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Abstract

In recent years there has been an explosive development of interest in

the measurement of forces at the microscopic level, such as within living

cells [1, 2, 3], as well as the properties of fluids and suspensions on this

scale [4], using optically trapped particles as probes. The next step would

be to measure torques and associated rotational motion [5]. This would

allow measurement on very small scales since no translational motion

is needed. It could also provide an absolute measurement of the forces

holding a stationary non-rotating particle in place. The laser-induced

torque acting on an optically trapped microscopic birefringent particle

[6] can be used for these measurements. Here we present a new method

for simple, robust, accurate, simultaneous measurement of the rotation

speed of a laser trapped birefringent particle, and the optical torque acting

on it, by measuring the change in angular momentum of the light from

passing through the particle. This method does not depend on the size

or shape of the particle or the laser beam geometry, nor does it depend

on the properties of the surrounding medium. This could allow accurate

measurement of viscosity on a microscopic scale.
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1 Introduction

Optical torques have been measured previously; two methods have been used.

Firstly, if a particle with known birefringent properties has a simple and

accurately known size and shape, ideally a flat disc, the torque can be calculated

from the beam power [6]. However, particles of more complex shapes will

often be used in experiments or encountered in samples; for example, spherical

particles are ideal for making measurements of viscosity. Secondly, torques

have been determined by measuring the rotation speed in a medium of known

viscosity [6, 7]. This method cannot be used if the aim is to measure an unknown

viscosity. This method would also fail if there were other torques acting on the

particle, or if the viscous drag is affected by nearby walls or other particles,

or if the particle is not rotating. Previous methods for measuring rotation

speeds, based on the periodic variation of backscattered light [8], can also have

problems. Very regular or rotationally symmetric particles provide insufficient

variation or variation at an increased frequency. Consideration of the basic

physical processes giving rise to the torque gives a new method for measuring

the torque and rotation speed that overcomes all of these problems.

Since optical torques and forces are very small, microscopic particles are

ideal for the observation and application of optical torques and rotation. Such

microscopic particles will typically be confined within a laser trap. Strongly

focussed laser light incident on a transparent particle, usually in a liquid

medium, will produce a gradient force acting on the particle towards the region

of highest irradiance. If this gradient force near the focus is stronger than

scattering and absorption forces, the particle will be trapped at the beam

focus, where the irradiance is highest. This technique of three-dimensional

confinement and manipulation is called laser micro-manipulation, trapping, or

optical tweezers.
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2 Polarised beams

A monochromatic laser beam can be written as a plane wave in terms of two

orthogonal components:

E = (Exx̂ + Eyŷ) exp(ikz − iωt) (1)

where the beam is propagating in the z-direction. In general, the amplitudes

Ex and Ey are complex in order to account for the phases of the components.

There are two cases of special interest. The first is when the phase angle

between the complex amplitudes Ex and Ey is equal to 0 or π, in which case

the total electric field always lies in a single plane resulting in a beam which is

linearly polarised. The direction of the x-axis can be chosen to coincide with

the plane of polarisation, so the beam can be written as

E = Epx̂ exp(ikz − iωt) (2)

where Ep is the complex amplitude of the linearly polarised light

The second special case is when the phase angle is ±π/2, and |Ex| = |Ey|.

In this case, Ey = Ex exp iθ, with θ = ±π/2. The total electric field has a

constant magnitude, with the direction varying with the optical frequency ω so

that the beam is circularly polarised. When θ = +π/2, the electric field has

a positive, or right-handed, helicity. Such a beam is here called left circularly

polarised. When θ = −π/2, the beam has negative helicity and is called right

circularly polarised. A circularly polarised beam can always be written as

E = (Ecx̂ ± iEcŷ) exp(ikz − iωt) (3)

with the sign depending on whether the beam is left or right circularly polarised,

and Ec is the complex amplitude.

In general, however, the phase angle θ will have a value between these

limiting values, or even if θ = ±π/2, |Ex| 6= |Ey|. In these cases, the beam is
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elliptically polarised, and the electric field vector E traces out an ellipse during

each optical period.

