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Lectures 7-9 

Bipolar junction transistor (BJT) 

 

Simplest transistor model 

 

The following rules are used in the analysis of circuits based on n-p-n transistor (for p-n-

p transistor change the polarities of all voltages and the directions of all currents).  

1. The collector should be more positive than the emitter 

2. Normally the base is more positive than the emitter but more negative than the 

collector. In this case, the base is 0.6 0.8 V÷   more positive than the emitter (like 

in the case of a simple diode). Every transistor has limits for cI , bI , ceV  (specified 

for every type of transistors) which when exceeded damage the transistor.  

3. The collector current is roughly proportional to the base current: c bI Iβ= . The 

current gain β  is typically 100.  

A transistor is a non linear device. For example, the collector’s current nonlinearly 

depends on the base-emitter voltage. A simple model predicts that  

exp 1 exp
/ /

be be
c s s

B e B e

V V
I I I

k T q k T q

    
= − ≈    

     
,        (1) 

where  / 25.3 mVB ek T q =  at room temperature and SI  is a saturation current.  

n-p-n transistor p-n-p transistor 

Collector Collector 

Emitter 

Emitter 

Base Base 

Fig. 40. BJT transistors. The arrow shows the direction of the emitter-collector 
and base-emitter currents  
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Also the base current amplification β  depends on the base current.  Therefore a 

feedback principle is widely used in transistor based circuits. This principle has 

already been discussed in connection with operational amplifiers. Here we will treat it 

a bit more generally and with more details.   

Feedback theory 

 

An amplifier is shown in Fig. 41. The open circuit voltage V∞  (that is the voltage when 

there is no load resistor connected to the output) is proportional to the voltage between 

input terminals of the amplifier xV . A fraction of the output voltage is fed back in to the 

input in series with the external input voltage inV .  When 0Aα <   the feedback is called 

“negative” . When  0Aα > , the feedback is “positive”.  

First we assume that LR = ∞ . In this case outV V∞=  and the following equalities hold  

x in out

out x

V V V

V AV

α= +
 =

         (2) 

We substitute the upper equation into the lower one to obtain 

( )out in outV A V Vα= +         (3) 

which can be solved for outV .  

inV xV AV∞ = V∞xV
inR

outR
outV

LR

Fig. 41. Series feedback in an amplifier 

outVα

inI outI
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1out in

A
V V

Aα
=

−
         (4) 

The actual input voltage xV  can be obtained from the first equation of the coupled 

equations (2) 

1
1

1 1x in in

A
V V V

A A

α
α α

 = + = − − 
        

Calculation of the effective input resistance 

The input resistance (impedance) is defined as the ratio of the input voltage to the input 

current. For an amplifier with a feedback (a device inside the dotted box in Fig. 41) one 

gets  

( )1 
 xin

in
in in

V AV
R

I I

α−
′ ≡ =         (5) 

Because /in x inI V R= , the final result reads   

( )1in inR R Aα′ = −          (6) 

Calculation of the effective output resistance 

The output resistance of the device in the dotted box in Fig. 41 is the ratio of the open 

circuit output voltage to the short-circuit (that is when 0LR → ) output current. In the 

short-circuit regime, 0outV =  and therefore the short-circuit current 

/ /sc L in LI V R AV R∞= =  (the second equality follows because x inV V=  in this case).  The 

open circuit voltage 
1

in
oc

AV
V

Aα
=

−
 has been already calculated and the effective output 

resistance reads   
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1
oc out

out
sc

V R
R

I Aα
′ = =

−
         (7) 

Summary of important results for a series feedback.  

1. If 1Aα →  (apparently this is possible only with a positive feedback) then 

outV → ∞  and xV → ∞  (unless 0inV = ). The amplifier is unstable.  

2. The effective input resistance is always larger than inR  if the feedback is negative. 

3. The effective output resistance is smaller than  outR  if the feedback is negative.  

4. If A  is large, then the effective amplification depends only on the feedback 

parameter α .  

Emitter follower .  

 

 

Input impedance of emitter followers can be obtained using the general theory of a 

feedback (note that the voltage between the base and the emitter is the difference between 

sV

cI

in bI I=

eI

R

10 V+

sR

LR

inV

0.6 Vout inV V≈ −

Fig. 42. Emitter follower.  
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the input voltage and the output voltage and therefore the feedback parameter 1α = − ) 

but it is not difficult to calculate it from the “first principles”.  

( )1e b c b b bI I I I I Iβ β∆ = ∆ + ∆ = ∆ + ∆ = ∆ +  

in outV V∆ = ∆  

( ) ( )1
/ 1

in b out
in

in b e

V V V
R R

I I I
β

β
∆ ∆ ∆≡ = = = +
∆ ∆ ∆ +

 

An emitter follower allows using a voltage source which has a large internal resistance 

without a substantial drop of the voltage across the load. Calculations of the output 

resistance of an emitter follower are slightly more involved. For briefness, we introduce 

( )LR R�  as a notation for the resistance of parallel resistors LR  and R  

Kirchhoff’s voltage law:  [ ] 0
1

e
s s e L

I
V R I R R

β
− − =

+
�  

Solving this for eI  obtain 
( )

( )[ ]
1

1
s

e
s L

V
I

R R R

β
β

+
=

+ + �
 

The emitter voltage reads [ ] ( )[ ]
( )[ ]

1

1
s L

e e L
s L

V R R
V I R R

R R R

β
β
+

= =
+ +

�
�

�
 

The output resistance is  

( )
( )
( ) ( )

,

, 0

1

1

1 1 1
L

L

s

e R s s s
out

se R s

s

V R

V R R RR R
R

VI R R

R

β
β
β β β

=∞

=

+
∆ + +

= = = ≈
+∆ + + +

.  

The emitter follower transforms the internal resistance of the voltage source to a 

much lower value.  

 

What is an operating point of a transistor?  

The emitter follower shown in Fig. 42 can work properly only if a positive potential 

(relative to the ground) is applied to the base. To lift this limitation, a proper 

operation point of the transistor should be set.   

The operation point of a transistor (or a Q-point) is characterized by the values of DC 

voltages across its terminals (base-emitter and collector-emitter voltages) and the 
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corresponding DC transistor currents (emitter and collector currents). In the absence 

of the AC signal, the transistors’ base should have a higher potential (an npn-

transistor is assumed in all the examples in this chapter) than the emitter’s potential.  

This ensures that the transistor operates properly (the base stays at a higher potential 

relative to the emitter) when a small AC input signal is applied (through a capacitor).   

