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Lectures 7-9

Bipolar junction transistor (BJT)

Simplest transistor model

Collectol Collectol

Emittel

" Emittel

n-p-n transistor p-n-p transistor

Fig. 40. BJT transistors. The arrow shows the directiorhefémitter-collector
and base-emitter currents

The following rules are used in the analysis ofwits based on-p-n transistor (for p-n-
p transistor change the polarities of all voltaged the directions of all currents).
1. The collector should be more positive than the temit
2. Normally the base is more positive than the emibigr more negative than the
collector. In this case, the base0i$+ 0.8 V more positive than the emitter (like
in the case of a simple diode). Every transistarlmaits for | _, 1, , V., (specified
for every type of transistors) which when exceedaahage the transistor.
3. The collector current is roughly proportional te thase currentt, = SI, . The
current gaing is typically 100.

A transistor is a non linear device. For examgie,dollector’s current nonlinearly

depends on the base-emitter voltage. A simple ma@elicts that

l. =1, exp Vee -1/=1, ex Vee : (1)
KsT /q, KT /0,

where k;T/q, =25.3 mV at room temperature and is a saturation current.
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Also the base current amplificatight depends on the base current. Therefore a
feedback principle is widely used in transistordshsircuits. This principle has
already been discussed in connection with operaltimmplifiers. Here we will treat it

a bit more generally and with more details.

Feedback theory
Iin‘ R Igut
. /'Y n -
a\/o \ 4 V_l_ 1o

Fig. 41.Series feedback in an amplifier

An amplifier is shown in Figd1l The open circuit voltag¥, (that is the voltage when

there is no load resistor connected to the outiguproportional to the voltage between

input terminals of the amplifiey, . A fraction of the output voltage is fed back inthe
input in series with the external input voltage. WhenaA<0 the feedback is called

“negative” . When aA> 0, the feedback is “positive”.

First we assume th& = . In this case/,, =V, and the following equalities hold

VX :\/in + dvout
V. . = AV @
out — X
We substitute the upper equation into the lowertorebtain
Vout = A(\/m +a\/out) (3)

which can be solved fov, .
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A
V= V, 4
out 1-aA in ( )

The actual input voltage/, can be obtained from the first equation of the pbed

equations (2)

v, =y, (1492 =y 2
1-aA 1-aA

Calculation of the effective input resistance

The input resistance (impedance) is defined asatth@ of the input voltage to the input

current. For an amplifier with a feedback (a dewitde the dotted box in Figl) one

gets

R = I\/ _V, (1II—n ah) )
Becausel,, =V, /R, the final result reads

R =R.(1-aA) (6)

Calculation of the effective output resistance

The output resistance of the device in the dotidib Fig.41 is the ratio of the open

circuit output voltage to the short-circuit (thatwhen R - 0) output current. In the

short-circuit  regime, V =0 and therefore the short-circuit current

out

. =V,/R =AV, /R (the second equality follows becauge=V,, in this case). The

n

open circuit voltagev,, :i"’A has been already calculated and the effectiveubutp

resistance reads
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R, =% =2 )

Summary of important results for a series feedback.

1. If aA -1 (apparently this is possible only with a positifeedback) then

Y/

out

- o andV, - o (unlessV,, =0). The amplifier is unstable.
2. The effective input resistance is always largentRg if the feedback is negative.
3. The effective output resistance is smaller thy, if the feedback is negative.

4. If |A4 is large, then the effective amplification depermuady on the feedback

parameteny .

Emitter follower .

Fig. 42. Emitter follower.

Input impedance of emitter followers can be obtdinging the general theory of a

feedback (note that the voltage between the bas¢haremitter is the difference between
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the input voltage and the output voltage and tloeesthe feedback parameter=-1)

but it is not difficult to calculate it from theifgt principles”.
Al, = Al +Al, = Al + BAl, = Al (1+ B)

AV, = AV,

n out

AV, _AV, _ AV,
Al, Al AlL/(1+p

n

R, = ) = R(1+ ,B)

An emitter follower allows using a voltage sourdeieth has a large internal resistance
without a substantial drop of the voltage acrosddlad. Calculations of the output

resistance of an emitter follower are slightly moneolved. For briefness, we introduce
(RIIR ) as a notation for the resistance of parallel teisR and R
Ie
B+1
V,(8+1)
R+(B8+1)[RIIR]

V,(B+1)[RIIR]
R+(B+1)[RIR]

Kirchhoff’s voltage law: V, - R,

-1,[RIR]=0

Solving this forl, obtain |, =

The emitter voltage read = 1,[R|IR | =

The output resistance is

V,(B+1R
R _OVer= _RH(B+Y)R_ RR R
"Dl V(B R+(B+)R B+l
R,

The emitter follower transforms the internal remigte of the voltage source to a

much lower value.

What is an operating point of a transistor?

The emitter follower shown in Fig2 can work properly only if a positive potential
(relative to the ground) is applied to the baseliff this limitation, a proper

operation point of the transistor should be set.

