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Simplicity of Photons and Ultracold Gases

✔ underlying interactions are well understood

✔ easily characterised by a few parameters

✔ interactions can be tuned

→ use simple theoretical models to high accuracy

→ develop and test new methods of calculation
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Theoretical Methods

¤ deterministic methods:

➜ exact diagonalisation ✖ intractable for & 5 particles
➜ factorization ✖ not applicable for strong correlations
➜ perturbation theory ✖ diverges at strong couplings

¤ probabilistic methods:

➜ quantum Monte Carlo (QMC)
➜ stochastic wavefunction/fields
➜ phase-space methods
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Overview

¤ introduction to phase-space representations

¤ density operator description of quantum evolution (3 classes)

➜ static, unitary and open

¤ Gaussian operator bases (3 types)

➜ coherent, thermal and squeezed

¤ applications (3 examples)

➜ pulse propagation in optical fibres (photons)
➜ Hubbard model (atoms)
➜ simple atomic-molecular dynamics (molecules)
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Phase-space distributions

¤ A classical state can be represented by a joint probability distribution in
phase space P(x,p)

¤ 1932: Wigner constructed an analogous quantity for a quantum state:

W(x, p) =
2
π

Z
dyψ∗ (x−y)ψ(x+y)exp(−2iyp/~)

✔ Wigner function gives correct marginals:

R
dxW(x, p) = 2~P(p)R
dyW(x, p) = 2~P(x)

✘ but it is not always positive → not a true joint probability

¤ a positive Wigner function is a hidden variable theory
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Probability distributions

¤ many ways to define phase-space distributions:

➜ eg Wigner, Husimi Q and Glauber-Sudarshan P
☛ all defined in terms of coherent states
☛ correspond to different choices of orderings

¤ to be a probabilistic representation, the phase-space functions must:

P W Q
exist and be nonsingular ✖ ✔ ✔

always be positive ✖ ✖ ✔

evolve via drift and diffusion ✖ ✖ ✖
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Reversibility

¤ classical random process is irreversible

➜ outward (positive) diffusion

¤ quantum mechanics is reversible

➜ phase-space functions generally don’t have positive diffusion

A solution!

¤ dimension doubling

➜ diffusion into ‘imaginary’ dimensions ✔

➜ observables evolve reversibly ✔

➜ also fixes up existence and positivity ✔
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Phase-space representation

ρ̂ =
Z

P(
−→
λ )Λ̂(

−→
λ )d

−→
λ

¤ P(
−→
λ )is a probability distribution

¤ Λ̂(
−→
λ ) is a suitable operator basis

¤
−→
λ is a generalised phase-space coordinate

¤ d
−→
λ is an integration measure

¤ equivalent to

ρ̂ = E
[
Λ̂(
−→
λ )

]
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Density operators for quantum evolution

1. Unitary dynamics: ρ̂(t) = e−iĤt/~ρ̂(0)eiĤt/~

¤ ∂
∂t ρ̂ =− i

~

[
Ĥ, ρ̂

]

2. Equilibrium state: ρ̂un(T) = e−(Ĥ−µN̂)/kBT

¤ ∂
∂βρ̂ = 1

2

[
Ĥ−µN̂, ρ̂

]
+

; β = 1/kBT

3. Open dynamics: ρ̂Sys = TrRes{ρ̂}
¤ ∂

∂t ρ̂ =− i
~

[
Ĥ, ρ̂

]
+ γ

(
2R̂̂ρR̂†− R̂†R̂̂ρ− ρ̂R̂†R̂

)

¤ each type is equivalent to a Liouville equation for ρ̂:

d
dτ

ρ̂ = L̂ [ρ̂] ; τ = t,β
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Phase-space Recipe

