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Simplicity of Photons and Ultracold Gases
[1 underlying interactions are well understood
[1 easily characterised by a few parameters

[] interactions can be tuned

— use simple theoretical models to high accuracy

— develop and test new methods of calculation
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Theoretical Methods

> deterministic methods:

[] exact diagonalisation [ intractable for = 5 particles
[1 factorization L] not applicable for strong correlations
[1 perturbation theory [ diverges at strong couplings

> probabilistic methods:

[1 quantum Monte Carlo (QMC)
[1 stochastic wavefunction/fields
[1 phase-space methods
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Overview

> Introduction to phase-space representations

> density operator description of quantum evolution (3 classes)

[1 static, unitary and open

> Gaussian operator bases (3 types)

[1 coherent, thermal and squeezed

> applications (3 examples)

[1 pulse propagation in optical fibres (photons)
[1 Hubbard model (atoms)
[1 simple atomic-molecular dynamics (molecules)
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Phase-space distributions

> A classical state can be represented by a joint probability distribution in
phase space P(x,p)

> 1932: Wigner constructed an analogous quantity for a quantum state:

W(X, p) = / dy@ (Xx—y) W (x+Yy) exp(—2iyp/h)

[dXW(x, p) = 2AP(p)

[1 Wigner function gives correct marginals: [dyW(x, p) = 2hP(X)

L] but it is not always positive — not a true joint probability

> a positive Wigner function is a hidden variable theory
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Probability distributions

> many ways to define phase-space distributions:

[1 eg Wigner, Husimi Q and Glauber-Sudarshan P
[1 all defined in terms of coherent states
L1 correspond to different choices of orderings

> to be a probabilistic representation, the phase-space functions must:

P W Q
exist and be nonsingular 0 O O
always be positive I
evolve via drift and diffusion | L1 [ [

o = ¢}
e o « P X P
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Reversiblility

> classical random process is irreversible

[1 outward (positive) diffusion

> guantum mechanics Is reversible

[1 phase-space functions generally don’t have positive diffusion
A solution!

> dimension doubling

[1 diffusion into ‘imaginary’ dimensions [
[1 observables evolve reversibly [
[1 also fixes up existence and positivity [
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Phase-space representation
b= / POVA(N )N

P(

> A(

N
P( A )is a probability distribution
N

A ) is a suitable operator basis

H
> A is a generalised phase-space coordinate

H
> d A is an integration measure

> equivalent to
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Density operators for quantum evolution

1. Unitary dynamics: p(t) = e Ht//p(0)gHt/"

2. Equilibrium state: P, (T) = e (H-HN)/keT

> 5p=3|H—mN.p| ;B=1/keT
3. Open dynamics: Psys = Trres {P}
> 3p=—1|H,p| +v(2RR" — R'Rp— pR'R)
> each type is equivalent to a Liouville equation for p:

d._.

P = L[P]; T=t,B
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Phase-space Recipe

S

1. Formulate : 0p/dt = L[]

—

2. Expand: [OP/0TAd A = [PL [7\} d A
3. Transform :E [/A\} — L/A\

~ — ~ —
4. Integrate by parts: [PLAAA = [ALPdA
5. Obtain Fokker-Planck equation: d0P/dt = L'P

H
6. Sample with stochastic equations for A
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Stochastic Gauges

> Mapping from Hilbert space to phase space not unigue

[1 many “gauge” choices

H
> Can alter noise terms B;j, introduce arbitrary drift functions g;( A )

Weight dQ/dt = QJ[U +g; (]
Trajectory  dA;/dT = A +B;j[{; — 0]

> Can also choose different bases, identities
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Interacting many-body physics

=

D = A

[1 many-body problems map to nonlinear stochastic equations
[1 calculations can be from first principles
[1 precision limited only by sampling error

[1 choose basis to suit the problem
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Operator Bases

> need basis simple enough to fit into a computer, complex enough to contain
the relevant physics:
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General Gaussian operators

a generalisation of the density operators that describe Gaussian states

> (Gaussian states can be:

[1 coherent (for bosons), squeezed, or thermal

i & H

L1 or any combination of these

> characterised by first-order moments: X, P, X2, E Xp

L1 all higher-order moments factorise

Simulating many-body physics with quantum phase-space methods

18



Gaussian Basis I: Coherent-state projectors

~ Ja){(@)’
AN (CESEIT)

> defines the 4P distribution, with a doubled phase space A = (Q,a,a™)

> moments: (O(a",a)) =E[O(a™,a)]
> successful for many applications in quantum optics

> successful simulations of short-time quantum dynamics of BEC
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Evaporative Cooling of a BEC

> first-principles 3D calculation

[1 start with Bose gas above T; finish with narrow BEC peak
[1 20000atoms, 32000modes
[1 Hilbert space is astronomically large

L] Problems!

