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Optical trapping is a widely used technique, with many important applications in biology and metrology.
Complete modelling of trapping requires calculation of optical forces, primarily a scattering problem, and non-
optical forces. The T-matrix method is used to calculate forces acting on spheroidal and cylindrical particles.
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1. Introduction

Optical trapping provide three-dimensional
confinement and manipulation of microscopic
particles by a focussed laser beam. Optical trap-
ping is a powerful and widespread technique, with
the single-beam gradient trap (also known as op-
tical tweezers) in use for a large number of bio-
logical and other applications.
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Figure 1. Schematic diagram of a typical optical
tweezers setup

The trapping beam applies optical forces (usu-
ally divided into a gradient force, acting towards
areas of higher irradiance, and scattering forces,
including absorption and reflection forces) to the

particle.
The optical forces and torques result from the

transfer of momentum and angular momentum
from the trapping beam to the particle. Various
approximate methods such as geometric optics or
Rayleigh approximations are often used for the
calculation of the optical forces. Such approx-
imate methods are not necessary, since electro-
magnetic scattering theory can be used for the
calculation of forces, avoiding the limited ranges
of applicability of the approximate methods.

Other forces will also affect the motion of the
particle. The most important of these forces,
gravity, buoyancy, and viscous drag as the par-
ticle moves through the surrounding fluid, are
readily taken into account in the theory presented
here.

2. Trapping as a scattering problem

The optical forces and torques applied to the
particle result from the transfer of momentum
and angular momentum from the trapping beam
to the particle. The total momentum transfer can
be found by solving the electromagnetic scatter-
ing problem. A variety of numerical methods can
be used – finite element method (FEM), finite
difference time domain method (FDTD), discrete
dipole approximation (DDA) [1], the T-matrix
method [2,3], etc.

A number of these have been used for opti-
cal force calculations, including forces in optical
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traps [4,5]. One method, however, stands out
as ideal for trapping force calculations – the T-
matrix method. The T-matrix method can be
considered an extension of Mie theory to arbitrar-
ily shaped particles with arbitrary illumination.
The main advantage of the T-matrix method
is that trapping calculations usually involve re-
peated calculation of the scattering for the same
particle under differing illumination. In this case,
the T-matrix needs only be calculated once, since
it is independent of the fields, whereas methods
such as FEM, FDTD and DDA will require the
entire calculation to be repeated.

In the T-matrix method, the incident trapping
field illuminating the particle is expressed as a
sum of regular vector spherical wave functions
(VSWFs):
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jn(kr) are spherical Bessel functions, and dn

0m
(θ)

are Wigner d functions.
Similarly, the scattered fields are expressed as

a VSWF expansion. In this case, since the far

field must be an outgoing radiation field,

Escat(r) =

∞
∑

n=1

n
∑

m=−n

[pmnMmn(kr)

+qmnNmn(kr)] (8)

where Mmn(kr) and Nmn(kr) are the same as
RgM
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(kr) and RgN

mn
(kr), with the spheri-

cal Bessel functions replaced by spherical Hankel

functions of the first kind, h
(1)
n (kr).

From the linearity of the Maxwell equations,
there is a linear relationship between the incident
and scattered fields:
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The T-matrix can be calculated using the ex-
tended boundary condition method (EBCM) [2,
3]. For spherical particles, the T-matrix becomes
diagonal, and the non-zero elements are the usual
Mie coefficients. For rotationally symmetric par-
ticles, the T-matrix is diagonal with respect to n.
Computer codes to calculate T-matrices for such
rotationally symmetric particles are available [6].

