Atom Chips and Bose-Einstein Condensates

Chris Vale

UQ BEC Team

• Staff

Prof H. Rubinsztein-Dunlop A/Prof N. Heckenberg Prof G. Milburn Dr. C. Holmes Dr. M. Davis CJV

Students

Adrian Ratnapala Stuart Holt Sean Drake Doug Turk

• Research Associate Tom Campey

- Former Members/Visitors Ben Upcroft
 - Martin Lenz Greg Kocuiba M. Walkiewicz Jozsef Fortagh

Outline

- BEC on a foil based atom chip
- Fragmentation
- High temperatures...
- Accurate atom number detection
- Conclusions

UQ Atom Chip / BEC

Atom Chips

- Atom optics Control and manipulation of atomic deBroglie waves
- Atom Chips: Allow us to place atom optical elements very close to a BEC.
- Two main advantages:

o "Easy" to produce BECs (lower currents) o Tight and complex trapping potentials

Atom Chips

• Z-wire + bias field = mini Ioffe-Pritchard trap

UQ Atom Chip

• A silver foil (125 μm) glued to a ceramic substrate.

- Silver polished to mirror finish (thickness \approx 90 μ m).
- All materials UHV compatible.

UQ Atom Chip

- Wires patterned with a micro-cutter (150 μm diameter).
- Electrical connections made with copper tabs screwed onto chip.
- Mirror surface for MOT.
- Wires for magnetic trap.

CJV et al., J. Phys B 37, 2959 (2004)

Magneto-Optical Trap

- Fluorescence image
- ~ 10^{8} ⁸⁷Rb atoms
- T = 100 μK

Magnetic Trap

• Atoms trapped in magnetic fields produce by currents through wires on chip.

- Absorption image
- Compressed trap
- ~ 2 X 10^7 atoms
- T = 300 μK

Evaporative Cooling

Final RF = 3MHz

• 3 X 10⁶ atoms

- 5×10^5 atoms
- T = 6 μK

BEC!!

- ~ 4 X 10^4 atoms
- T = 200 nanoK
- View after expansion

N = 2 X 10⁵ T = 700nK Thermal Cloud N = 8 X 10⁴ T = 450 nK Partial BEC N₀ = 4 X 10⁴ T = 200 nK Almost Pure BEC

CJV et al., J. Phys B 37, 2959 (2004)

Fragmentation

Fragmentation

• When very cold atom clouds are brought very close to a conducting wire the cloud fragments into lumps.

• Small axial fields, \mathbf{B}_{ax} , are produced by the guide current which can add to/subtract from the total axial field creating potential barriers/wells.

• A meandering current produces these small B_{ax} components...

Kraft, *et al.*, J Phys B **35**, L469 (2002),

Estéve et al., physics/0403020 (2004).

• If the conductor is not perfectly straight...

 Our fragmentation appears to be due to edge roughness.

Fragmentation

 The amplitude of the fragmenting potential scales as:

$$K_1(ky) \approx \frac{e^{-ky}}{\sqrt{ky}}$$

Jones *et al*., J. Phys B **37**, L15 (2004)

When y > L_{BEC}
 fragmentation
 becomes negligible

From nanoK to kiloK...

Fire in an a/c duct...

• Experiment not burnt, but covered in soot

Following the fire...

 Packed up experiment

New lab
 space was
 prepared

Call in the strong men...

Shifted to a new building...

A new home for the BEC

• The experiment is now ready to be reconnected and brought back to life in the new lab.

Accurate Atom Number Detection

What sort of detector??

 To study quantum statistics of atom numbers in condensates we would like a detector with accuracy better than 1/JN, typically:

$$\frac{\Delta N}{N} < \frac{1}{\sqrt{N}} \approx 10^{-3}$$

- Absorption imaging doesn't really offer this kind of accuracy (usually a few %).
- Possible solution: Photoionisation

Proposed scheme

• Our proposed scheme is shown below

 Ions are accelerated towards channeltron and detected there

Efficient Photoionisation

- Use STImulated Raman Adiabatic Passage (STIRAP) to transfer from 5S to 5D state.
- Ionise with pulsed Nd: YAG laser.

STIRAP (Theory)

- Coherently transfer population from |1Úto |3Ú
- Use counter-intuitive pulse order

$$\hat{H} = \frac{\hbar}{2} \begin{bmatrix} 0 & \Omega_{12}(t) & 0 \\ \Omega_{12}(t) & 2\Delta & \Omega_{23}(t) \\ 0 & \Omega_{23}(t) & 0 \end{bmatrix}$$

One eigenstate of \hat{H} is:

$$\psi_0(t) \rangle = \cos(\theta(t)) |1\rangle - \sin(\theta(t)) |3\rangle$$

where, $tan(\theta(t)) = \Omega_{12}(t)/\Omega_{23}(t)$

STIRAP (Theory) Population transfer vs. pulse timing

- 5D_{5/2} population
- 5P_{3/2} population
- $-5S_{1/2}$ population

- Ω_{23} Rabi freq - Ω_{12} Rabi freq

STIRAP (Experiment)

 A signature of the 5D state population is 420nm fluorescence

Measure blue fluorescence to obtain STIRAP efficiencies

STIRAP Experiment

 The lasers are pulsed on and the blue fluorescence is monitored on a scope

STIRAP Results

Counter-intuitive ordering works better!!

Summary and Outlook

- Produced BECs on an atom chip
- Saw fragmentation similar to electroplated wires
- Started STIRAP experiments
- New laser locking (see poster by A. Ratnapala)

- Get BEC working in new lab
- Photoionise with a pulsed Nd:YAG laser
- Try to photoionise a condensate
 - Investigate Pauli blockade