The operation point of a transistor (or a Q-poisigharacterized by the values of DC

voltages across its terminals (base-emitter anldatol-emitter voltages) and the
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corresponding DC transistor currents (emitter asitéctor currents). In the absence
of the AC signal, the transistors’ base should reategher potential (anpn-

transistor is assumed in all the examples in thapter) than the emitter's potential.
This ensures that the transistor operates profdybase stays at a higher potential
relative to the emitter) when a small AC input sibis applied (through a capacitor).
The two resistorR and R, divide the 10 V of the power supply. The base ipibaé

is then given by

Vb - VCCRZ

R+R,
The emitter potential follows from the Ohm’s lawdais
Ve = IeRe

+10 V..
REB>RIIR
R,
V, =V, cos{at)

I
< —»

0 =V =0.6 V

I,_

Fig. 43. Biased emitter follower.

The emitter follower does not overload the voltdgeder if the equivalent resistance
of the biased voltage source is much smaller tharequivalent input resistance of

the emitter follower.
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V. The equivalent voltage source for

{ Id cc the circuit shown in Fig. 36. The
R1 Rs values are

l o —T—3+—0 _ R
R2 :_:1: Vs VCC R1+ Rg

R V. V.
<>VS :—_: RS: S = S = RRZ =R.||R2
E IRZO Vee 'R R*R,
Fig. 44. Voltage divider ThereforeR 8> R, || R. Usually

RA=10MR, || R.

The choice of capacito, depends on the lowest frequency at which thevalas
expected to work. For the ac input signal the thesestorsR, R,, and SR, are
connected in parallel and they form a high passrftbgether withC,. The amplitude

attenuation of this filter is
1

J1+H(@[RIIR, 1 BR]C,)
and equals 3 dB whew[R || R, || BR,|C,=27f [R||| R,I| BR]C,=1.

How to design an emitter follower.

1. SelectV,.
. Selectl,. Typically, I, =1 mAfor a low power transistor.
. Select the lowest frequenciy,,, at which the follower should operate.

2
3
4. Select the value of3. Typically, 8=100+ 30C.
5

. Select the operating point of the voltage emittet ealculate the value of
R, =0.9/, /1,.
6. Calculate the operation point of the base voltdge 0.5/, + 0.6 V.
7. CalculateVy, =V, —(0.5/ + 0.6 \) = 0.5, - 0.6\, the voltage acrosR and
the ratioR / R, =V,,/V,

8. Calculate the values oR and R, by selecting the relatioR, 5 =10R, | R,.
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9. Calculate the value of the capacitance using tlatioa
2rrf, [RIIR I BR]C, =1
Common emitter amplifier
Emitter follower is not actually a voltage amplifieut a current amplifier (it transforms a
small base current into a mach larger emitter atiyre
A common emitter amplifier is an amplifier where thutput voltage can be larger than

the input voltage.

Fig. 45. Common emitter amplifier.

Because we consider all circuits in a linear appnaxion, DC operation and AC
operation can be analysed separately.

Notice thatR, provides a negative feedback for DC and AC custerhink of the DC

collector current and its effect on the output &gé and on the base-emitter voltage. If
the collector current increases, the emitter veltalgo increases and therefore the base-
emitter voltage decreases leading to a smalleectolt current. The negative feedback in
the common emitter amplifier makes the gain (angaltfon) almost independent on the
current gaing of the transistor. The analysis of the common mamplifier is based

on the two Kirchhoff’s laws and Ohm’s laws. The p@rt of the input voltag@V,, is

applied to the base of the transistor. Using thelioff's voltage law we get
AV, =AV, =Al_R +AV,, =Al R +Al r, = Al R,
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where we have neglected timrinsic emitter resistance r,. Theintrinsic emitter

resistance of the transistor is

LAV kT 1_25mv
A, g | |

C C C

That is if the collector current is 1 mA, the in8ic resistance is only 2% and can be

neglected in comparison to the value Bf ifr, <« R, .

Note, the equation for, is derived from

A= expl e |ay =9y L AV ke
kT k.T/q, kT Al gl

c
and therefore the value of is also temperature dependent. According to th&'®taw,
the output voltage on the resistBr is

AV, =AlI R =Al R,
where approximation is made using the fact that | _ + 1, and that the base current is

much smaller than the collector current.

— A\/out ~ &
AV, R

To analyse of the input resistance, note that f@rraating potentials, point A and the
ground are connected (the difference between A t#ed ground has only a DC

component). Therefor® and R, are connected in parallel for AC. The resistaoice
resistorR, is enhanced b+ 5 at base (see emitter follower input resistanchg tbtal
input resistance of the common emitter amplifieRi§l R, || Re(1+ ,6’). CapacitorC, and
the input resistance form a high pass filter with cat-off angular frequency
w=1/([RIIR,IIR]C). The output resistance of the common emitter Hi@plis
approximately equal td. .

The selection criteria foR, and R, are the same as for the emitter follower.

1. R || R, should be 10 times smaller th&(1+ ). In this case the voltage divider

Is sufficiently independent on the presence ofthesistor.

2. The ratioR /R, is chosen to set the DC currents.
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The choice of the operating collector voltageMs=0.5/.. (this determines the

collector current and the emitter current if thedaurrent contributing to the emitter
current is neglected).

Vee +10V

| R ——

L
<

|
@]

|_|

Fig. 46. Low AC signal common emitter amplifier.