The two resistors 1R  and 2R  divide the 10 V of the power supply. The base potential 

is then given by  

2

1 2

CC
b

V R
V

R R
=

+
 

The emitter potential follows from the Ohm’s law and is 

e e eV I R=  

 

The emitter follower does not overload the voltage divider if the equivalent resistance 

of the biased voltage source is much smaller than the equivalent input resistance of 

the emitter follower.  

( )0 cossV V tω=

cI

eI

eR

CC10 V+

sR
inV

0.6 Vout inV V≈ −

Fig. 43. Biased emitter follower.  

2R

1R
1C

dI

bI

~

2 1eR R Rβ ≫ �
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The equivalent voltage source for 

the circuit shown in Fig. 36. The 

values are  

2

1 2
s CC

R
V V

R R
=

+
 

1 2
1 2

0 1 1 2/
L

s s
s

R CC

V V R R
R R R

I V R R R=

= = = =
+

�

 

Therefore 2 1eR R Rβ ≫ � . Usually 

2 110eR R Rβ ≈ ⋅ � .  

The choice of capacitor 1C  depends on the lowest frequency at which the follower is 

expected to work. For the ac input signal the three resistors 1R , 2R , and eRβ are 

connected in parallel and they form a high pass filter together with 1C . The amplitude 

attenuation of this filter is  

[ ]( )2

1 2 1

1

1 eR R R Cω β+ � �

 

and equals 3 dB when [ ] [ ]1 2 1 1 2 12 1e eR R R C f R R R Cω β π β≡ =� � � � .  

How to design an emitter follower.  

1. Select CCV  

2. Select eI . Typically, 1 mAeI = for a low power transistor.  

3. Select the lowest frequency minf  at which the follower should operate.  

4. Select the value of β . Typically, 100 300β ≈ ÷ .  

5. Select the operating point of the voltage emitter and calculate the value of  

0.5 /e CC eR V I= .  

6. Calculate the operation point of the base voltage 0.5 0.6 Vb CCV V= + .  

7. Calculate ( )1 0.5 0.6 V 0.5 0.6 VR CC CC CCV V V V= − + = − , the voltage across 1R  and 

the ratio 1 2 1/ /  R bR R V V=  .  

8. Calculate the values of  1R  and 2R  by selecting the relation 2 110eR R Rβ ≈ � .  

Fig. 44. Voltage divider  

2R

1R
dI

sR

sV

CCV

LR
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9. Calculate the value of the capacitance using the relation 

[ ]min 1 2 12 1ef R R R Cπ β =� �  

Common emitter amplifier 

Emitter follower is not actually a voltage amplifier but a current amplifier (it transforms a 

small base current into a mach larger emitter current).    

A common emitter amplifier is an amplifier where the output voltage can be larger than 

the input voltage.  

 

Because we consider all circuits in a linear approximation, DC operation and AC 

operation can be analysed separately.  

Notice that eR  provides a negative feedback for DC and AC currents. Think of the DC 

collector current and its effect on the output voltage and on the base-emitter voltage. If 

the collector current increases, the emitter voltage also increases and therefore the base-

emitter voltage decreases leading to a smaller collector current. The negative feedback in 

the common emitter amplifier makes the gain (amplification) almost independent on the 

current gain β  of the transistor. The analysis of the common emitter amplifier is based 

on the two Kirchhoff’s laws and Ohm’s laws.  The AC part of the input voltage inV∆  is 

applied to the base of the transistor. Using the Kirchhoff’s voltage law we get  

in b e e be e e c e e eV V I R V I R I r I R∆ = ∆ = ∆ + ∆ = ∆ + ∆ ≈ ∆ , 

sV

cR

bI

eI

10 V+

sR
LR

inV

eR

1R

2R

1C

A

outV

cI

Fig. 45. Common emitter amplifier.  



Taras Plakhotnik                                  Electronics and circuit theory for physicists (2nd year undergraduates)    

 53  

where we have neglected the intrinsic emitter resistance er . The intrinsic emitter 

resistance of the transistor is  

1 25 mVbe B
e

c c c

V k T
r

I q I I

∆≡ = =
∆

  

That is if the collector current is 1 mA, the intrinsic resistance is only 25 Ω and can be 

neglected in comparison to the value of  eR  if e er R≪ .   

Note, the equation for er  is derived from  

exp
/

be be B
c s be c be

B B e B c c

V V k Tq q
I I V I V

k T k T q k T I qI

  ∆∆ = ∆ = ∆ → =  ∆ 
 

and therefore the value of er  is also temperature dependent. According to the Ohm’s law, 

the output voltage on the resistor cR  is  

out c c e cV I R I R∆ = ∆ ≈ ∆ , 

where approximation is made using the fact that e c bI I I= +  and that the base current is 

much smaller than the collector current.   

out c

in e

V R
A

V R

∆= ≈
∆

 

To analyse of the input resistance, note that for alternating potentials, point A and the 

ground are connected (the difference between A and the ground has only a DC 

component). Therefore 1R  and 2R  are connected in parallel for AC.  The resistance of 

resistor eR  is enhanced by 1 β+  at base (see emitter follower input resistance). The total 

input resistance of the common emitter amplifier is ( )1 2 1eR R R β+� � . Capacitor 1C  and 

the input resistance form a high pass filter with a cut-off angular frequency 

[ ]( )1 21/ eR R R Cω = � � .  The output resistance of the common emitter amplifier is 

approximately equal to cR .  

The selection criteria for 1R  and 2R  are the same as for the emitter follower.  

1. 1 2R R�  should be 10 times smaller than ( )1eR β+ . In this case the voltage divider 

is sufficiently independent on the presence of the transistor.  

2. The ratio 1 2/R R  is chosen to set the DC currents.  



Taras Plakhotnik                                  Electronics and circuit theory for physicists (2nd year undergraduates)    

 54  

The choice of the operating collector voltage is 0.5c CCV V=  (this determines the 

collector current and the emitter current if the base current contributing to the emitter 

current is neglected).    

 

Addition of the capacitor eC  increases the gain of the common emitter amplifier to a 

maximum (for AC signals) but generally speaking this gain is highly nonlinear because 

the intrinsic resistance of the transistor depends on the collector current.    

 The AC gain is   

c

e

R
A

r
≈  

However, if the amplitude of the input voltage is very small this nonlinearity can be 

neglected (because the collector current will change very little).  

 

The choice of  eC  affects minf  and is similar to the choice of 1C   (see the emitter follower 

analysis).  

