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Abstract

The T -matrix method is widely used for the calculation of scattering by particles of
sizes on the order of the illuminating wavelength. Although the extended boundary
condition method (EBCM) is the most commonly used technique for calculating
the T -matrix, a variety of methods can be used.

We consider some general principles of calculating T -matrices, and apply the
point-matching method to calculate the T -matrix for particles devoid of symmetry.
This method avoids the time-consuming surface integrals required by the EBCM.
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1 The T -matrix method

The T -matrix method in wave scattering involves writing the relationship
between the wave incident upon a scatterer, expanded in terms of orthogonal
eigenfunctions,

Uinc =
∞
∑

n

anψ
(inc)
n , (1)
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where an are the expansion coefficients for the incident wave, and the scattered
wave, also expanded in terms of orthogonal eigenfunctions,

Uscat =
∞
∑

k

pkψ
(scat)
k , (2)

where pk are the expansion coefficients for the scattered wave, is written as a
simple matrix equation

pk =
∞
∑

n

Tknan (3)

or, in more concise notation,

P = TA (4)

where Tkn are the elements of the T -matrix. The T -matrix method can be
used for scalar waves or vector waves in a variety of geometries, with the only
restrictions being that the geometry of the problem permits expansion of the
waves as discrete series in terms of orthogonal eigenfunctions, that the response
of the scatterer to the incident wave is linear, and that the expansion series
for the waves can be truncated at a finite number of terms. In general, one
calculates the T -matrix, although it is conceivable that it might be measured
experimentally.

The T -matrix depends only on the particle – its composition, size, shape,
and orientation – and is independent of the incident field. This means that
for any particular particle, the T -matrix only needs to be calculated once,
and can then be used for repeated calculations. This is a significant advantage
over many other methods of calculating scattering where the entire calculation
needs to be repeated [1]. Some cases provide even more efficiency: if the waves
are expanded in spherical functions, the averaging of scattering over various
orientations of the particle compared to the direction of the incident wave can
be performed analytically [2].

In the spherical geometry of elastic light scattering by a particle contained
entirely within some radius r0, the eigenfunction expansions of the fields are
made in terms of vector spherical wavefunctions (VSWFs) [1–7]:

M(1,2)
nm (kr) =Nnh

(1,2)
n (kr)Cnm(θ, φ) (5)

N(1,2)
nm (kr) =

h(1,2)
n (kr)

krNn

Pnm(θ, φ) +

2



Nn

(

h
(1,2)
n−1 (kr) − nh(1,2)

n (kr)

kr

)

Bnm(θ, φ) (6)

where h(1,2)
n (kr) are spherical Hankel functions of the first and second kind,

Nn = 1/
√

n(n+ 1) are normalisation constants, and Bnm(θ, φ) = r∇Y m
n (θ, φ),

Cnm(θ, φ) = ∇×(rY m
n (θ, φ)), and Pnm(θ, φ) = r̂Y m

n (θ, φ) are the vector spher-
ical harmonics [1–7], and Y m

n (θ, φ) are normalised scalar spherical harmonics.
The usual polar spherical coordinates are used, where θ is the co-latitude
measured from the +z axis, and φ is the azimuth, measured from the +x axis
towards the +y axis.

M(1)
nm and N(1)

nm are outward-propagating TE and TM multipole fields, while
M(2)

nm and N(2)
nm are the corresponding inward-propagating multipole fields.

Since these wavefunctions are purely incoming and purely outgoing, each has a
singularity at the origin. Since fields that are free of singularities are of interest,
it is useful to define the singularity-free regular vector spherical wavefunctions:

RgMnm(kr) = 1
2
[M(1)

nm(kr) + M(2)
nm(kr)], (7)

RgNnm(kr) = 1
2
[N(1)

nm(kr) + N(2)
nm(kr)]. (8)

Since the spherical Bessel functions jn(kr) = 1
2
(h(1)

n (kr)+h(2)
n (kr)), the regular

VSWFs are identical to the incoming and outgoing VSWFs except for the
replacement of the spherical Hankel functions by spherical Bessel functions.

