs = − h̄2

2m

d2s

dx2
+ V (x)s+ U0s

3 +
mj2

2s3

Periodic boundary conditions:

s(x = −L) = s(x = L) ∆ϑ =
m

h̄

∮

v(x) dx = 2πw

Construct a ground state wavefunction:

ϑ(x) =
m

h̄

∫

j dx

s(x)2

ψGS(x) = s(x) exp
(

iϑ(x)
)

Acoustic black holes in BECs – p. 9/22



VICTORIA UNIVERSITY OF WELLINGTON

SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES

Te Whare Wananga o te Upoko o te Ika a Maui

Hydrodynamic approx
Hydrodynamic approximation → drop quantum pressure term → classical fluid

1

2
v2 +

C
√

2J

v
+ V (x) − µ = 0

two solutions are degenerate allowing tran-
sonic crossover (v = c) when:

8

27
(V (x) − µ)3 + 2JC2 = 0

Crossover at throat of nozzle: V (x) = V0

→ chemical potential: µcrit = µ(J,C, V0)
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Form transonic solution:

• subsonic branch for −L ≤ x < 0

• supersonic branch for 0 ≤ x < L

→ use these solutions to find ground states by solving GP Equation. – fix V0, C, and w
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Ground state results: winding number
low winding number: w = 5, C = 1000, V0 = 100
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Ground state results: winding number
intermediate winding number: w = 10, C = 1000, V0 = 100
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Ground state results: winding number
high winding number: w = 100, C = 1000, V0 = 100
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Ground state solutions:V0 potential
small potential: w = 5, C = 1000, V0 = 1
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Ground state solutions:V0 potential
large potential: w = 5, C = 1000, V0 = 500
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Dynamics: quantum noise

Movie:

CNL = 494, V0 = 100, w = 5

N0 = 1 initial noise on 200 modes

Implementation details:

• RK4IP algorithm: 4th order Runge-Kutta in interaction picture (Otago group)

• Fast but unstable for modes with large k → may need to use a pseudo-spectral
method with a projector in momentum space
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Remarks on Hawking radiation
1. Do we have an acoustic horizon?

• phonon modes (large λ) are attenuated at a BH horizon

• Phononic modes are Doppler shifted to shorter λ (large k) approaching BH horizon

2. signatures of AHR – what to look for:

• thermal phonon spectrum with temperature kBTH = h̄gH/2πc

3. Caution:

• Recall Bogoliubov dispersion relation – only low k modes are phononic; high k
modes act as free particles (not governed by acoustic metric)

• Doppler shifted modes no longer phononic

• Effect of shifting horizon, ie. fluctuating metric

• Hawking temperature might be too low to extract from noise
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Gaussian wavepacket inside BH horizon

xcenter = +0.25, w = 10, V0 = 200, C = 1974
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Gaussian wavepacket outside BH horizon

xcenter = −0.25, w = 10, V0 = 200, C = 1974
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to be continued ...
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Dimensionless units
computational units:

x0 = L t0 = mL2/h̄ s0 =
√

1/x0

time dependent GP equation:

i
∂ψ

∂t
= −1

2

d2ψ

dx2
+ V (x)ψ + C|ψ|2ψ

time independent GP equation:

µ s = −1

2

d2s

dx2
+ V (x)s+ Cs3 +

J

s3

• C ≡ nonlinear interaction term
• J ≡ current

velocity: v =

√
2J

s2
speed of sound: c =

√

Cs2 phase: ϑ(x) =

∫

v dx

Note: henceforth we drop the bars for clarity
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