 

Miller effect.  

sV

cR

bI

eI

10 V+

sR
LR

inV

eR

1R

2R

1C

eC

A

outV

Fig. 46. Low AC signal common emitter amplifier.  

CCV

cV

~
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Miller effect is a confusing way of a circuit analysis where the voltages change at both 

ends of a capacitor synchronously. In a certain sense this may increase the apparent value 

of the capacitor.  Compare two circuits in Fig. 47  

 

For the first circuit out inV AV=  and ( ) ( )1C in out inI V V j C V A j Cω ω= − = − . For the 

second circuit C inI V j Cω= . In the first circuit, the voltage source “sees” a 1 A−  times 

larger effective capacitor ( )1effC A C= − . The input voltage is 
1

1in s
s eff

V V
j R Cω

=
+

 

and is much smaller than sV  if 1s effR Cω ≫ . This effect plays an important role in 

common emitter amplifiers because it limits the maximum frequency which can be 

amplified.  

 

 

sV

cR

10 V+

sR
LR

eR

1R

2R

1C

eC

A

outV

Fig. 48. Low AC signal common emitter amplifier at high frequency.  

bcC

ceC

beC

effC

A A

C

C
outV

sV
sR

sV
sR

inV
inV

Fig. 47. Miller effect.  

outV

CI
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The base-collector capacitor is on the order of 5 pF but the effect of this capacitor is 

much larger because of the Miller effect. The effective capacitance of  bcC  is 

increased proportionally to the gain of the common emitter amplifier. If the 

amplification of the common emitter amplifier is –200, the effective capacitance effC  

is 1000 pF. The grounded effective capacitor is connected parallel to 2R . If the 

internal resistance of the signal source is 50 Ω, the frequency at which the absolute 

value of the impedance of  effC  equals the resistance of sR  can be determined from 

the equation 1/ 2 eff sfC Rπ = . Solving for f  gives the result 

( ) ( )
1 1 1

3 MHz
2 2 1 2 50 1 200 5 pFeff be

f
RC R A Cπ π π

= = = ≈
− ⋅ Ω⋅ + ⋅

.  

Note that the bandwidth of this amplifier is inversely proportional to its amplification. 

This is a quite general principle. Recollect the analysis of the inverting amplifier 

based on an operational amplifier. The bandwidth of the closed loop amplification is 

also inversely proportional to the value of the closed loop amplification.  There is 

always a trade-off between the bandwidth and the gain value.   

To increase the bandwidth, a common base amplifier can be used.  

Common base amplifier 

 

sV

cR 10 V+

sR eR

1R
2R

1C

bC

outV

Fig. 49. Common base amplifier.  
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In this amplifier the base is grounded (see capacitor bC ) and therefore there is no increase 

in the effective value of the collector-base capacitor (no Miller effect). A drawback of 

this circuit is a very small input impedance (note that the input current is the emitter 

current not the base current as in the case of common emitter amplifier.  Therefore a 

common base amplifier is frequently used together with an emitter follower (can you 

explain why?) as shown in Fig. 50.   

sV

sR

eR

cR

CCV+

EEV−

1Q

2Q

outV

Fig. 50. An emitter follower is 
used as a preamplifier for a 
common base amplifier.  



Taras Plakhotnik                                  Electronics and circuit theory for physicists (2nd year undergraduates)    

 58  

Lectures 10-11 

Transmission lines 

 

Our goal is to derive an equation describing the dependence of the voltages and currents 

on time t at different locations x. This will be a wave equation. Wave equations are very 

important. They appear in very different fields of physics (acoustics, quantum mechanic, 

electrodynamics). The physical model of the transmission line consists of inductors 

(connected in series) and capacitors (see Figure). The two quantities ℓ  and c  are the 

inductance and capacitance per unit length of the transmission line.  

 

Derivation of the wave equation    

We start from the Kirchhoff current law at node A which reads  

( ) ( ) ( ), , ,L c LI x dx t i x t I x t− = +        (8) 

Solving this for ci , one gets  

( ) ( ), ,c Li x t I x t dx
x

∂= −
∂

        (9) 

metal dielectric 

dxℓ

x

dxℓ

cdxcdx cdx

( ),V x t ( ),V x dx t+

( ),Ci x t

( ),LI x t( ),LI x dx t−

A B

Fig. 51. Transmission line and its equivalent circuit.  

2

ln
c

b

a

πε=

b
a

ln
2

b

a

µ
π

=ℓ
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Voltage across the capacitor is related to the charge on the capacitor ( ),cq x t  and the 

capacitance cdx  according to  

( ) ( ),
, cq x t

V x t
cdx

=         (10) 

We take partial time derivatives of both sides   

( ) ( ) ( ), ,
, c cq x t i x t

V x t
t t cdx cdx

∂ ∂= =
∂ ∂

      (11) 

and substitute this into Eq. (9)  

( ) ( )1
, ,LV x t I x t

t c x

∂ ∂= −
∂ ∂

      (12) 

Voltage ABV  across the inductance equals  

( ) ( ) ( ), , ,LV x dx t V x t dx I x t
t

∂+ − = −
∂

ℓ      (13) 

Replacing the left hand side with a partial derivative  

( ) ( ), ,LV x t dx dx I x t
x t

∂ ∂= −
∂ ∂

ℓ       (14) 

and dividing both sides by dx  one gets 

( ) ( ), ,LV x t I x t
x t

∂ ∂= −
∂ ∂

ℓ       (15) 

We differentiate Eq. (12) and Eq. (15) over time and coordinate respectively 

( ) ( )
2 2

2

1
, ,LI x t V x t

x t x

∂ ∂= −
∂ ∂ ∂ℓ

      (16) 

( ) ( )
2 2

2
, ,LI x t c V x t

t x t

∂ ∂= −
∂ ∂ ∂

      (17) 

The left hand sides of these two equations are equal. Equality of the right hand sides 

leads to the following wave equation for the voltage.  

( ) ( )
2 2

2 2
, ,V x t c V x t

x t

∂ ∂=
∂ ∂

ℓ        (18) 

A similar equation can be obtained for currents.  

It easy to verify that any function [ ]( )1/ 2
V t c x± ℓ  satisfies the wave equation.  