Since the incident field, in the absence of a scatterer, is singularity-free, the
expansion

Einc(r) =
∞
∑

n=1

n
∑

m=−n

a(3)
nmRgMnm(kr) + b(3)nmRgNnm(kr) (9)

is generally used for the incident field. Alternatively, the purely incoming part
of the incident field can be used:

Einc(r) =
∞
∑

n=1

n
∑

m=−n

a(2)
nmM(2)

nm(kr) + b(2)nmN(2)
nm(kr). (10)

In both cases, the scattered field is

Escat(r) =
∞
∑

n=1

n
∑

m=−n

p(1)
nmM(1)

nm(kr) + q(1)
nmN(1)

nm(kr). (11)

The two sets of expansion coefficients for the incident/incoming field are iden-
tical, since a(3)

nm = a(2)
nm and b(3)nm = b(2)nm. However, the scattered/outgoing field
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expansion coefficients will differ, as will the T -matrix. Using the regular ex-
pansion, the T -matrix in the absence of a scatterer is a zero matrix, while using
the incoming field expansion, the no-scatterer T -matrix is the identity matrix.
The two expansions are essentially the same– the only difference is that the
incident wave in the incident/scattered wave expansion includes part of the
outgoing wave. T -matrices for the two expansions only differ by the identity
matrix, so T(in/out) = T(inc/scat)+I. The incident/scattered formulation is much
more commonly used; the incoming/outgoing formulation gives simpler results
for the transport of momentum and angular momentum (that is, optical force
and torque) by the field. It should be note that for plane wave illumination, for
which the VSWF expansion is non-terminating, the incident/scattered formu-
lation gives a scattered wave expansion that converges over all space, while the
incoming/outgoing expansion, strictly used, would give an non-terminating,
non-convergent outgoing field expansion. For focussed beam illumination with
a finite VSWF expansion, the incoming/outgoing expansion directly gives the
total outgoing field that would be experimentally measured. Since conversion
from one formulation to the other is simple, either can be readily used for
calculation of fields, forces, scattering matrices, or for orientation averaging.

In practice, the field expansions and the T -matrix are terminated at some
n = Nmax. For the case of a scatterer that is contained within a radius r0,
Nmax ≈ kr0 is usually adequate, but Nmax = kr0 + 3 3

√
kr0 is advisable if

higher accuracy is needed [7]. Although we assume in this paper (as is usually
the case) that the incident and scattered wave expansions are terminated at
the same Nmax (giving a square T -matrix), this is not necessary. It should be
noted that convergence of the expansion of the incident field is not a necessary
condition for the T -matrix method to be useful – indeed, for the most common
application, scattering of an incident plane wave, the incident field expansion
does not converge over all space. However, it does converge within the radius
r0 – which is the part of the field that can affect the scattering particle – and
therefore, the field expansions and the T -matrix can be truncated at a finite
Nmax.

For the case of plane wave scattering, the plane wave expansion formula is
useful:

anm = 4πinNnC
?
nm · E0, bnm = 4πin−1NnB

?
nm · E0. (12)

The main case of interest for non-plane wave incident illumination is that of
focussed beams. A variety of methods can be used, such as plane wave expan-
sion [8], the localised approximation [9–12], or the point-matching method [13].

The only remaining requirement is that the T -matrix be calculated. This re-
quires essentially a complete calculation of the scattering properties of the
scatterer. This is almost universally done using the extended boundary con-
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dition method (EBCM), originally developed by Waterman [3], which is so
strongly linked with the T -matrix method that the terms “EBCM” and “T -
matrix method” are often used interchangeably. In the next section, we con-
sider some general principles involved in the calculation of the T -matrix, and
show that an alternative method – column-by-column calculation using the
point-matching method (PMM) – is computationally feasible and simply im-
plemented for homogeneous isotropic particles devoid of symmetry.