3. Representation of the trapping beam

The use of the T-matrix method for scatter-
ing calculations requires that the trapping beam
be represented in terms of vector spherical wave
functions, that is, the coefficients amn and bmn

in equation (1) need to be found. The regular
VSWFs RgM

mn
and RgN

mn
provide a com-

plete set of modes or partial waves, each indi-
vidually satisfying the Maxwell equations, which
can be used to represent any incident electromag-
netic wave. For the simple case of a plane wave,
E(r) = E0 exp(ik · r), with k in the direction
(θ, φ), the expansion coefficients are [2,3]

amn = 4π(−1)mindnC?

mn
· E0 exp(−imφ) (11)

bmn = 4π(−1)min−1dnB?

mn
· E0 exp(−imφ). (12)

Note that the amplitude vector E0 contains the
information regarding the polarisation and phase
of the wave, and can be complex.
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In an optical trap, the incident field is usually
a strongly focussed Gaussian or other beam. In
principle, such a beam can either be decomposed
directly into a VSWF representation, or into a
plane wave spectrum, from which the VSWF ex-
pansion coefficients can be found using equations
(11) and (12). In practice, this is problematic,
since the usual descriptions of beams do not ac-
tually satisfy the Maxwell equations.

For the case of Gaussian beams, either plane
wave expansion [7] or direct VSWF expansion [8,
9] can be used, although neither will give a beam
identical to a paraxial or Davis Gaussian beam.

4. Optical forces

Using the T-matrix method, with the T-matrix
calculated by the publicly available code by
Mishchenko [6], and the beam shape coefficients
in the localised approximation by Gouesbet [8,9]
used to describe the beam, we calculated the vari-
ation of the axial force acting on particles of vary-
ing shape as a function of their position along the
beam axis.

The particles are polystyrene (n = 1.59) pro-
late spheroids and cylinders, of varying aspect ra-
tio as indicated (see figure 2). The particles are
of equal volume, with a volume equal to that of a
sphere of radius 0.75µm, and are trapped in wa-
ter by a Gaussian beam of waist width 0.8µm and
free space wavelength 1064nm.
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Figure 2. Differently shaped spheroidal and cylin-
drical particles with aspect ratios of 1, 2, and 4.

Preliminary results of the axial forces acting
on the spheroids and cylinders are shown in fig-
ures 3 and 4. A negative position on the beam
axis indicates a position before the focal plane
is reached, a positive position is after the focus.
A positive force acts to push the particle in the
direction of propagation of the beam, a negative
force will act to axially trap the particle. If only
optical forces are acting, the particle will come to
rest at the zero optical force position where force
curve crosses the zero force line with a negative
gradient.
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Figure 3. Axial force acting on spheroids of aspect
ratios 1, 2, and 4, in pN per milliwatt of total
beam power.

The trapping forces acting on the spheroid and
cylinder with aspect ratio 1 is very small. This
is due to interference due to reflections from the
rear surface of the particle [10].

Thorough investigation of the effects of beam
shape and particle size and shape will be carried
out in the near future. Where possible, the results
from this model will be compared with available
observations.
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Figure 4. Axial force acting on cylinders of aspect
ratios 1, 2, and 4, in pN per milliwatt of total
beam power.

5. Viscous drag

Motion of the particle through the surrounding
fluid results in viscous drag forces, which will be
a dominant force on a trapped particle in motion,
or in a moving fluid.

The Reynolds numbers of typical motion in
trapping are extremely low. For example, if the
spherical particle considered previously (see fig-
ure 3) is trapped by a 10 mW beam, forces on
the order of 5 pN can be applied. The terminal
speed can be found from Stokes’ Law:

D = 6πµva (13)

where D is the drag force, µ is the viscosity of the
surrounding fluid , v is the speed of the sphere,
and a is the radius. If the considered sphere is
trapped in water (µ = 1 × 10−3 Ns/m2 at 20◦),
the terminal speed will be ≈ 350µm/s. This gives
a Reynolds number Re = ρvl/µ = ≈ 5 × 10−4,
showing that perfect laminar flow can be assumed
– Stokes’ Law is an excellent approximation.

The characteristic time τ at which the terminal
speed is approached is the ratio of the mass to
the Stokes drag coefficient, so τ = m/(6πµa) ≈

1 × 10−7 s, which is independent of the trapping

force. For calculating the motion of a trapped
particle, we can assume that

ṙ ∝ F (14)

rather than r̈ ∝ F, since the particle will be mov-
ing at very close to the terminal velocity at all
times, as long as the time step in the calculation
is large compared to τ .
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