First we calculate the right hand side of Eq. (18) 
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[ ]( ) [ ]( ) [ ]( ) [ ]( )1/ 2 1/ 2 1/ 2 1/ 2
V t c x V t c x t c x V t c x

t t

∂ ∂′ ′± = ± ± = ±
∂ ∂

ℓ ℓ ℓ ℓ ,  (19) 

where ( )V u′  stands for the derivative of the function ( )V u . The second partial 

derivative can be obtained by differentiation of the above equation over time   

[ ]( ) [ ]( ) [ ]( )
2

1/ 2 1/ 2 1/ 2

2
V t c x V t c x V t c x

t

∂ ′′ ′′± = ± = ±
∂

ℓ ℓ ℓ     (20) 

Now we calculate the left hand side of Eq. (18) 

[ ]( ) [ ]( ) [ ]( ) [ ] [ ]( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
V t c x V t c x t c x c V t c x

x x

∂ ∂′ ′± = ± ± = ± ⋅ ±
∂ ∂

ℓ ℓ ℓ ℓ ℓ  (21) 

[ ]( ) [ ]( )
2

1/ 2 1/ 2

2
V t c x c V t c x

x

∂ ′′± = ⋅ ±
∂

ℓ ℓ ℓ       (22) 

Comparison of the left hand side to the right hand side shows that the wave equation is 

satisfied.  

 

Relation between current and voltage in the transmission line 

Form equation (12) follows the following equality  

( ) ( ), ,LI x t c V x t dx
t

∂= −
∂∫

       (23) 

If we substitute ( ) ( )( )1/ 2
,V x t V x c t

−= ± ℓ  we will get  

( )( ) ( )( ) ( ) ( )( )
1/ 2

1/ 2 1/ 2 1/ 2

L

c d c
I t c x c V t c x dx V u du V t c x

duc

 ′ ′± = − ± = = ± 
 

∫ ∫ℓ ℓ ∓ ∓ ℓ
ℓℓ

.  

Therefore 
1/ 2

L

V

I c
 =  
 

ℓ
∓ . The value 

1/ 2

c
 
 
 

ℓ
has the dimension of a resistance (Ω) and is 

called an impedance of a transmission line. Standard impedance for transmission lines is 

50 Ω. Note that the plus corresponds to the wave propagating to the left (see next 

section).  

 

Pulse propagation in a transmission line.  
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If we draw function ( )/V t x υ± , where 1 cυ = ℓ  at different but fixed times, the 

function repeats itself shifted to the left (if the sign is “minus”) or to the right (the sign is 

“plus”).  

 

Reflection from a transmission line loaded by an impedance Z.  

 

At the point where the load is connected to the transmission line the ratio of the voltage 

to the current is equal to the value of the impedance.  

Consider two cos-waves propagation in opposite directions.  

Fig. 53. Loaded transmission line.  

Z

x
0

x x
V f g

υ υ
   = − =   
   

x
V f t

υ
 = − 
 V

x
0x tυ−

x
V g t

υ
 = + 
 

0x 0x tυ+

Fig. 52. Three snapshots of a pulse at zero time and at time t.  The pulse propagates 
along x axis with speed υ. The ratio V/I depends on the direction of propagation.  

1/ 2
V

I c
 =  
 

ℓ

1/ 2
V

I c
 = − 
 

ℓ

0 0x t x
f t f

υ
υ υ
+   − = −   

   
Note that  

0 0x t x
g t g

υ
υ υ
−   + =   

   
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( )0 0exp expV V j t j x V j t jkx
ωω ω
υ→

 = − ≡ − 
 

, ( )0 exp
TL

V
I j t jkx

Z
ω→ = −  

and  

( )1 expV V j t jkxω← = + , ( )1 exp
TL

V
I j t jkx

Z
ω← = − +  

where /k ω υ≡  is called a wave number. The ratio of the total voltage to the total current 

is given by  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 1 0 1

0 1 0 1

exp exp exp exp

exp exp exp expTL TL

V j t jkx V j t jkx V jkx V jkxV
Z Z

I V j t jkx V j t jkx V jkx V jkx

ω ω
ω ω

− + + − +
= =

− − + − −
 

When 0x =  this ratio becomes  

0 1

0 1
TL

V VV
Z

I V V

+=
−

 

We can choose the values of  0V  and 1V  to satisfy the condition / LV I Z=  

0 1

0 1

0 1 0 1

1 0

L TL

L L TL TL

L TL

L TL

V V
Z Z

V V

Z V Z V Z V Z V

Z Z
V V

Z Z

+=
−

− = +
−=
+

 

Therefore to satisfy the condition / LV I Z=  at the point 0x =  the counter propagating 

wave should have a complex amplitude  

1 0
L TL

L TL

Z Z
V V

Z Z

−=
+

 

The solution ( ) ( )0 1exp expV j t jkx V j t jkxω ω− + +  satisfies the wave equation 

everywhere and the boundary condition at the point where the load is connected. 

Therefore ( ) ( )0 1exp expV j t jkx V j t jkxω ω− + +  is the solution correctly describing the 

voltage  at any point of the semi-infinite transmission line (including its end with the 

load) shown in Fig. 45.  
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Examples.  

1. L TLZ Z=  

In this case the amplitude of the counter propagating wave is zero. A pulse sent through a 

line with a load.  

 

V

x

Fig. 54. No reflection from the load.  

TLZ Z=

0

υ
�

V

x0

V

x
0
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2. 0LZ =  

In this case the reflection coefficient is frequency independent and the amplitude of the 

counter propagating wave equals the amplitude of the wave propagating to the right. A 

pulse sent through a transmission live will be reflected by the shortcut on the line end and 

will propagate to the left.  

 

V

x

Fig. 55. Reflection from a shortcut.   

0LZ =

0

υ
�

x0

x
0

υ
�

−υ�

−υ�

υ
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3. LZ = ∞  

In this case the amplitude of the counter propagating wave has the same absolute value 

but opposite sign. A reflected pulse will have an opposite amplitude to the amplitude of 

the incoming pulse.   

 

V

x

Fig. 56. Reflection from an open end. Note that the current is zero at the open end.   

LZ = ∞

0

υ
�

x0

V

x0

υ
�

−υ�

−υ�

υ
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Remember! The total voltage is the sum of the two pulses.  

4. How large is the reflection from a load of 100 Ω connected to a transmission line 

with impedance of 50 Ω.  

100 50 1

100 50 3
L TL

ref in in in
L TL

Z Z
V V V V

Z Z

− −= = =
+ +

 

Input impedance of a transmission line with a load 

( ) ( )
( ) ( )

0 1

0 1

exp exp

exp expTL

V jkx V jkxV
Z Z

I V jkx V jkx

− +
≡ =

− −
 and we substitute 1 0

L TL

L TL

Z Z
V V

Z Z

−=
+

 

 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

0 0

exp exp
exp exp

exp expexp exp

cos sin cos sin

cos sin cos sin

L TL

L TL L TLL TL
TL TL

L TL L TL L TL

L TL

L TL L TL
TL TL

TL L TL L

Z Z
V jkx V jkx

Z Z jkx Z Z jkxZ Z
Z Z Z

Z Z Z Z jkx Z Z jkxV jkx V jkx
Z Z

Z kx jZ kx Z kl jZ kl
Z Z

Z kx jZ kx Z kl jZ kl

−− +
+ − + −+= = =− + − − −− −

+
− += =
− +

where l  is the length of the line (a positive number). Note that the x coordinate is –l  

at the beginning of the line. 