Lastly, before we continue to consider calculation of T -matrices in more detail,
we can note that while the incident and scattered fields are usually expanded
in terms of VSWFs, other sets of eigenfunctions, such as cylindrical wavefunc-
tions (for scatterers of infinite length in one dimension), or a Floquet expansion
(planar periodic scatterers), are more appropriate for other geometries. There
is no requirement that the modes into which the incident and scattered fields
are expanded be the same, or even similar. In all of these cases, the T -matrix
method remains applicable.

2 Calculating the T -matrix

If the field expansions and T -matrix are truncated at some Nmax, there are
NT = 2Nmax(Nmax + 2) expansion coefficients for each of the incident and
scattered fields, and the T -matrix is NT ×NT . Since Nmax is proportional to
the radius enclosing the particle, r0, the number of expansion coefficients is
proportional to r2

0, and the number of elements in the T -matrix is proportional
to r4

0. This can be used to obtain an estimate of the scaling of computational
time for different methods of calculation.

2.1 The extended boundary condition method

In principle, any method of calculating scattering by the particle can be used
to calculate the T -matrix. However, the method of choice is almost univer-
sally the EBCM [1–4]. In the EBCM, the internal field within the particle is
expanded in terms of regular VSWFs. Therefore, the method is restricted to
homogeneous and isotropic particles. Rather than considering the coupling of
the incident and scattered fields directly, the coupling between the incident
and internal (the RgQ matrix), and scattered and internal fields (the Q ma-
trix) is calculated, and the T -matrix found from these (T = −RgQQ−1).
The RgQ and Q matrices are the same size as the T -matrix, with O(N 4

max)
elements. The elements of these matrices are found by integrating over the
surface of the scatterer, an operation requiring O(N 2

max) time per element, so
the calculation of the RgQ and Q matrices is expected to require O(N 6

max)
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computational time. The actual calculation of the T -matrix, if direct inversion
is näıvely used, takes O(N 6

max) time. In practice, the calculation of the RgQ

and Q matrices dominates the computational time [14].

From this, it can be seen that the EBCM can be expected to be very slow for
large particles. However, most applications of the EBCM have been for the
special case of scattering particles rotationally symmetric about the z axis.
In this case, scattered modes M

(1)
n′m′ and N

(1)
n′m′ only couple to incident modes

RgMnm and RgNnm if m′ = m, greatly reducing the number of matrix el-
ements that need to be calculated, and the surface integral over the particle
surface reduces to a one-dimensional integral over θ, since the azimuthal in-
tegration over φ can be simply done analytically [4]. This results in a great
improvement in performance, and, in terms of computational time, EBCM
is clearly the method of choice for axisymmetric particles. Numerical prob-
lems do occur when the scatterer is highly non-spherical. The discrete sources
method is designed to overcome these problems [15]. For the even more sym-
metric case of a spherical scatterer, the scattered and incident modes only
couple if n′ = n and m′ = m, the T -matrix becomes diagonal, and all of the
integrals can be performed analytically, and Mie’s solution to scattering by a
sphere [16] is simply obtained.

In a similar manner, scatterers with point-group rotational symmetry allow
significant improvement of the computational time required through exploita-
tion of the symmetry [14,17,18].

Methods have also been developed to calculate T -matrices for clusters of par-
ticles and for layered particles [1].

The efficiency of the EBCM for the calculation of the T -matrix is such that
alternative methods need only be considered if the EBCM is inapplicable (such
as when the particle in inhomogeneous or anisotropic), numerical difficulties
are encountered using the EBCM (such as for extremely non-spherical par-
ticles), or if the scattering particle has no symmetries that can be used to
optimise the computation of the T -matrix.

2.2 Methods other than the EBCM

Methods other than the EBCM can be used to calculate the T -matrix. In gen-
eral, one would calculate the scattered field, given a particular incident field.
The most direct way in which to use this to produce a T -matrix is to solve the
scattering problem when the incident field is equal to a single spherical mode
– that is, a single VSWF such as Einc(r) = RgM11(kr), Einc(r) = RgN11(kr),
Einc(r) = RgM21(kr), etc, and repeat this for all VSWFs that need to be
considered (up to n = Nmax). The expansion coefficients for the scattered field
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can be found in each case, if necessary, by using the orthogonal eigenfunction
transform (the generalised Fourier transform), and each scattering calculation
gives a single column of the T -matrix.