Addition of the capacitoiC, increases the gain of the common emitter amplifiea

maximum (for AC signals) but generally speaking thain is highly nonlinear because
the intrinsic resistance of the transistor depemdthe collector current.
The AC gain is

AR
:

However, if the amplitude of the input voltage ey small this nonlinearity can be

neglected (because the collector current will clearayy little).

The choice of C, affects f,,, and is similar to the choice &, (see the emitter follower

analysis).

Miller effect.
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Miller effect is a confusing way of a circuit ansiy where the voltages change at both
ends of a capacitor synchronously. In a certaisesdéms may increase the apparent value

of the capacitor. Compare two circuits in Fg.

;II
VII

| C
A
T A Vout A T VOUt
V Vin
i ~~ | |

Fig. 47.Miller effect.

For the first circuitv,, = AV, and I, =(V,, -V, ) jaC =V, (1~ A) jaC . For the
second circuitl. =V, jaC . In the first circuit, the voltage source “seesl-aA times

1
JWRCy +1

and is much smaller thany if wRC,, > 1. This effect plays an important role in

larger effective capacito€,, =(1- A)C. The input voltage i¥,, =V,

common emitter amplifiers because it limits the mmaxm frequency which can be

amplified.

Fig. 48.Low AC signal common emitter amplifier at high fueocy
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The base-collector capacitor is on the order oF%pt the effect of this capacitor is

much larger because of the Miller effect. The afec capacitance of C_ is
increased proportionally to the gain of the commamitter amplifier. If the
amplification of the common emitter amplifier iSO, the effective capacitan€g,,

is 1000 pF. The grounded effective capacitor isnested parallel toR,. If the
internal resistance of the signal source iXh@he frequency at which the absolute

value of the impedance o, equals the resistance & can be determined from

the equation 1/2fC, =R. Solving for f gives the result

L 1 L =3 MHz.

f= = =
2nRC,, 2nR(1-A)C,, 27B@{ ¥ 20905 pF

Note that the bandwidth of this amplifier is invagsproportional to its amplification.
This is a quite general principle. Recollect thalgsis of the inverting amplifier
based on an operational amplifier. The bandwidtthefclosed loop amplification is
also inversely proportional to the value of theseld loop amplification. There is
always a trade-off between the bandwidth and the\gdue.

To increase the bandwidth, a common base amptifierbe used.

Common base amplifier

VOUt
1
C +10 V
—]

Fig. 49. Common base amplifier.
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In this amplifier the base is grounded (see capadi}) and therefore there is no increase

in the effective value of the collector-base cajmaicino Miller effect). A drawback of
this circuit is a very small input impedance (nttat the input current is the emitter
current not the base current as in the case of aymemitter amplifier. Therefore a
common base amplifier is frequently used togethi#h w&n emitter follower (can you

explain why?) as shown in Fi§0.

Q

R, Fig. 50. An emitter follower is
used as a preamplifier for a

common base ampilifie
_VEE
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Lectures 10-11

Transmission lines

0 )

ool e e

IIII IIIII,IIIIIIIIIIIIIIII,IIIIIIIIIIIIIIII,IIIIIIIIIIIIIIILIIIIIIIIIIIa%lllllll

o
V(xt) V (x+dx,t) _InE
a
Y
IL(x—_d>x,t) LL(,X/Q,\,\ €_2ﬂ|na
NN
* £dx A dx B
i (%) 4
—— cadx —— cdx —— cdx

XV

Fig. 51.Transmission line and its equivalent circuit

Our goal is to derive an equation describing theeddence of the voltages and currents
on timet at different locationg. This will be a wave equation. Wave equationsvarg
important. They appear in very different fieldgpifysics (acoustics, quantum mechanic,
electrodynamics). The physical model of the trassion line consists of inductors
(connected in series) and capacitors (see Figlihe)two quantitieg andc are the

inductance and capacitance per unit length ofrérestnission line.

Derivation of the wave equation

We start from the Kirchhoff current law at no#levhich reads

I (x=dx,t) =i, (x,t)+1_(xt) (8)
Solving this fori_, one gets

i (x1) :—%IL(x,t)dx ©)
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Voltage across the capacitor is related to thegehan the capacitoy, (x,t) and the

capacitancesdx according to

V(1) = L) (10

We take partial time derivatives of both sides

1) i (xt
iv(x’t)ziqc(x )=IC(X ) (11)
ot ot cdx cdx
and substitute this into Eq. (9)
0 10
—V(xt)=———1 (Xt 12
SV ()= 1 (xt) (12)
VoltageV,; across the inductance equals
V(x+dx,t)—V(x,t)=—€dx%lL(x,t) (13)
Replacing the left hand side with a partial denxat
0 0
—V (xt)dx=—ldx—1 (Xt 14
ox (1) ot (x1) (14)
and dividing both sides bgix one gets
0 0
—V(xt)==l—1_(xt 15
0X (X ) ot L(X ) (19)
We differentiate Eq. (12) and Eq. (15) over timd anordinate respectively
0° 10°
[ (xt)=—=—=V (Xt 16
axatL( ) 00X (x1) (16)
9° 9°
I (Xt)=—-c—V (Xt 17
ataxL( ) ot’ (xt) a7

The left hand sides of these two equations arelefqaality of the right hand sides
leads to the following wave equation for the voltag
O v(xt)=re L v (x) (18)
x> v otz v’
A similar equation can be obtained for currents.