[1 method pushed to the limit
1 breaks down for longer times, stronger interactions
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Gaussian Basis Il: Thermal operators
A=l £n[: exp{a(l T —[l+n]” )AT}

H
> now have a phase space of variances: A = (Q,n)

> defined for bosons (upper sign) and fermions (lower sign)
> moments: <§|T/8.\J> = [n”] <§|Té\]ré.\]a> =E [niinjj inijnji]

> suitable for cold atoms
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Gaussian Basis Ill: General form (including squeezing)

AN)=0Q ‘ofl - exp [ES@T (I:$I:—c:5‘1) 6@/2} :

=a—a

D)

relative displacement: 0

annihilation and creation  operators: a — (ﬁl,...,ﬁm,ﬁl,...,ﬁb)

coherent offset: 0 = (0l1,...,0, 07 ,....04 ), (@ = O for fermions)

. nT+l  m ] [il O]
covariance: 0 = 1= :

m"™ |+n 0O |

upper signs: bosons; lower signs:  fermions
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Extended phase space

-

A= (Qua,a",nmm")

— Hilbert-space dimension: 2V for fermions, N™ for bosons

— phase-space dimension: 2(1— M + 2M?) for fermions, 2(1 -+ 3M + 2M?)
for bosons

> Moments: <§iTAj> =E [O(iJrO(j + nii}
)
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>
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>

>

Overview
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[1 pulse propagation in optical fibres (photons)
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Application I: photons in a fibre

H= I:I\F+|:|\L+I:I\G‘|—|:|\R
> qu -fibre-optic Hamiltonian, including x<3)nonlinearity
> IqL, IqG: coupling to absorbing reserviors and fibre amplifier reserviors

> Hg: nonlinear coupling to non-Markovian phonon reserviors

[1 models Raman transitions and Brillouin effect (GAWBS)

> have 10° modes and 10 particles
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Scaled quantum field

> define a quantum photon-density field in terms of mode operators:

@(t,x):\/%T / dkalt, k)el(k—kox+ioxt. [@(t,x),LTﬂ(t,x') — 3(x— X))

> change to propagative reference frame with scaled variables:

>l

t< (t—Xx/V)/to | X< X/X | = Wy/Vig/

[1 tpis a typical pulse duration
[ Xo=t5/|K"| is the dispersion length
0 n=|K'|Ac/(nhwtty) is a typical photon number
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Quantum Langevin Equations

> Raman-modified Heisenberg equations for photon-flux field:

02

/dtgt—t O %) + T (t,%) + —~_o(t, x)

GX 20t2

+ [i / dt'h(t —t")@' (', x)@(t’,x) + TR(t,X) | @(t, x)

> correlations of the reservoir fields:

GA

(F@XT(W0)) = Tex3x—x)8w-u)
<FT(Q)’,X/)F(Q),X)> - GT;(U),X)?S(X—X/)&Q)_“)/)

<FRT((Q”X’)/F\R(Q)7X)> _ a (’m‘)[nth(’w‘)+@( )]6(X—X/)6((JO—(D/)
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Phase-Space Equations
> apply the phase-space recipe, use coherent-state basis

> two choices:

1. +P

(a) exact
(b) defined on a doubled phase space
(c) maps to normally ordered correlations

2. Wigner

(a) approximation, good for large mode occupations, short times
(b) defined on a classical phase space
(c) maps to symmetrically ordered correlations
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Wigner Equations

> get stochastic, Raman-modified nonlinear Schrodinger equation:

;x (t,x) = / dt'g(t —tHe(t',x) +I(t, X)izgzq)(tvx)

+ [i /_Oodt’h(t —the (', x)o(t’, x) + I'R(t,x)] o(t,X)

> noise correlations:

(M (@, (0, X)) = aA(w);ﬁaG(w)é(x—x’)é(w—oo’)

(M@, (o, X)) = - — (|a) [nth(‘w’)+

(BQt.0)AG(Y,0) = o 3(t—t)
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+P Equations

> get two stochastic Raman-modified nonlinear Schrédinger equations:

d ) | 07
SO = — [ dlgt— )@t X) - (LX) + 50
1 [i / dt’h(t—t’)cp+(t’,X)<P(t’,X)+FR(t,X)] o(t,X)
i +(t X) B _/oo dt/ *(t_t/) —I—(t/ X)_l_r—i—(t X) |_a_2
5P (LX) = — | dtg v KT 2002

# -1 [dt )0 e (0 + T 0] 971

> for non-classical states, ¢ and @ are not complex conjugate
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+P noise correlations