Therefore, the calculation of a T -matrix requires that 2Nmax(Nmax + 2) sep-
arate scattering problems are solved. The provides a criterion for deciding
whether it is desirable to calculate a T -matrix: if more than 2Nmax(Nmax + 2)
scattering calculations will be performed, then it is more efficient to calculate
the T -matrix and use this for the repeated calculations than it is to use the
original scattering method repeatedly. Repeated calculations are expected if
orientation averaging is to be carried out, or if inhomogeneous illumination is
to be considered, such as, for example, scattering by focussed beams, where
there are generally 6 degrees of freedom, namely the three-dimensional posi-
tion of the scatterer within the beam, and the three-dimensional orientation
of the scatterer. Even if only a modest number of points are considered along
each degree of freedom, the total number of scattering calculations required
rapidly becomes very large, and even if the T -matrix takes many hours to
calculate, the total time saved by doing so can make an otherwise computa-
tionally infeasible problem tractable.

Volume methods are of interest, since they can readily be used for inhomoge-
neous or anisotropic particles. The two most likely candidates are the finite-
difference time-domain method (FDTD) [1,19] and the discrete dipole ap-
proximation (DDA). In FDTD, the Maxwell equations are discretised in space
and time, and, beginning from a known initial state, the electric and magnetic
fields at each spatial grid point are calculated for successive steps in time. The
number of grid points required is O(N 3

max) for three-dimensional scattering,
and O(Nmax) time steps required, so FDTD solutions scale as O(N 4

max). There-
fore, calculation of the T -matrix using FDTD should scale as O(N 6

max), which
is the same scaling as the EBCM. However, the grid required must be closely
spaced compared to the wavelength, and the space outside the scatterer must
also be discretised, making FDTD substantially slower than EBCM, especially
for smaller particles. However, FDTD is an extremely general technique, and
has potential as a method for the calculation of T -matrices.

We should add that there is an additional consideration that makes FDTD po-
tentially attractive as a method for calculating the T -matrix: FDTD does not
assume that the incident wave is monochromatic. Consider the case when the
illumination is a brief pulse with a Gaussian envelope. The frequency spectrum
of the incident wave is Gaussian, and the scattering of a range of frequencies
can be found by taking the Fourier transform of the scattered field [20]. Even
if we are not interested in other than monochromatic illumination, we will
frequently be interested in scattering by size distributions of particles. Since
varying the frequency for a particular particle is equivalent to varying the size
of the particle for a fixed incident frequency, the T -matrices for a range of
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particle sizes can be calculated simultaneously.

The other major volume method for computational scattering, the discrete
dipole approximation (DDA), also known as the coupled-dipole method, has
been recently applied to the calculation of the T -matrix by Mackowski [21],
who obtained good results, with reasonable computational efficiency using
a moment method to solve the DDA system of equations. DDA lacks the
main disadvantages of FDTD, namely the need to discretise space outside
the particle, and the need to implement suitable boundary conditions to pre-
vent non-physical reflections from the boundary of the computational domain.
Mackowski’s method scales as O(N 7

max) for large Nmax. There is no need to
discuss his method in detail here, and the interested reader is referred to his
recent description of the method [21].

Finally, we consider the point-matching method. Like the T -matrix method
and the EBCM, the point-matching method involves expansion of fields in
terms of VSWFs. In the point-matching method, the internal field within the
scatterer and the scattered field are expanded as series of VSWFs, and the
incident, internal, and scattered fields are matched at points on the particle
surface, using the usual boundary condition of continuity of tangential com-
ponents of the electric and magnetic fields. This gives a system of equations
from which the unknown expansion coefficients of the internal and scattered
fields can be found. Typically, enough points are used for matching the fields
so as to give an overdetermined system of equations, which is then solved in
a least-squares sense. Solving the system of O(N 2

max) unknowns using direct
matrix inversion can be expected to be an O(N 6

max) problem, with the result
that the total computational time is O(N 8

max). In practice, faster methods can
be used, and our results indicate a performance of about O(N 7

max) for our
implementation.