1. Formulate : ∂ρ̂/∂τ = L̂[ρ̂]

2. Expand :
R

∂P/∂τΛ̂d
−→
λ =

R
PL̂

[
Λ̂

]
d
−→
λ

3. Transform : L̂
[
Λ̂

]
= LΛ̂

4. Integrate by parts:
R

PLΛ̂d
−→
λ =⇒ R

Λ̂L ′Pd
−→
λ

5. Obtain Fokker-Planck equation: ∂P/∂τ = L ′P

6. Sample with stochastic equations for
−→
λ

Simulating many-body physics with quantum phase-space methods 13



Stochastic Gauges

¤ Mapping from Hilbert space to phase space not unique

➜ many “gauge” choices

¤ Can alter noise terms Bi j , introduce arbitrary drift functions g j(
−→
λ )

Weight dΩ/dτ = Ω [U +g j ζ j]

Trajectory dλi/∂τ = Ai +Bi j [ζ j− g j]

¤ Can also choose different bases, identities
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Interacting many-body physics

ρ̂ =⇒ −→
λ

✔ many-body problems map to nonlinear stochastic equations

✔ calculations can be from first principles

✔ precision limited only by sampling error

✔ choose basis to suit the problem
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Operator Bases

¤ need basis simple enough to fit into a computer, complex enough to contain
the relevant physics:

ρ

σρ

=

∼

P

σ
P

⊗

+

Λ

σΛ
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General Gaussian operators

a generalisation of the density operators that describe Gaussian states

¤ Gaussian states can be:

➜ coherent (for bosons), squeezed, or thermal

➜ or any combination of these

¤ characterised by first-order moments: x, p, x2, p2, xp

➜ all higher-order moments factorise
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Gaussian Basis I: Coherent-state projectors

Λ̂ =

∣∣α〉〈
(α+)∗

∣∣
〈
(α+)∗

∣∣∣∣α〉

¤ defines the +P distribution, with a doubled phase space
−→
λ = (Ω,α,α+)

¤ moments:
〈
O

(
â†, â

)〉
= E [O(α+,α)]

¤ successful for many applications in quantum optics

¤ successful simulations of short-time quantum dynamics of BEC
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Evaporative Cooling of a BEC

¤ first-principles 3D calculation

➜ start with Bose gas above Tc; finish with narrow BEC peak
➜ 20000atoms, 32000modes
➜ Hilbert space is astronomically large

✘ Problems!

✘ method pushed to the limit
✘ breaks down for longer times, stronger interactions
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Gaussian Basis II: Thermal operators

Λ̂ = |I ±n|∓1 : exp
[
â
(

I ∓ I − [I ±n]−1
)

â†
]

:

¤ now have a phase space of variances:
−→
λ = (Ω,n)

¤ defined for bosons (upper sign) and fermions (lower sign)

¤ moments:
〈

â†
i â j

〉
= E [ni j ] ,

〈
â†

i â
†
j â jâi

〉
= E [niin j j ±ni jn ji ]

¤ suitable for cold atoms
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Gaussian Basis III: General form (including squeezing)

Λ̂(
−→
λ ) = Ω

√∣∣∣σ
∣∣∣
∓1

: exp
[
δâ†

(
I ∓ I −σ−1

)
δâ/2

]
:

relative displacement: δâ = â−α

annihilation and creation operators: â =
(

â1, ..., âM, â†
1, ..., â

†
M

)

coherent offset: α =
(
α1, ...,αM,α+

1 , ...,α+
M

)
, (α = 0 for fermions)

covariance: σ =
[

nT± I m
m+ I ±n

]
, I =

[ ± I 0
0 I

]
.

upper signs: bosons; lower signs: fermions
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Extended phase space

−→
λ = (Ω,α,α+,n,m,m+)

=⇒ Hilbert-space dimension: 2M for fermions, NM for bosons

=⇒ phase-space dimension: 2(1−M +2M2) for fermions, 2(1+3M +2M2)
for bosons

¤ Moments:

〈âi〉= E [αi]〈
â†

i â j

〉
= E

[
α+

i α j +ni j

]

〈 âiâ j〉= E [αiα j +mi j ]
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Application I: photons in a fibre