It easy to verify that any functiov (t i[fc]”2 x) satisfies the wave equation.

First we calculate the right hand side of Eq. (18)
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0
Al (t2[ec]"*x) =" (e[ rc] ) (t £[rc]"*x) =V (t£[1c] “*%), (19)
whereV'(u) stands for the derivative of the functi®r{u) . The second partial
derivative can be obtained by differentiation of #tbove equation over time
a II ”
SV (t[ec]"* x) =V (t2[ee] *x) =v"{t [ rc] *x] (20)
Now we calculate the left hand side of Eq. (18)

Iy (tlec]*x) =V ([ re] ) (12 re] “x) =2l re] v 1] ) @)

:—V(H[fc]m x| = retv(t£[rc] ) (22)

Comparison of the left hand side to the right hside shows that the wave equation is

satisfied.

Relation between current and voltage in the transnssion line

Form equation (12) follows the following equality

I (x.t) =—cj%V(x,t)dx (23)

If we substituteV (x,t) =V (xi(fc)_mt) we will get

N (t + (gc)llz x) _ —ch’(t + (gc)l’zx)dx = J—rﬁj%v (u)du= J_r(%jlfzv (t . (gc)l/z x) .

V f 1/2 ﬁ 1/2
Therefore—:rr(—j . The value(—j has the dimension of a resistan€y and is
Cc

L
called an impedance of a transmission line. Stahohapedance for transmission lines is
50Q. Note that the plus corresponds to the wave papag to the left (see next

section).

Pulse propagation in a transmission line
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If we draw functionV (t+x/v), where u:]/\/E at different but fixed times, the

function repeats itself shifted to the left (if thign is “minus”) or to the right (the sign is

“plus”).

4

V

VA (VA VA

Fig. 52. Three snapshots of a pulse at zero time and atttifbe pulse propagates
alongx axis with speed. The ratio V/I depends on the directionppbpagation.

+ ut
Note that f (t—uj = f (_ﬁj
v v

oftr 5=
v v

Reflection from a transmission line loaded by apédance Z.

S o o o o |

A OO O N
Y i i
clIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Fig. 53. Loaded transmission line.

At the point where the load is connected to thegmassion line the ratio of the voltage
to the current is equal to the value of the impedan

Consider twaoswaves propagation in opposite directions.

T
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V. :Voexp(jwt—j%)xj =V, ex{ jat - jke), | :;/—Oexp(jwt—jkx)
TL

and

V_ =V exp(jat+ jkx), | _ :—;/—1exp(jwt+jkx)

TL
wherek = w/ v is called a wave number. The ratio of the totdlage to the total current
is given by
V_ V% exp( jat - jkx) +V, exd jat + jkx) __ V, exf-jkx)+V, expjkx)
I v exp( jat - k) -V, ex jat + k) TV, exf—jkx) -V, expjkx)

When x =0 this ratio becomes

! :Z VO +V1
IV, -V

We can choose the values ¥f andV, to satisfy the conditioV /=2,
V, +V,

TL VO _Vl

LNy =L N =2Vt 4V,

Z —Zy

ZL + ZTL ’

z, =2

V)=

Therefore to satisfy the conditiovh | £Z,_ at the pointx=0 the counter propagating

wave should have a complex amplitude

Z -7
V1=Z|_+ZTL A
L L

The solution V,exp(jat— jkx)+V, exf{jat + jkx) satisfies the wave equation
everywhere and the boundary condition at the pwihere the load is connected.
ThereforeV, exp( jat = jkx) +V, exf{ jat + jkx) is the solution correctly describing the

voltage at any point of the semi-infinite transsios line (including its end with the

load) shown in Fig. 45.
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Examples.
1' ZL = ZTL

In this case the amplitude of the counter propagatiave is zero. A pulse sent through a
line with a load.

Sl

N \/ >
T T T T T T T T T T T T T T T T 1T T T T 1T T 1T 1T T 1T 1T 11T 1T 1171711 I‘ X
i —
IIIIIIII/I e I/I e I/I e I/I e I‘
Z:ZTL

AH
Y

d
X

Fig. 54. No reflection from the load.

63



Taras Plakhotnik ledfronics and circuit theory for physicistd{gear undergraduates)

2.Z, =0
In this case the reflection coefficient is frequemtdependent and the amplitude of the
counter propagating wave equals the amplitude @fwhve propagating to the right. A

pulse sent through a transmission live will beeettd by the shortcut on the line end and
will propagate to the left.

Arv

Sl

v

v
"’%’!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!iliii!i!i!i!i!ilt 2, =

CJ

Fig. 55.Reflection from a shortcut.
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3.7 =
In this case the amplitude of the counter propagatvave has the same absolute value

but opposite sign. A reflected pulse will have apasite amplitude to the amplitude of
the incoming pulse.