Recognising that we can rewrite equation (3) for a circularly polarised beam

as

E = Ec(x̂ ± iŷ) exp(ikz − iωt), (4)

we see that any beam can be represented as a sum of two circularly polarised

components using the (complex) orthogonal basis vectors

êL =
1√
2
(x̂ + iŷ)

êR =
1√
2
(x̂ − iŷ) (5)

as

E = (ELêL + ERêR) exp(ikz − iωt). (6)

The amplitudes of the left and right circular components can be found from the

x and y amplitudes in the linear orthogonal representation (equation (1)):

EL =
1√
2
(Ex − iEy)

ER =
1√
2
(Ex + iEy) (7)

When |EL| = |ER|, the beam is linearly polarised, with the plane of polari-

sation given by the phase angle between the complex amplitudes EL and ER. If

EL = 0 (and ER 6= 0), the beam is right circularly polarised, and left circularly

polarised if ER = 0.

The time-averaged irradiance is given by [9]

I =
cε0E

?
LEL

2
+

cε0E
?
RER

2
= IL + IR. (8)

Although we have only considered the beam as a classical EM wave so far, the

fact that the angular momentum of left and right circularly polarised photons
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is ±h̄ can be used to simply find the angular momentum of the beam. Since the

energy of a photon is h̄ω, the photon flux per unit area is

N =
I

h̄ω
=

IL

h̄ω
+

IR

h̄ω
, (9)

giving an angular momentum flux per unit area of

Lz = (IL − IR)/ω. (10)

Thus, the beam can be considered to have a net circularly polarised component

with a power of |IL − IR| which contributes to the angular momentum of the

beam, and a linearly polarised component of I−|IL−IR| = 2min(IL, IR) which

does not contribute to the angular momentum of the beam. We can define a

coefficient of circular polarisation σz by

σz = (IL − IR)/I, (11)

and write the angular momentum flux density of the beam as

Lz = σzI/ω. (12)

When the irradiance is integrated across the whole beam, the total power

can be obtained and will be given by P = PL + PR =
∫

ILdA +
∫

IRdA. A

suitable average coefficient of circular polarisation can be defined by

σz = (PL − PR)/P, (13)

with the resulting total angular momentum flux of the beam being

Lz = σzP/ω. (14)
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3 Optical torque

If the beam passes through some birefringent material, the polarisation will be

affected. In general, σz will change. The incident beam will have an initial

coefficient of circular polarisation σzin, and will have an emergent polarisation

described by σzout. Thus the angular momentum of the beam will change, and

a reaction torque on the birefringent material will result. The reaction torque

is equal to the change in the angular momentum flux:

τ = (σzin − σzout)P/ω (15)

assuming that absorption and reflection can be ignored. Equation (15) is

general, and can always be used to find the torque if the coefficients of circular

polarisation of the incident and outgoing beams are known or can be found.

Although equation (15) applies in general, it is instructive to carry through

a detailed calculation for a simple case: a uniform sheet of birefringent material,

for example calcite.

A uniaxial birefringent material such as calcite can be described by two

refractive indices: an ordinary refractive index no for electric fields normal to

the optic axis, and an extraordinary refractive index ne for electric fields parallel

to the optic axis. For calcite, no = 1.66 and ne = 1.49. Consider a thickness d

of uniaxial birefringent material with the optic axis in the xy plane, at an angle

of θ to the x-axis. The front face of the material is at z = z0, and the rear face

is at z = z0 + d. If the electric field of the incident beam at the front surface

of the material is given by equation (1), we can express this in terms of unit

vectors î and ĵ parallel to and normal to the optic axis:

E = [(Ex cos θ + Ey sin θ)̂i + (−Ex sin θ + Ey cos θ)̂j]

× exp(ikz0 − iωt). (16)
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In terms of circular components, this gives

E =
1√
2
[(Ex − iEy) exp(iθ)ê′L + (Ex + iEy) exp(−iθ)ê′R]

× exp(ikz0 − iωt) (17)

where ê′L = 1√
2
(̂i+ îj) and ê′R = 1√

2
(̂i− îj) The coefficient of circular polarisation

is given by

σzin =
E?

LEL − E?
RER

E?
LEL + E?