Examples.  

1. Input impedance of an open end line 

cos sin cos

cos sin sin
L TL

OE TL TL
TL L

Z kl jZ kl kl
Z Z Z

Z kl jZ kl j kl

+= =
+

 

2. Input impedance of a line with a shortcut at the end 

cos sin sin

cos sin cos
L TL

SC TL TL
TL L

Z kl jZ kl kl
Z Z jZ

Z kl jZ kl kl

+= =
+

 

Interesting that 2
OE SC TLZ Z Z=  independent of the length  

You can use this relation to measure TLZ , the impedance of an infinitely long 

transmission line.   
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Lectures 12-14. 

Formal logic. Formal logic identities.  

Binary Boolean operations are defined by  

1 0= , 0 1= , 1A A⋅ = , 0 0A ⋅ = , 1 1A + = , 0A A+ = ,  

A A A⋅ = , A A A+ = , A A=  

Commutation axioms:  A B B A+ = +  

A B B A⋅ = ⋅  

If more than two operands are involved Boolean Algebra satisfies the following 

association and distribution laws  

Association :  ( ) ( )A B C A B C A B C+ + = + + ≡ + +  

( ) ( )A B C A B C A B C⋅ ⋅ = ⋅ ⋅ ≡ ⋅ ⋅  

Distribution: ( )A B C A B A C⋅ + = ⋅ + ⋅  

   ( ) ( ) ( )A B C A B A C+ ⋅ = + ⋅ +  

Exercise 1: Show that ( )A A B A+ ⋅ =  and ( )A A B A⋅ + =  

Solution: ( ) ( )1 1A A B A B A A+ ⋅ = ⋅ + = ⋅ =  A A A+ =  

( ) ( )1 1A A B A A A B A AB A B A A⋅ + = ⋅ + ⋅ = + = + = ⋅ =  

DeMorgan’s theorems: A B A B⋅ = +  and A B A B⋅ = +  

Logic identities can be proved by using a truth table.  
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Truth table (examples) 

A B A B⋅  A B⋅  A  B  A B⋅  A B+  A B+  A B+  

0 0 0 1 1 1 1 1 0 1 

0 1 0 1 1 0 0 1 1 0 

1 0 0 1 0 1 0 1 1 0 

1 1 1 0 0 0 0 0 1 0 

 

We have derived an important de Morgan’s theorem 

A B A B⋅ = + . Consequence: An OR operation can be replaced by a combination of AND 

and NOT operations. This is given by the equality A B A B+ = ⋅  

In a similar way one can prove that A B A B⋅ = +  and therefore A B A B⋅ = +  

 

Exercise 2. Show that ( ) ( )A B A C A BC+ ⋅ + = +  

Solution. ( ) ( ) ( ) ( )A B A C A B A A B C AA BA AC BC+ ⋅ + = + ⋅ + + ⋅ = + + + =   

( ) ( )1 1 1A B AC BC A AC BC A AC BC A C BC

A BC

= + + + = + + = + + = + + =
= +

 

 

Any numerical computation can be represented by a very large truth table. Any truth 

table can be reduced to a long Boolean logic expression involving, for example, only 

AND and NOT operations. This also can be done using OR and NOT operations.  

 

Digital electronics.  

 

AND, OR, NOT gates and their truth tables.  
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Convention:  

Low voltage level is “false” or  “zero”  

High voltage level is “true” or  “one”  

 

AND gate. OUTPUT A B= ⋅  (binary multiplication) 

A B OUTPUT 

0 0 0 

1 0 0 

Fig. 57. Examples of logical circuits.   

A

B

A B+

CCV+

A

A

CCV+

A

B

CCV+

A B⋅

a) 

b) 

c) 

A

B

CCV+

d) 

A B⋅

Open collector circuit 

External load 

This is a typical input circuit for a 
so-called TTL family 
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0 1 0 

1 1 1 

 

OR gate. OUTPUT A B= + . In the case of two operands, this is binary addition where 

the output shows the higher (most left) bit position.  

A B OUTPUT 

0 0 0 

1 0 1 

0 1 1 

1 1 1 

 

 

Exclusive OR gate XOR. OUTPUT A B= ⊕ . In the case of two operands, this is binary 

addition where the output shows the lower (most right) bit position.  

A B OUTPUT 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

 

Exercise 4. Verify that A B AB AB⊕ = + . Use the Boolean logic laws and show that 

( )( )A B A B AB⊕ = + .  

Solution. ( )( ) ( ) ( ) ( ) ( )A B AB A AB B AB A A B B A B+ = + = + + + =  

0 0AB BA AB B A+ + + = +  

NOT gate  

A OUTPUT 

0 1 

1 0 
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Symbolic representations of logical gates.  

 

 

 

TTL (transistor-transistor logic) and CMOS (complementary metal oxide 

semiconductor) ECL (emitter coupled logic) logic families. Three state logic.  

 

Basic Properties of some TTL Families. 

 74 subfamily 74LS subfamily 

Supply Voltage +5V (+/- 0.5V) +5V (+/- 0.5V) 

‘1’ Level Output Current 0.4mA 0.4mA 

‘0’ Level Output Current 16mA 8mA 

‘1’ Level Input Voltage (min) 2V 2V 

‘1’ Level Input Voltage (typical) 3.5V 3.5V 

‘0’ Level Input Voltage (max) 0.8V 0.8V 

‘0’ Level Input Voltage (typical) 0.35V 0.35V 

‘1’ Level Input Current 0.04mA 0.05mA 

‘0’ Level Input Current 1.6mA 0.4mA 

Time delay  10 ns 2 ns 

 

Note. An input which is not connected to anything works like HIGH for the TTL 

family.  

AND 
OR NOT 

XOR OR 

Fig. 58. Graphic representations of logical gates in electronic circuits.   
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Three state logic has a state when the output is disconnected (disabled). This type of 

circuits is used, for example, when many devices use shared data bus for 

communications.  

 

SR Flip-flops.  