Arv

-}

v

\/\/
IIIIIIIIIIIIIIIIIIIIIIIIII’;IIIIIII’;IIIIIII

Gl:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|:|: Z|_ =00

Fig. 56.Reflection from an open end. Note that the cunerero at the open end.
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Remember! The total voltage is the sum of the twoytses
4. How large is the reflection from a load of 1Q0connected to a transmission line
with impedance of 50.
:ZL—ZTLV :100—5 gy
“ z,+z, " 100+50 " 3"

Input impedance of a transmission line with a load

7=V oy Y ex|0(—J.k><)+Vl exy( ka) and we substituty, = 22~ 21y,
I V, exp( = jkx) =V, exy{ jkx) Z +27,
Vi eXIO(—J'kX)+ﬁV exp jkx) _ _
Z=7 0 zZ +72, ° _ (ZL+ZTL)eXp(_JkX)+(Z|__ZTL)eXF(JkX):
T Vpexp(-ikq) -2 Ay expfjhx) (Bt Za)exp(= k) (2 -2 ) exif )

ZL + ZTL
_5 Z, Coskx— jZy sirkx _ 7 Z co&l+jZ, sikl
™ Z, coskx—jZ, sinkx " Z, cokl+jzZ skl
wherel is the length of the line (a positive number). &lttat thex coordinate is -

at the beginning of the line.
Examples.
1. Input impedance of an open end line

_- Z coskl+jZ, sirkl _ coskl
ZOE T Z . . e | Y
- Coskl + jZ, sirkl j sirkl

2. Input impedance of a line with a shortcut at the en

_ - Z coskl+jZ, sirkl _ ._ sinkl
Zsc T eTL 7 : : = 14n
- coskl + jZ, sirkl co&l

Interesting thaZ . Z.. = Z7 independent of the length
You can use this relation to measurg , the impedance of an infinitely long

transmission line.
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Lectures 12-14.

Formal logic. Formal logic identities.
Binary Boolean operations are defined by
1=0,0=1, All=A, AID=0, A+1=1, A+0=A,
AA= A, A+A=A, A=A

Commutation axioms: A+B=B+A

AB=BA
If more than two operands are involved Boolean Algara satisfies the following
association and distribution laws

Association : A+(B+C)=(A+B)+C=A+B+C
A{BIT)=(AB)[TC = ABIC
Distribution:  A[{B+C)= AB+AIC
A+(BLC)=(A+B){A+C)
Exercise 1:Show thatA+( AB) = A and A[{A+B)=A
Solution: A+(AB)=A[1+B)=Ad=A A+A=A
A{A+B)=ACA+AB=A+AB=A(1+B)= All= A

DeMorgan’s theorems: A[B = A+B and AIB=A+B

Logic identities can be proved by using a truthdab
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Truth table (examples)

A |B |AB|AB|A |B |AB|A+B |A+B | A+B
o [o |o [1 |1 1 1 0
o [1 |o [1 |1 0 1 1
1 Jo Jo |1 Jo 1 1 1
1 |1 |1 |o |o 0 0 1

We have derived an important de Morgan’s theorem

A[B = A+B. Consequence: An OR operation can be replacedcbynbination of AND

and NOT operations. This is given by the equafity B = A[B

In a similar way one can prove thAB = A+ B and thereforeA[B = A+ B

Exercise 2.Show that( A+ B)[{A+C) = A+BC
Solution. (A+B){{A+C)=(A+B)[A+(A+B)[C=AA+BA+AC+BC=

= A(1+B)+AC+BC=Al+ AC+BC=A+AC+BC=A(1+C)+BC=
= A+BC

Any numerical computation can be represented bery large truth table. Any truth
table can be reduced to a long Boolean logic esmmasinvolving, for example, only
AND and NOT operations. This also can be done uSIRgand NOT operations.

Digital electronics.

AND, OR, NOT gates and their truth tables.
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Convention:
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Open collector circuit

Fig. 57. Examples of logical circuits

Low voltage level is “false” or “zero”

High voltage level is “true” or “one”

AND gate. OUTPUT = A[B (binary multiplication)

A B | OUTPUT
0 0 0
1 0 0
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OR gate. OUTPUT = A+B. In the case of two operands, this is binary addlitshere

the output shows the higher (most left) bit positio

A B OUTPUT
0 0 0
1 0 1
0 1 1
1 1 1

Exclusive OR gate XOR.OUTPUT = A B. In the case of two operands, this is binary

addition where the output shows the lower (modttjiit position.

A B OUTPUT
0 0 0
1 0 1
0 1 1
1 1 0
Exercise 4.Verify that A0 B = AB+ AB. Use the Boolean logic laws and show that
AOB=(A+B)(AB).
Solution. (A+ B)(ﬁs) = A(NB) + B(NS) = A(K+§) + B(K+§) =
0+ AB+BA+0= AB+BA
NOT gate
OUTPUT
0 1
0
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Symbolic representations of logical gates.

AND

NOT OR
= O— > D) O
XOR
E OR z:

Fig. 58.Graphic representations of logical gates in el@itroircuits

TTL (transistor-transistor logic) and CMOS (complementary metal oxide

semiconductor) ECL (emitter coupled logic) logic fanilies. Three state logic.

Basic Properties of some TTL Families.