The point-matching method is an attractive candidate since a T -matrix im-
plementation will generally include routines to calculate VSWFs, making the
implementation of a point-matching T -matrix calculator simple. The only fur-
ther requirement is a routine for solving overdetermined linear systems. Since
the scattered field is calculated in terms of VSWFs, the conversion of the
results of a single PMM calculation to a T -matrix column is trivial.

Naturally, multiple expansion methods (the generalised multipole technique,
or the multiple multipole method) can be used. Since multipole methods exist
for anisotropic media [22], the method can be used for anisotropic scatterers.

Our implementation of the point-matching method, and its performance, is
discussed in the next section.
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3 Point-matching method

Our implementation of the PMM T -matrix calculation uses an incoming/outgoing
field expansion (equations (10) and (11)), rather than the usual incident/scattered
wave expansion (equations (9) and (11)), and the internal field is expanded in
terms of regular VSWFs:

Einc(r) =
Nmax
∑

n=1

n
∑

m=−n

anmM(2)
nm(kr) + bnmN(2)

nm(kr), (13)

Escat(r) =
Nmax
∑

n=1

n
∑

m=−n

pnmM(1)
nm(kr) + qnmN(1)

nm(kr), (14)

Eint(r) =
Nmax
∑

n=1

n
∑

m=−n

cnmRgMnm(kr) + dnmRgNnm(kr). (15)

We use this particular expansion since we are interested in calculating opti-
cal forces and torques within optical traps [23,24] and this results in simpler
expressions for these quantities.

We considered a single scatterer, centred on the origin, contained entirely
within a radius r0, and with a surface specified by a function of angle:

r = r(θ, φ) (16)

The boundary conditions – matching the tangential fields on the surface of
the scatterer – are

n̂ × (Einc(r) + Escat(r)) = n̂ × Eint(r), (17)

n̂ × (Hinc(r) + Hscat(r)) = n̂ × Hint(r), (18)

where n̂ is a unit vector normal to the surface of the particle.

The magnetic fields are given by expansions similar to those for the electric
fields:

Hinc(r) =
1

kmedium

Nmax
∑

n=1

n
∑

m=−n

anmN(2)
nm(kr) + bnmM(2)

nm(kr), (19)

Hscat(r) =
1

kmedium

Nmax
∑

n=1

n
∑

m=−n

pnmN(1)
nm(kr) + qnmM(1)

nm(kr), (20)

Hint(r) =
1

kparticle

Nmax
∑

n=1

n
∑

m=−n

cnmRgNnm(kr) + dnmRgMnm(kr). (21)
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Nmax kr0max Time

1 0.033 0.041 s

2 0.21 0.16 s

3 0.55 0.85 s

4 1.00 7.00 s

5 1.54 30.3 s

6 2.14 1.86 min

7 2.78 4.95 min

8 3.46 12.2 min

9 4.17 26.8 min

10 4.90 56.3 min

11 5.66 1.91 h

12 6.42 3.53 h

13 7.21 6.35 h

Table 1
Computation times for calculating T -matrices. The calculations were carried out in
MATLAB on a 1.5GHz PC. The maximum size parameter kr0 for which the trun-
cation is expected to always be well-convergent is shown. Reasonable convergence
can also be expected for size parameters kr0 ≈ Nmax

where kmedium and kparticle are the wavenumbers of the field in the surrounding
medium and inside the particle, respectively.

There are 4Nmax(Nmax + 2) unknown variables – the expansion coefficients
cnm, dnm, pnm, and qnm. Since the fields are vector fields, each point gives
multiple equations – four independent equations per point. We generate a
grid of 2Nmax(Nmax + 2) points with equal angular spacings in each of the θ
and φ directions, giving 8Nmax(Nmax + 2) independent equations. Equal angle
spaced points are used for simplicity, although points uniformly distributed
about a sphere would be better [25].