 

SR (Set-Reset) flip-flop has two inputs (SET and RESET). Note that when the values of 

A and B are 1, there two possible values for the output terminals. If B is kept at high, 

sending zero to A sets the value Q at high (one). This state will be maintained until both 

inputs are set to low (zero). Similarly, if A is at high, sending zero to B will make the 

value of Q low (zero). This state also will be kept by the circuit until both inputs are set to 

zero.  

 

This flip-flop can be used to build a more popular JK flip-flop shown in the next Figure.   

 (SET)A

 (RESET)B

A B Q  Q  
1 0 0 1 
0 1 1 0 
0 0 1 1 
1 1 1 

0 
0 
1 

 

Q

Q

Fig. 59. Flip-flop circuit and its truth table 
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Counters.  

JK flip-flops can be used to build a binary counter.  

 

 

A

B

Q

Q

J

K

C

J K 
nQ

 
nQ

 

C 
(clock) 

A B 
1nQ +

 
1nQ +

 

 

1 1 1 0 1 0→  1 1 0→
 

0 1 

1 1 0 1 1 0→  1 0→
 

1 1 0 

Q  and Q  flip on 
every clock pulse 

0 0 1 0 1 0→  1 1 1 0 
0 0 0 1 1 0→  1 1 0 1 

No change for Q  and 

Q  
1 0   1 0→   1 1 0 
0 1   1 0→  1  0 1 

J and K are moved to 

Q  and Q  respectively 
 

Q

Q

J

K

C

Fig. 60. JK flip-flop and its truth table.  
.   

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

HIGH HIGH HIGH 

Q

Q

J

K

C

“:2”  “:4”  “:8”  

Fig. 61. 4-bit counter.  
.   
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Pulse generator.  

 

Three invertors connected in series invert the input signal and if the output of the last 

inverter is connected to the input of the first inverter a logical contradiction appears. The 

circuit starts to oscillate with a frequency of about 20 MHz “trying to resolve” the 

contradiction. The capacitor and the resistor (see Fig.) partially resolve the contradiction.  

When XV  is LOW and ZV  is HIGH, potential at Y remains lower than ZV  by the potential 

drop across resistor 1R  (see the current direction shown in the Fig. ).  No contradiction 

appears as long as YV  stays at logical LOW. However, since capacitor C  is charging, 

potential YV  increases.  

When Y HTV V=  and the potential is high enough to be logical HIGH, 1) XV  will be set 

to HIGH due to the first two invertors, 2) YV  will be pulled to even a higher potential 

Y HT HV V V≈ + , and 3) ZV  jumps to LOW , 4) the current through  1R  is  reversed.  

YV  starts to decrees until Y LTV V=   and then 1) XV   jumps to LOW,  2) YV  jumps to 

Y LT HV V V≈ −  3) ZV  jumps to HIGH, 4) the current through  1R  is  reversed and the circle 

stars over. The period of oscillations is given by  12.2T R C≈     

 

DAC and ADC 

Digital-Analogue Converter (DAC) and  Analogue-Digital Converter are electronic 

circuits which provide interconnection between analogue and digital circuits.  

2R

C

"1" "1"
"1"

Y

X

Z

1R

HI
LI

Fig. 62. Pulse generator.  
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The circuit in Fig. 64 works as a DAC (Digital-to-Analogue Converter).  

ADCs  are complementary to DACs. DACs and ADCs are used as bridging circuits 

connecting analogue outputs (for example, analogue outputs of sensor signals) to 

digital electronics and digital outputs to analogue inputs. A simple ADC can be made 

of a comparator (a circuit which signals when two voltages are equal), a binary 

counter, and DAC. Try to figure out how.  

R RR

2R 2R 2R 2R

2R

V+
8I 4I 2I I

Fig. 64. 2R-R circuit. Prove that currents through the 2R resistors are two times 
larger in each stage from right to left. Hint: Use Kirchhoff current law starting 
from the most right pair of the 2R resistors and then evaluate the equivalent 
resistance of the three most right resistors.  

R RR

2R 2R 2R 2R

2R

V+
8I 4I 2I I R

−

+

Fig. 64. Show that ( )1 4 16outV V= − +   if the switches are in the position as shown. 

Show that ( )1 2 4 8 16outV V= − + + +  if all switches are in the “right” position.  

outV
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 Lecture 15-18 

Integral transformations (Fourier and Laplace transformations). Techniques for 

solving differential equations.   

Fourier transformation.  Fourier transform of a function ( )f t  is a function of  a 

different variable ω  calculated according to the following expression 

( ) ( ) ( )expF f t f t j t dtω ω
∞

−∞

  ≡ ⋅ −  ∫  

provided that the integral exists (converges).  

 

Laplace transformation.  Fourier transform of a function ( )f t  is a function of  a 

different variable s  calculated according to the following expression 

( ) ( ) ( )
0

expsL f t f t st dt
∞

  ≡ ⋅ −  ∫  

provided that the integral exists (converges).  

 

Some properties of these transforms are very similar but some are different. The main 

difference between these transform is the restrictions on the properties of the  function 

( )f t  imposed  by the existence (convergence) of the corresponding integrals. Both 

transforms are very useful for solving differential equations. The usage of these 

transformations is based on the following theorems 

 

Theorem 1. Transform of a shifted function.  

( ) ( ) ( )0 0expF f t t j t F f tω ωω− =        

( ) ( ) ( ) ( ) ( )0 0 0expsL f t t t t st L f t tθ θ− − = −        

Proof .  

3.1. ( ) ( ) ( ) [ ]( )0 0exp expf t t j t dt f u j u t duω ω
∞ ∞

−∞ −∞

− − = − +∫ ∫ , where we have used 

substitution 0t u t= + .  
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Because ( ) [ ]( ) ( ) ( ) ( )0 0exp exp expf u j u t du j t f u j u duω ω ω
∞ ∞

−∞ −∞

− + = −∫ ∫  

3.2. ( ) ( ) ( ) ( ) [ ]( )0 0 0

0 0

exp expf t t t t j t dt f u s u t duθ ω
∞ ∞

− − − = − +∫ ∫ , where we have used 

substitution 0t u t= + .  

Because ( ) [ ]( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 0

exp exp exp exp sf u s u t du st f u su du st L f t
∞ ∞

− + = − − = −   ∫ ∫  

Theorem 2. Derivative of a transform.  

[ ] ( )dF f
jF t f

d
ω

ωω
= − ⋅  

[ ] [ ]s
s

dL f
L t f

ds
= − ⋅  

 

Proof.  