74 subfamily | 74LS subfamily

Supply Voltage +5V (+/- 0.5VR5V (+/- 0.5V)
‘1’ Level Output Current 0.4mA 0.4mA
‘0’ Level Output Current 16mA 8mA
‘1’ Level Input Voltage (min) 2V 2V
‘1’ Level Input Voltage (typical) 3.5V 3.5V
‘0’ Level Input Voltage (max) 0.8V 0.8V
‘0’ Level Input Voltage (typical)  0.35V 0.35Vv
‘1’ Level Input Current 0.04mA 0.05mA
‘0’ Level Input Current 1.6mA 0.4mA
Time delay 10 ns 2ns

Note. An input which is not connected to anythingrks like HIGH for the TTL

family.
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Three state logichas a state when the output is disconnected (edpblhis type of
circuits is used, for example, when many devicessimmared data bus for

communications.

SR Flip-flops.
A (SET
] Q
A B Q Q
1 0 0 1
_10 1 1 0
Qlo 0 1 1
] 1 1 1 0
B (RESET) 0 1

Fig. 59.Flip-flop circuit and its truth table

SR (Set-Reset) flip-flop has two inputs (SET andSEE). Note that when the values of
A and B are 1, there two possible values for thpuiuterminals. If B is kept at high,
sending zero to A sets the value Q at high (onlefs State will be maintained until both
inputs are set to low (zero). Similarly, if A iskagh, sending zero to B will make the
value of Q low (zero). This state also will be kbptthe circuit until both inputs are set to

Zero.

This flip-flop can be used to build a more populErflip-flop shown in the next Figure.
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J >j A ) X Q — ol
c | —C>C 51—
_ — K
L o Q
B
JIK Qn 6n C A B Qn+1 6n+l
(clock)
1111 0l1-0 1 1-00 1 Qandaﬂipon
every clock pulse
1({1/0|1(1-0 [(1-01 1 0
0/j]0|1]|0]|1-0 |1 1 1 0 | No change forQ and
0/j0|0|1]|1-0 |1 1 0 1 Q
10 1-0 1 1 0 | JandK are moved to
01 1-0 |1 0 |1 | QandQ respectively
Fig. 6C. JK flip-flop and its truth table.
Counters.
JK flip-flops can be used to build a binary counter
A2 Acq” 448"
HIGH HIG HIGH
A A A U !
J o J o J o -4 ol
—d>c _ a>c _ ag>c _| ——d>c _|
Q— Q— Q— ! | Qi

Fig. 61. 4-bit counter.
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Pulse generator.
1 | = >DT £
X
} C o f.
— Tv
R, R

Fig. 62 Pulse generator.

Three invertors connected in series invert thetispgnal and if the output of the last
inverter is connected to the input of the firstarter a logical contradiction appears. The
circuit starts to oscillate with a frequency of ab20 MHz “trying to resolve” the
contradiction. The capacitor and the resistor (3gg partially resolve the contradiction.

WhenV, is LOW andV, is HIGH, potential af remains lower tha, by the potential
drop across resistdR (see the current direction shown in the Fig. d ddntradiction
appears as long a4 stays at logical LOW. However, since capaciiis charging,
potentialV, increases.

WhenV, =V,; and the potential is high enough to be logical HJG) V, will be set
to HIGH due to the first two invertors, %), will be pulled to even a higher potential
V, =V, +V,, and 3)V, jumps to LOW , 4) the current througR, is reversed.

V, starts to decrees uni|, =V,; andthen 1)/, jumps to LOW, 2), jumps to
V, =V; -V, 3)V, jumps to HIGH, 4) the current througR, is reversed and the circle

stars over. The period of oscillations is given by= 2.2RC

DAC and ADC
Digital-Analogue Converter (DAC) and Analogue-DajiConverter are electronic

circuits which provide interconnection between agak and digital circuits.
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R R R 2R

|_|

WV
2R l8l 2R |41 2Rr| |21 2g| |

Fig. 64. 2R-R circuit. Prove that currents through tHe r2sistors are two times
larger in each stage from right to left. Hint: UGechhoff current law starting
from the most right pair of theRxesistors and then evaluate the equivalent
resistance of the three most right resistors.

R R R 2R

H

Ry
2R l8l 2R |la1 2R| 21 2r| || .

Fo 2% 23 29N

out

Fig. 64 Show that/,,, =—(1+4)V/16 if the switches are in the position as shown.
Show thatV,,, = —(1+ 2+ 4+ §V/ 1€ if all switches are in the “right” position.

The circuit in Fig64 works as a DAC (Digital-to-Analogue Converter).

ADCs are complementary to DACs. DACs and ADCsused as bridging circuits
connecting analogue outputs (for example, analogiyeuts of sensor signals) to
digital electronics and digital outputs to analogyauts.A simple ADC can be made
of a comparator (a circuit which signals when twettages are equal), a binary

counter, and DAC. Try to figure out how.
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Lecture 15-18

Integral transformations (Fourier and Laplace transformations). Techniques for
solving differential equations.
Fourier transformation. Fourier transform of a functiorf (t) is a function ofa

different variablew calculated according to the following expression
(t)]= _[ t) [exp(—jat )dt

provided that the integral exists (converges).

Laplace transformation. Fourier transform of a functioffi (t) is a function ofa

different variables calculated according to the following expression
()= 1 () ool

provided that the integral exists (converges).