RER

=
i(ExE?

y − E?
xEy)

E?
xEx + E?

yEy

. (18)

After passing through the thickness d, the field will be

E = [(Ex cos θ + Ey sin θ) exp(ikdne)̂i

+(−Ex sin θ + Ey cos θ) exp(ikdno)̂j] exp(ikz0 − iωt), (19)

which we can express in terms of circular components

EL =
1√
2
[(Ex cos θ + Ey sin θ) exp(ikdne)

−i(−Ex cos θ + Ey sin θ) exp(ikdno)]

ER =
1√
2
[(Ex cos θ + Ey sin θ) exp(ikdne)

+i(−Ex cos θ + Ey sin θ) exp(ikdno)] (20)

We define the convenient notation

∆ = kd(no − ne) (21)

The coefficient of circular polarisation of the emergent light is

σzout = [i cos ∆(ExE?
y − E?

xEy)
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− sin ∆{(E?
xEx − E?

yEy) sin 2θ − (ExE?
y + E?

xEy) cos 2θ}]

/(E?
xEx + E?

yEy) (22)

giving a torque per unit area of

τ =
cε0
2ω

[i(ExE?
y − E?

xEy)(1 − cos ∆)

+ sin ∆{(E?
xEx − E?

yEy) sin 2θ − (ExE?
y + E?

xEy) cos 2θ}] (23)

If the incident light is linearly polarised (Ey = 0), the torque is

τ =
cε0
2ω

sin∆E?
0
E0 sin 2θ, (24)

which acts to align the slow axis of the particle with the plane of polarisation if

no > ne, or normal to the plane of polarisation if ne > no. If the incident light

is left circularly polarised (Ey = iEx), the torque is

τ =
cε0
ω

E?
0
E0(1 − cos ∆) (25)

which is independent of the orientation of the birefringent material.

If the birefringent material is of a uniform thickness, the total torque can

be simply calculated from this [6]. In general, a laser trapped birefringent

particle will have a varying thickness, and direct calculation of the torque will

not be feasible. Also, if the orientation of the birefringent particle is different,

so the the optic axis does not lie in the xy plane, the calculation will be further

complicated. Equation (15), however, is general, and will still apply, and the

torque acting on the particle can be deduced from the change in polarisation of

the light.
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4 Optical torque measurement

Consider a circularly polarised laser beam used to trap a microscopic particle

composed of a uniaxial birefringent material such as calcite or a suitable

polymer. If the optical torque is large enough to overcome forces holding the

particle in place, the particle will rotate at a speed determined by the equilibrium

between the optical torque and other forces such as viscous drag. In this way,

a probe particle can be used to measure viscosity on a microscopic scale. If the

particle does not rotate, the optical torque can be used to determine the torque

due to static forces acting on the particle.

The maximum torque and rotation rate will occur when the incident beam

is completely circularly polarised (ie σzin = 1). The torque in this case will also

be constant as well as maximal [6], and we will only consider this case here.

The torque τ acting on the trapped particle is given in equation (15) by the

difference between the incident and outgoing angular momentum fluxes, and in

this case, assuming no reflection or absorption, is

τ = (1 − σzout)P/ω. (26)

Measurement of the outgoing polarisation σzout and beam power P gives an

absolute measurement of the torque, which does not depend on the mechanical

properties of the surrounding medium or the particular size or shape of the

particle or laser beam.

We can also note that the plane of polarisation of the linearly polarised

component of the outgoing beam exiting a rotating birefringent particle will be

rotating at the same rotation rate Ω as the particle. If the outgoing beam is a

(rotating) purely plane-polarised beam, as would occur if the particle acted as

a quarter-wave plate, rotating at Ω, and of power P , and is passed through a

linear polariser, the measured power Pm will be Pm = (1 + cos 2Ωt)P/2 (with

variation at a frequency of 2Ω since a rotation of 180◦ rotates the plane of

polarisation onto itself) [10]. By measuring this power, the rotation rate Ω of
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the trapped particle can be simply determined. This will still be the case for an

elliptically polarised beam, as the same variation at a frequency of 2Ω will be

observed. The angular momentum associated with this rotation of the plane of

polarisation will be negligible as Ω � ω.

In the general case, there will be an elliptically polarised outgoing beam,

consisting of both plane and circularly polarised components. The power of the

two components will be Pc = |σzout|P for the circularly polarised component,

and Pp = (1 − |σzout|)P for the plane polarised component. The measured

power Pm after the outgoing beam passes through a linear polariser acting as

an analyser will be

Pm = {1 + (1 − |σzout|) cos 2Ωt}P/2. (27)

Measurement of the variation of the transmitted power therefore allows the

determination of the rotation period of the trapped particle, and the degree of

(but not the direction of) circular polarisation. The result of a measurement of

this type will be as shown in figure 1. This measurement is an average over the

beam, and it is not important whether or not the entire beam passes through the

particle. In the case where the particle is not rotating, due to some restraining

torque, the plane of polarisation of the transmitted light will not be rotating.