( ) ( ) ( ) ( ) ( ) ( )exp exp exp
d d

f t j t dt f t j t dt j tf t j t dt
d d

ω ω ω
ω ω

∞ ∞ ∞

−∞ −∞ −∞

− = − = − −∫ ∫ ∫  

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

exp exp exp
d d

f t st dt f t st dt tf t st dt
ds ds

∞ ∞ ∞

− = − = − −∫ ∫ ∫  

Theorem 3.  Transform of a derivative 

[ ] [ ]F f j F fω ωω′ =  

  [ ] ( ) [ ]2
F f j F fω ωω′′ =  

  [ ] [ ] ( )0s sL f sL f f′ = −  

[ ] [ ] ( )2 (0) 0s sL f s L f sf f′′ ′= − −  

Direct consequence of this theorem is transform of an integral  

[ ]
0

( )
t s

s

L f
L f d

s
τ τ  =

  ∫   

 

Proof .   
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4.1. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )exp
exp exp expt

t

df t d j t
j t dt f t j t f t dt j f t j t dt

dt dt

ω
ω ω ω ω

∞ ∞ ∞
=∞
=−∞

−∞ −∞ −∞

−
− = − − = −∫ ∫ ∫

It is essential that for the Fourier transform to exist, that the value of ( )f t is zero at 

±∞ . Therefore  ( ) ( )exp 0t
tf t j tω =∞
=−∞− =  

4.2. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

0 0

exp
exp exp 0 exptdf t d st

st dt f t st f t dt f s f t st dt
dt dt

∞ ∞ ∞
=∞

−∞

−
− = − − = − + −∫ ∫ ∫

It is essential that for the Laplace transform to exist, the value of 

( ) ( )expf t st− should be zero at +∞ . Therefore  ( ) ( ) ( )0 0exp 0t tf t st f=∞ =∞− = − . 

Thus we obtain [ ] [ ] ( )0s sL f sL f f′ = − . Using this result twice one gets  

[ ] ( ) [ ] ( ) [ ]20 0 (0)s s sL f f sL f f sf s L f′′ ′ ′ ′= − + = − − + .  

4.3. We introduce a function
0

( ) ( )
t

g t f dτ τ≡ ∫ , which has the following properties: 

(0) 0g =  and  ( )( )g t f t′ = . Therefore ( ) [ ] [ ]s s
s

L g L f
L g t

s s

′
= =   .  

Theorem 4. Partial fraction expansion. 

This theorem is very useful when calculating an inverse Laplace transform of a ratio of 

two polynoms of s. The theorem states that the following decomposition is always 

possible.  

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 1
1 0 1 0

1
1 0 1 2

1 2

1 1 11 2

... ...

... ...

...

p

n

n n n n
n n n n

kn n k k
n n p

kk k
pmm m

m m m
m m m

p

a s a s a a s a s a

b s b s b s s s s s s

bb b

s s s s s s

− −
− −

−
−

= = =

+ + + += =
+ + − − −

= + + +
− − −

∑ ∑ ∑
, 

1

p

m
m

n k
=

<∑  

In these expressions 1 2 3, , ...s s s  are the roots of the denominator. These roots can be 

multiple ( 1 2 3, , ,...k k k  is the multiplicity of the corresponding roots). This looks 

complicated but becomes clearer if an example is considered.  

Example: Find the partial fraction expansion for the following function 
( ) ( )

2

2

1

1 2

s s

s s

+ +
− −
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We want to find a, b, and c such that  

( ) ( ) ( )
2

2 2

1

1 21 2 1

s s a b c

s ss s s

+ + = + +
− −− − −

.  

First we do simple algebra 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2

2 1 2 1 1

1 2 1 2

a s b s s c s s s

s s s s

− + − − + − + +=
− − − −

 

( ) ( ) ( ) ( )
2 2 2

2 2

2 3 2 2 1

1 2 1 2

as a bs bs b cs cs c s s

s s s s

− + − + + − + + +=
− − − −

 

The equality holds for all s if the factors in front of corresponding powers of s are equal. 

For example, the factors multiplying 2s  should be equal. We have to solve three linear 

equations for a, b, and c.  

1 1 1 7

3 2 1 3 3 6

2 2 1 2 0 3 3

b c b c b c c

a b c a b a b b

a b c a b a a

+ = + = + = =   
   − − = ⇒ − = ⇒ − = ⇒ = −   
   − + + = − + = − = = −   

 

( ) ( ) ( )
2

2 2

1 3 6 7

1 21 2 1

s s

s ss s s

+ + = − − +
− −− − −

 

 

Other useful relations  

1. Substitution 

( ) ( ) ( ) ( ) ( ) ( ) [ ]( ) ( )
0 0

exp exp exp exps s aL at f t at f t st dt f t s a t du L f t
∞ ∞

−   ⋅ = − = − − =   ∫ ∫  

if  0s a− > .  

2.  Laplace transform and convolution  

The following integral  

( ) ( )
0

t

f t u g u du f g− ≡ ∗∫  
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is called convolution. There is a relation between Laplace transform of a convolution 

and Laplace transforms of the functions f and g.   

( ) ( ) ( ) ( )
0 0 0 0

t
st st stf t u g u du e dt f t e dt g t e dt

∞ ∞ ∞
− − − 

− ⋅ = ⋅ ⋅ ⋅ 
 
∫ ∫ ∫ ∫  

( ) ( ) [ ] ( ) ( )
0

t

L f t u g u du L g f L f t L g t
 

   − ≡ ∗ = ⋅     
 
∫  

( ) ( ) ( ) ( )1

0

t

t s sf t u g u du L L f t L g t−     − = ⋅    ∫   

 

Examples.  

1.  

( ) ( ) ( ) ( )
2 2

2 2 2 2

exp exp 1 1 1 1
sin

2 2 2

1 2

2

s s

j t j t s j s j
L t L

j j s j s j j s

j

j s s

ω ω ω ω
ω

ω ω ω
ω ω
ω ω

   − − + − − 
  = = − = =      − + +    

=
+ +

 

2.  

( ) ( ){ } ( ) ( ){ } ( )

( )

0

exp exp expL c j b a j b t c j b a j b t st dt

c j b c j b

a j b s s a j b

∞

 + ⋅ + ⋅ = + ⋅ + ⋅ − = 

+ ⋅ + ⋅− =
+ ⋅ − − + ⋅

∫
 

 

Steps for solving differential equations using Laplace transform 

1. Apply Laplace transform to both sides of the differential equation (use transform 

of derivatives theorem). 

2. Solve the linear equation for the unknown Laplace transform.  

3. Find the inverse Laplace transform. Use partial fraction expansion if required.   

Example.  