Some properties of these transforms are very gitidasome are different. The main
difference between these transform is the restnston the properties of the function
f(t) imposed by the existence (convergence) of theesponding integrals. Both
transforms are very useful for solving differenggluations. The usage of these

transformations is based on the following theorems

Theorem 1. Transform of a shifted function.

Fo[ f(t-to)]=exp(iato) F[ f (t)]

L[ f(t=t,)0(t—t,)]=exp(-st,) L[ f(t)O(t)]

Proof .

3.1. T f (t —to)exp(—jax)dt = T f (u) exr(—ja)[u+to])du, where we have used

—00 —00

substitutiont =u +t,.
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Because_[ u)exp(=jafu+t,])du = exp( jat, )J' (u) exg—jau)du

—00 —00

3.2. T f(t—t,)6(t—t,)exp(-jat)dt :T f (u) ex{-s[u+t,])du, where we have used
0

0

substitutiont = u +t,.

f (u) exf-su)du=exp-st,) L[ f(t)]

BecauseT f (u)exp(-s[u+t,])du= exf-st,)

o—38

Theorem 2. Derivative of a transform.

dF, [f]_ .

da) - JFw(th)
CCIL) I

ds °
Proof.

I t)exp(- t=.|'f(t)diex;( jat)d =—jjtf ) exf-jat)d

df it = [ 7 (1) 2 dt = [ d
d—j )exp(- —I (t)£ exy—st) t——jt (t) exg-st)dt

0 0 0

Theorem 3. Transform of a derivative
F[f]=iewF,[f]
R[] =(ja) F,[f]
L[f]=s,[1]-1(0)
L[f"]=s’L[f]-sf(0)- f'(0)

Direct consequence of this theorem is transforanomhtegral

LU; f(r)dr} :%

Proof .
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4.1.

]o exp jat)dt = f (t) ex(~jat)| =", - _[ ()deLdt—jwj t)exp(-

—00 —00

It is essential that for the Fourier transform xese that the value of (t ( )|s zero at

+oo, Therefore f (t)exp(-jat)|=", = 0

t=—00

4.2.

Tdf (t) exp(-st)dt = f (t) exq-<t)

_ d exp(-st)
o - f 4dt -f(Q+s exp-st)d
It is essential that for the Laplace transformxste the value of

o ==t (95

Thus we obtairL, [ f'] =sL [ f] - f (0). Using this result twice one gets

f (t)exp(—st) should be zero ateo . Therefore f (t)exp(-st)

L[f"]=-f"(0)+sL[f]=-f'(0)-sf (0)+S°Lf].
4.3. We introduce a functiay(t) = I; f (r)dr, which has the following properties:

Llo] _Lli]

g(0)=0and g'(t) = f (t). ThereforeL [ g(t) | =

Theorem 4 Patrtial fraction expansion.
This theorem is very useful when calculating arense Laplace transform of a ratio of

two polynoms o&. The theorem states that the following decompmwsis always

possible.
8,8"+a,,8" +. 8 _ as'+a, s +..3, _
b, +bS™ 4.0y (s-g)%(s-s)"..(s-5s )k" b
P
Ky K, Kn b » N< zkm

= B, O 4 4 pm e
mzzl(s—%)m mz:l(s—sz)m mzzl(s—sp)'“

In these expressiorns, s,, s,... are the roots of the denominator. These rootdean
multiple (k;,k,,Ks, ... is the multiplicity of the corresponding rootshig looks

complicated but becomes clearer if an examplensidered.

s+s+1

Example: Find the partial fraction expansion for the faliag functionm
s—-1) (s—
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We want to findg, b, andc such that

sS+s+1 _  a b C

(-1 (5-2) (s-1° s-1 s-2

First we do simple algebra

a(s-2)+b(s-1)(s-2+c(s-1° _ L+s+1

(s-1)"(s-2) (s-97°(s-2)

as—2a+bs’ - s+ Db+cs’—- Xs+c . sP+s+1

(s-1)"(s-2) (s-9°(s-2)

The equality holds for a8l if the factors in front of corresponding powerssaire equal.

For example, the factors multiplyingf should be equal. We have to solve three linear
equations fomg, b, andc.

b+c=1 b+c=1 b+c=1 c=7

a-3-2=1 =<a-b=3 =Ja-b=3=<:b=-¢

-2a+2b+c=1 |-ZA+b=0 |-a=3 a=-:

S+s+1 3 6 7
= +

(s-17(s-2) (s-1° s-1 s-2

Other useful relations
1. Substitution

0 00

L[ exp(at) (F (t) ] = [ exe(at) f (t) exg-st)dt = f (t) exp-[s-a]tjdu=L [ f(t)]

0 0
if s—a>0.
2. Laplace transform and convolution

The following integral

j'f(t—u)g(u)duz f Og
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is called convolution. There is a relation betwkaplace transform of a convolution
and Laplace transforms of the functidrendg.

O =38

[j f(t-u) g (u)du |reock = £ (1) et ] g (t) et

0 0

L[I f(t-u)g(u)du|=L[a0f] =L  f ()] o(0)]

J(-v)o(w)as=L[L 1 (] [s()]

Examples
1.

L [sin(at)]=L

S

exp(jat)-exf—jet) |_1( 1 1 \_ 1fstjo—(s-jw))_
2j }_?j(s—jw s+jwj_?j( s+ ]_

l 2w _ w

2] F+a? P+’

2.