The degree of circular polarisation can be measured in this case by rotating the

linear polariser, which will give the same result where Ω is the rotation rate of

the polariser relative to the particle. The orientation of the particle can also be

determined from the position of the measured power maxima.

In many cases, the direction of the transmitted polarisation will be known

beforehand – such as when the particle is insufficiently thick to change the

direction of polarisation (note that a calcite particle approximately 3µm thick

is a λ/2 plate for 1064 nm light), or when the particle is small and the outgoing

light is dominated by light that did not pass through the particle and has not

changed in polarisation. If necessary, the direction of circular polarisation can
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Figure 1: The power which would be measured through a plane polariser after
the beam has passed through a birefringent particle is shown for a beam with
σzin = +1, σzout = +0.7 and particle rotation frequency Ω = 10 Hz. The
mean power measured through the polariser is half of the power incident on the
particle. The frequency of the variation is two times the rotation rate Ω of the
particle. The optical torque can be found from the amplitude of the variation
and the measured power once the direction of the transmitted polarisation is
known. In this case, for a 100 mW trapping beam of wavelength 1,064 nm, an
optical torque of 16.9 pN·µm is being exerted.

be measured simply by placing a reversed circular polariser (eg a quarter-wave

plate followed by a linear polariser appropriately oriented) in the beam path

instead of a linear polariser. In the case where the trapping beam has a right-

handed helicity (left circularly polarised, with σzin = +1), the light emergent

from the particle can be described in terms of left and right circularly polarised

components PL and PR, where PL = (1 + σzout)P/2 and PR = (1 − σzout)P/2.

If the output beam is predominantly left circularly polarised, σzout > 0, and

PL > PR. A right circularly polarised beam has σzout < 0, and PR > PL. It is
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only necessary to determine which of these two components is larger, rather than

to measure each one individually since |σzout| is already known. In this way,

the direction of circular polarisation can be determined, and σzout as opposed

to merely |σzout| can be found. Once σzout is known, the optical torque acting

on the particle can be found using equation (15). A measurement of this type

will be as shown in figure 2.
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Figure 2: The two circularly polarised components of the transmitteed light
can be measured to determine the direction of circular polarisation. PL is the
power of the left circularly polarised component, and PR is the power of the
right circularly polarised component.

It should be noted that this technique is robust. It is not necessary

to measure the power of the entire transmitted beam; it is sufficient to

measure the portion of the beam that has passed through the trapped particle.

Similarly, reflections are not likely to cause significant error. Some of the

incident beam will be reflected from the trapped particle; the reflection

will depend on the angle of incidence and the refractive indices of the

particle and the surrounding medium. For example, for calcite trapped in

water, the Fresnel amplitude coefficients for reflection at normal incidence are

(nwater − ncalcite)/(nwater + ncalcite), which gives reflected amplitudes of

−0.057Ex and −0.11iEx for linearly polarised components parallel to and
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normal to the optic axis respectively. In terms of circular components, this

becomes EL = −0.02EL0 and ER = −0.08EL0, showing that the torque due to

backreflected light will be less than 0.6% of the available torque. Therefore, the

reflected light will not cause any significant error.

5 Conclusion

A simple method of measuring the rotation speed and the optical torque applied

to a laser trapped birefringent particle has been described. This method can

be used even if the viscosity of the medium in which trapping is performed

is unknown, and provides a means to measure this viscosity. Thus, this

method is suitable for employment in a micro-rheometer, which could be simply

constructed by trapping a birefringent probe particle in the fluid of interest. A

suitable test particle would be a small fragment of calcite, the exact shape not

being critical at the very low Reynolds numbers encountered in these cases, or

a more ideal shape could be fabricated from a birefringent polymer [11]. As

the optical torque can be controlled by varying the power, the probe particle

rotation speed can be varied, allowing, for example, the investigation of non-

linear properties of the fluid. Wall effects and the small-scale behaviour of

polymer and colloidal suspensions could be investigated, or even the rheological

properties of intracellular fluids or membranes in vivo.
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