The values of the VSWFs at these points on the particle surface are calculated,
and used in the column-by-column calculation of the T -matrix.

The computation time (which is independent of the particle shape, depend-
ing only on the containing radius r0) is shown in table 1. The calculations
were carried out in MATLAB [26] on a 1.5 GHz PC. The times taken are rea-
sonable in comparison to computation times for EBCM for particles with no
symmetry [14].
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Fig. 1. Computation times for calculating T -matrices. The calculations were carried
out in MATLAB on a 1.5 GHz PC. The time taken scales as O(N 6.8

max) for Nmax > 2.

Results of a sample calculation are shown in figure 2, where the diagonal
scattering matrix elements are shown, calculated using the PMM T -matrix.
The scattering matrix elements S11 and S22 are shown for scattering in two
different planes; the effect of non-axisymmetry is evident.

The accuracy and validity of the PMM-calculated T -matrix will be essentially
the same as the accuracy and validity of the point-matching algorithm used
in the calculation. Thus, a detailed analysis of our simple proof-of-principle
implementation serves little purpose. It is obviously useful to use the best,
sufficiently fast, point-matching code available. In view of the mathematical
similarity between the T -matrix method and the point-matching method, it
should be a simple task to adapt any PMM code to the task of generating
T -matrix columns.

4 Conclusions

The point-matching method is suitable for the calculation of the T -matrix for
particles with no symmetry, provided that the particles are not too large. The
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Fig. 2. (a) S11 and (b) S22 scattering matrix elements for an ellipsoidal particle
with axes of length a = 1λ, b = 0.2λ, and c = 0.5λ, and relative refractive index
m = 1.5. The incident illumination is directed along the c axis of the ellipsoid. The
solid line shows scattering in the ac plane (containing the largest area cross-section
of the ellipsoid), and the dotted line shows scattering in the bc plane (the smallest
cross-sectional area).

method has the advantage of being extremely simple to implement within a
general T -matrix package, since most of the required routines will be shared
with the existing T -matrix code. This results from the mathematical for-
malisms of the T -matrix method and the point-matching method being es-
sentially the same. Any point-matching algorithm can be used, with multiple
expansion origins, automatic convergence checks, and so on. Since the PMM
uses the same field expansions as the EBCM, the same numerical difficulties
are to be expected for scatterers with large aspect ratios; in such cases, multi-
ple expansion origin algorithms will be necessary. The accuracy of the PMM
T -matrix will be the same as the PMM which is used to calculate it. Natu-
rally, the usual conditions of applicability of the PMM, such as the validity of
the Rayleigh hypothesis, need to be considered.
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The PMM explicitly depends on the Rayleigh hypothesis – the assumption
that the fields can be represented by the expansions (13) – (15) over all space
rather than just outside and inside spherical surfaces circumscribing and in-
scribing the surface of the scatterer. The validity of this assumption for arbi-
trary scatterers is unknown. However, the use of an overdetermined system of
equation may well extend the method somewhat beyond the strict range of
applicability of the Rayleigh hypothesis by providing a least squares approxi-
mation of the fields between the circumscribing and inscribing surfaces where
the VSWF expansions might be non-convergent. One advantage of relying on
the Rayleigh hypothesis is that the fields are given everywhere, including the
fields internal to the scatterer (a T (int)-matrix can be used to relate the in-
ternal and incident fields). This applies generally to methods that make use
of the Rayleigh hypothesis, such as the generalised separation of variables
method [27]. In contrast to this, the EBCM, which avoids the Rayleigh hy-
pothesis, gives the tangential surface fields on the surface of the scatterer,
rather than the internal fields.

The point-matching method lacks the generality of DDA and FDTD. In this
respect, the recent discrete dipole moment method T -matrix calculations by
Mackowski [21] are particularly promising.

Lastly, we note again that FDTD may prove to be a useful method for T -
matrix calculation since it can be used to calculate T -matrices simultaneously
for a range of particle sizes.
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