(M, XM (w, X)) = O(Gr_(]w)5(X—X')5(®—(ﬂ/)
(@Y (63,X)) = (]01) [ (|6f) + O(—0)] 3(x — X)3(00— )

(MM, X)) = %{GR(!OOD [N (J0d]) +O(—w)] — iRe [h(w)] §
xO(X — X )d(w+ w)

> no Initial noise for a coherent state

> but there is multiplicative noise due to spontaneous scattering
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Simulations

> soliton jitter, soliton squeezing, supercontinuum generation

deOlZSabc; 1000 paths

|
N

|
o

Relative noise (dB)
A

I
00]

Electronic only
‘‘‘‘‘ Raman T=300K N

~10 - - - Raman T = 1E-6K S
0 2 4 6 8 10 12
XIX,
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Application Il: atoms In a lattice

Fermions

1 T
H — —Zt” CJO'_|_U anT J,lcjalcjaT

1],0
> simplest model of an interacting Fermi gas on a lattice

L1 weak-coupling limit — BCS transitions
[1 solid-state models; relevance to High-T; superconductors
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Solving the Hubbard Model

> only the 1D model is exactly solvable (Lieb & Wu, 1968)
> even then, not all correlations can be calculated

> higher dimensions - can use Quantum Monte Carlo methods.

1 except for a few special symmetrical cases, QMC suffers from sign problems
with the Hubbard model

> e.g. sign problems for repulsive interaction away from half filling

L1 sign problem increases with dimension, lattice size, interaction strength
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Fermionic sign problem

> Quantum Monte Carlo (QMC) samples many-body wavefunction @(r) (wave-
function treated as a probabillity)

> but Fermion states are antisymmetric

[1 wavefunction nonpositive

> must introduce (possibly negative) weighting factors

[1 bad sampling errors (unless approximations used)

(A) ~ (sA)

()
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Applying the Gaussian representation

> Use thermal basis, and apply mappings

(

PN 0
NP — <2ng— (| —no)—no} P(Q,n,n|)

\ oNng
P ( 0
png — < 2ng— 1 —ng—(l —ng)} P(Q,ny,n))
; ong
N 0

—> Fokker-Planck equation for P, with drift and diffusion

—> sample with stochastic equations for Q2 and ng
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Positive-Definite Diffusion

> Modify interaction term with a ‘Fermi gauge’:

U

o Liie. (= =\
U iR = _§|U’Z-<njj,l_mnjm> -
J J

—> diffusion matrix has a real ‘square root’ matrix

—> realise the diffusion with a real noise process
—> problem maps to a real (and much more stable) subspace
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Stratonovich Equations

> [t stochastic equations, in matrix form:

dQ
E — Q{-Ztijnij,o‘l‘u anj’lnjj’Tu;njm}

i],0 ]
dng 1

dt _é{(l _no)Agl)nG_|_n0AgZ)(| _nc)}’

where the stochastic propagator matrix is
Ao = [t +8 {Unjjo— ] +£8;v/2U[E}

> E%r) are delta-correlated white noises
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6,(0)

1D Lattice-100 sites

1000 paths

1.4 .
1.3“—'—‘—'—‘—'—‘—'—‘—'—‘—':‘:':‘——-""""""‘““'*“"*““-‘-"‘"*""
1.2}
1.1r ,," — repulsive

. - - - attractive

limit(analytic)
0.6 ' ' '
0 0.5 1 1.5
=UT
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Branching

> averages are weighted,eg

(A() =

] but weights spread exponentially=—> many irrelevant paths
—> delete low-weight paths and clone high-weight paths:

mUP) = Integer [E—I—Q(jp)/ﬁ}

> & € [0,1] is a random variable, Q is an average weight
> after branching, weights of surviving paths are equalised
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16x16 2D Lattice

E/NL, nT/NL

0 0.5 1 1.5 2 2.5 3
=T

No sign problem!
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Application Ill: Molecules in a well

> Hamiltonian: H = BTBT—l—aTb]_bz

e = ix(atm—oam®) +/ixm (Mg +mte)
iy = ix(a™m—oam®) +./ixm (mg;+mtg)
M = —ixa(1En )+ /ix (PG +mmd})
mt = ixat(1+n£n) ++/ix (g +m2g) |

a = —|Xm—\/&Z1>
at = ixm +./ix¢e.
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Result: Pauli blocking

— fermionic
—— bosonic

molecules

N
o3
.[>
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Summary

> Generalised phase-space representations provide a means of simulating
many-body quantum physics from first principles, with precision limited only
by sampling error.

> Coherent-state-based methods have been successful in simulating quantum
dynamics of photons and weakly interacting ultracold gases.

> Gaussian-based methods extend the applicability to highly correlated sys-
tems of bosons and fermions.

> Simulated the Hubbard model (fermions in a lattice) without sign errors.
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