Solve differential equation 2 8 10 0f f f′′ ′+ + = , if (0) 0f ′ =  and (0) 1f =  

1. 
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[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

2

2

2 8 10 2 2 (0) 2 (0) 8 8 (0) 10

2 2 8 8 10 0

s s s

s s

L f f f s L f sf f sL f f L f

s L f s sL f L f

′′ ′ ′+ + = − − + − + =

− + − + =
 

2.  

[ ] 2

2 8

2 8 10s

s
L f

s s

+=
+ +

 

3.  

Find roots of 22 8 10s s+ + . 
2

1,2

4 4 2 10
2

2
s j

− ± − ⋅= = − ± .  

[ ] ( ) ( ) ( )
2 8 4

2( 2 ) 2 2 2 2 2s

s s A B
L f

s j s j s j s j s j s j

+ += = = +
+ − + + + − + + + − + +

  

The equality ( ) ( )2 2 4A s j B s j s+ + + + − = +  should hold for any s.  There are two 

ways to ensure this. One approach is to write the equality relations for corresponding 

coefficients on the right and left hand sides. Thus  

( ) ( ) ( ) ( ) ( )2 2 2 2 4As A j Bs B j A B s A j B j s+ + + + − = + + + + − = +  holds if 

( ) ( )
1

2 2 4

A B

A j B j

+ =
 + + − =

 

It many cases an easier approach is to substitute 2s j= − −  in 

( ) ( )2 2 4A s j B s j s+ + + + − = + .  This makes the coefficient before A zero  and let us 

find B. Then we substitute 2s j= − +  making the coefficient before B zero (in this way 

we will find A).  

  

( )2 2 2 4

( 2 2 ) 2 4

1

2
2 1

2 2

B j j j

A j j j

B j

j
A j

j

 − − + − = − − +


− + + + = − + +

 = +
 + = = − +


 

Thus we obtain 

[ ]
1 1
2 2

2 2s

j j
L f

s j s j

+ −
== +

+ − + +
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Inverse Laplace transform (see table) gives 

Answer:  [ ]2 cos( ) 2sin( )tf e t t−= + .  

 

Laplace transform of the response of a circuit to a δ -impulse (the initial conditions are 

assume to be all zeros) is called a transfer function of a circuit.   

Example.  If the function of a circuit is described by a differential equation 

( )
2

2

d V dV
a b cV t

dt dt
δ+ + = ,  

where a, b, and c are constants, we can apply Laplace transform to the two sides of this 

equation to obtain  

[ ] [ ] [ ]2 1s s sas L V bsL V cL V+ + =  

By solving this for [ ]sL V  one gets the transfer function of this circuit in s-domain.  

( ) [ ] 2

1
sH s L V

as bs c
≡ =

+ +
 

If the right hand side of this equation is not a δ -function but an arbitrary input voltage 

( )inV t  then the response of the circuit will be 

[ ] [ ] [ ]2
( )s in

s s in

L V
L V L V H s

as bs c
= =

+ +
 

Stability of a circuit   

The circuit is stable if its response to a δ -function is finite. To find out if a circuit is 

stable we have to apply the inverse Laplace transform to its transfer function. If the 

transfers function is a ratio of two polynoms, this can be done using the partial fraction 

expansion method. Because the inverted Laplace transform of  

   ( )
c j d

s a j b

+ ⋅
− + ⋅

  

is   

( ) ( )expc j b a j b t + ⋅ + ⋅  , 

the circuit is stable if real parts of all roots of the denominator in the ratio of the two 

polynoms  are negative.  

Roots of the numerator are called zeros of the transfer function.  
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In the frequency domain, the transfer function is defined as the ratio of the output 

complex amplitude to the input complex amplitude if the input is given by ( )expinV j tω . 

If we substitute jω  instead of s in the expression for the transfer function s-domain, we 

will get the transfer function in ω -domain.  

Example.  

( )
2

2
expin

d V dV
a b cV V j t

dt dt
ω+ + =   

We seek a solution in the form of ( )expoutV V j tω= . Substitution leads to  

( )2

out out out ina j V j bV cV Vω ω+ + =  

And one gets  

( )
( )2

1out

in

V
H

V a j j b c
ω

ω ω
= =

+ +
.  

Compare this to the above equation for ( )H s .  
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Fourier transformation Laplace transformation 

( ) ( ) ( )1
exp

2
f t F j t dω ω ω

π

∞

−∞

= ∫  ( ) [ ] ( )1
exp

2

j

s

j

f t L f st ds
j

γ

γπ

+ ∞

− ∞

= ∫  

The constant γ  is chosen such that all the 

singularities of [ ]sL f  are on the left form 

the vertical line s γ=  on the complex 

plane.  

[ ] ( ) ( )expF f f t j t dtω ω
∞

−∞

= −∫  [ ] ( ) ( )
0

expsL f f t st dt
∞

= −∫  

[ ] [ ]F f j F fω ωω′ =  

[ ] ( ) [ ]2
F f j F fω ωω′′ =  

[ ] ( ) [ ]0s sL f f sL f′ = − +  

[ ] ( ) [ ]20 (0)s sL f f sf s L f′′ ′= − − +  

 [ ]1

0
( )

ts
s

L f
L f d

s
τ τ−  

= 
 

∫  

 [ ] ( ) ( )L g f L f t L g t   ∗ = ⋅     

[ ] ( )dF f
jF t f

d
ω

ωω
= − ⋅  

[ ] [ ]s
s

dL f
L t f

ds
= − ⋅  
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Table of Laplace transforms 

Function ( )f t  Laplace transform 

1 1
,  0s

s
>  

[ ]2 cos( ) sin( )ate c t d tω ω− ⋅ + ⋅  c jd c jd

s a j s a jω ω
− ++

+ − + +
 

( )exp at  1
s a−

, s a>  

nt  
1

!
,  0

n

n
s

s + >  

( )cos tω  
2 2

,  0
s

s
s ω

>
+

 

( )sin tω  
2 2

,  s a
s

ω
ω

>
+

 

( ) ( )exp cosat tω  

( )2 2
,  

s a
s a

s a ω
− >

− +
 

( ) ( )exp sinat tω  

( )2 2
,  s a

s a

ω
ω

>
− +

 

( )cost tω  

( )
2

22 2
,  0

s
s

s

ω
ω

− >
+

 

( )sint tω  

( )22 2

2
,  0

s
s

s

ω
ω

>
+

 

( )tδ   [ ] 1sL δ =  

 
 