L[(c+jEﬂJ)exp{(a+jEﬂJ)t}]=

c+jb _ c+j
a+jb-s s-(a+jb)

(c+j ) exd(a+ jb)t} exgf—st)dt=

Ot—38

Steps for solving differential equations using Lagce transform
1. Apply Laplace transform to both sides of the defatial equation (use transform
of derivatives theorem).
2. Solve the linear equation for the unknown Laplaaagform.

3. Find the inverse Laplace transform. Use partiatiom expansion if required.
Example.

Solve differential equatio2f" +8f'+10f = 0, if f'(0)=0and f(0)=1
1.
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L[2f"+8f'+10f] = Z°L[f]- 2f (0 Z' (Oy B[f]- 8 (O} WQ[f]=
28’L [ f]-2s+&L[f]-8+10,[f]= 0

2.
L[f] _ 2s+8
282 + 85+ 10
3.
— 2_

Find roots of2s* +8s+10. s, = 4t “42 2Dlo=—2:rj

[ ] 2s+8 s+4 ___A + B

s 2(s+2-j)(s+2+]j) (s+2—j)(s+2+j) S+ 2-j S+ 2]

The equalityA(s+2+ j)+B(s+2- j) =s+ 4 should hold for ang. There are two

ways to ensure this. One approach is to write thualgty relations for corresponding

coefficients on the right and left hand sides. Thus
As+A(2+j)+Bs+B(2-j)=(A+B)s+A(2+j)+B(2-j)=s+ 4 holds if
{A+B:1

A(2+j)+B(2-)=
It many cases an easier approach is to subsstate2 - | in

A(s+2+ j)+B(s+2-j)=s+4. This makes the coefficient befokezero and let us

find B. Then we substitute = -2+ j making the coefficient befoi® zero (in this way

we will find A).
B(-2-j+2-j)=-2-j+4
A2+ j+2+j)=-2+]+ 4

B:j+1
2

A:ZL_J. :—j +1'
2 2
Thus we obtain

1, . :
"‘J J

2+ ]

1_
L[f]== +f

S+2—j
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Inverse Laplace transform (see table) gives

Answer: f =e*[cost )+ 2sin( ).

Laplace transform of the response of a circuit t>-ampulse (the initial conditions are
assume to be all zeros) is called a transfer fanaif a circuit.

Example. If the function of a circuit is describdega differential equation

dz\z/ LAy a(t),
dt dt

where a, b, and c are constants, we can apply t@plansform to the two sides of this

equation to obtain
as’L,[V] +bsL,[V]+cL V] =1
By solving this forL, [V] one gets the transfer function of this circuisidomain.

1
as’ +bs+c

H(s)=LIV]=
If the right hand side of this equation is nad &unction but an arbitrary input voltage
V,,(t) then the response of the circuit will be
N AL
Stability of a circuit
The circuit is stable if its response t@afunction is finite. To find out if a circuit is
stable we have to apply the inverse Laplace tramsfo its transfer function. If the
transfers function is a ratio of two polynoms, tté be done using the partial fraction
expansion method. Because the inverted Laplacsftian of
c+jd

s—(a+ M)
is
(c+ jm)exp| (a+jd)t],

the circuit is stable if real parts of all rootstb&é denominator in the ratio of the two

polynoms araegative.

Roots of the numerator are called zeros of thestesrfiunction.
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In the frequency domain, the transfer functionarted as the ratio of the output
complex amplitude to the input complex amplitudéhé input is given by, exp( jwt).
If we substitutejw instead ok in the expression for the transfer function s-domae

will get the transfer function imv-domain.

Example.

da av .
a—-+b—+cV =V_expl jat
dt? dt nexp(jat)

We seek a solution in the form wf=V,, exp( jat). Substitution leads to
a( jw)ZVOUt + jabvout +CVout :\/in
And one gets

1
Vi a(jw)+jab+c

Compare this to the above equation Fo(s).
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Fourier transformation Laplace transformation
1 ] 1 y+joo

= expjai f(t)=— | L|f|exp(st)ds
=5 ) Fl (=57 ] LIfle(s)

The constanyy is chosen such that all the
singularities ofL,[ f] are on the left form

the vertical lines= ) on the complex

plane.
F[f]= j t)exp(-jat)dt L[ f] =]S f (t)exp(-st)dt
F[1]=jar,[f] L[FT=-1(0)+s,[f]
F[f"]=(ie) F[ ] L[f"]=-1(0)- (0+sL[ ]

L;{%} :j; f(r)dr

orr]= L[ (0] [o(0)]

dr[f] _
dw

a.[f]

=-jF,(tCF) ds

=L [tcr]
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Table of Laplace transforms

Function f (t) Laplace transform
1 E, s>0
S
26 [c[Eosgut y+d Osingt ) c-jd _ c+jd
sta-jw st+a+tjw
exp(at) 1 oa
s-a
v s%:l s>0
ol JEa—
sin(at) > f:)wz <> 3
exp(at) cogat) s—a .
(s-a)’ +a?’
exp(at) sin(at) w s> 3
(s-a)’ +a?’
tcos(at) s-af
tsin(at) 250
En)
a(t) L[o]=1
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