Ĥ = ĤF + ĤL + ĤG+ ĤR

¤ ĤF :fibre-optic Hamiltonian, including χ(3)nonlinearity

¤ ĤL, ĤG: coupling to absorbing reserviors and fibre amplifier reserviors

¤ ĤR: nonlinear coupling to non-Markovian phonon reserviors

➜ models Raman transitions and Brillouin effect (GAWBS)

¤ have 102 modes and 109 particles

Simulating many-body physics with quantum phase-space methods 25



Scaled quantum field

¤ define a quantum photon-density field in terms of mode operators:

Ψ̂(t,x) =
1√
2π

Z
dkâ(t,k)ei(k−k0)x+iω0t ;

[
Ψ̂(t,x),Ψ̂†(t,x′)

]
= δ(x−x′)

¤ change to propagative reference frame with scaled variables:

t ⇔ (t−x/v)/t0 x⇔ x/x0 φ̂ = Ψ̂
√

vt0/n

➜ t0 is a typical pulse duration
➜ x0 = t2

0/|k′′| is the dispersion length
➜ n = |k′′|Ac/(n2~ω2

ct0) is a typical photon number
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Quantum Langevin Equations

¤ Raman-modified Heisenberg equations for photon-flux field:

∂
∂x

φ̂(t,x) = −
Z ∞

−∞
dt′g(t− t ′)φ̂(t ′,x)+ Γ̂(t,x)± i

2
∂2

∂t2
φ̂(t,x)

+
[
i
Z ∞

−∞
dt′h(t− t ′)φ̂†(t ′,x)φ̂(t ′,x)+ Γ̂R(t,x)

]
φ̂(t,x)

¤ correlations of the reservoir fields:

〈
Γ̂(ω,x)Γ̂†(ω′,x′)

〉
=

αA

n
(ω,x)δ(x−x′)δ(ω−ω′)

〈
Γ̂†(ω′,x′)Γ̂(ω,x)

〉
=

αG

n
(ω,x)δ(x−x′)δ(ω−ω′)

〈
Γ̂R†(ω′,x′)Γ̂R(ω,x)

〉
=

αR

n
(|ω|) [nth(|ω|)+Θ(−ω)]δ(x−x′)δ(ω−ω′)
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Phase-Space Equations

¤ apply the phase-space recipe, use coherent-state basis

¤ two choices:

1. +P

(a) exact
(b) defined on a doubled phase space
(c) maps to normally ordered correlations

2. Wigner

(a) approximation, good for large mode occupations, short times
(b) defined on a classical phase space
(c) maps to symmetrically ordered correlations
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Wigner Equations

¤ get stochastic, Raman-modified nonlinear Schrödinger equation:

∂
∂x

φ(t,x) = −
Z ∞

−∞
dt′g(t− t ′)φ(t ′,x)+Γ(t,x)± i

2
∂2

∂t2
φ(t,x)

+
[
i
Z ∞

−∞
dt′h(t− t ′)φ∗(t ′,x)φ(t ′,x)+ΓR(t,x)

]
φ(t,x)

¤ noise correlations:

〈Γ(ω,x)Γ∗(ω′,x′)〉 =
αA(ω)+αG(ω)

2n
δ(x−x′)δ(ω−ω′)

〈
ΓR(ω,x)ΓR∗(ω′,x′)

〉
=

αR

n
(|ω|)

[
nth(|ω|)+

1
2

]
δ(x−x′)δ(ω−ω′)

〈∆φ(t,0)∆φ∗(t ′,0)〉 =
1
2n

δ(t− t ′)
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+P Equations

¤ get two stochastic Raman-modified nonlinear Schrödinger equations:

∂
∂x

φ(t,x) = −
Z ∞

−∞
dt′g(t− t ′)φ(t ′,x)+Γ(t,x)± i

2
∂2

∂t2
φ

+
[
i
Z ∞

−∞
dt′h(t− t ′)φ+(t ′,x)φ(t ′,x)+ΓR(t,x)

]
φ(t,x)

∂
∂x

φ+(t,x) = −
Z ∞

−∞
dt′g∗(t− t ′)φ+(t ′,x)+Γ+(t,x)∓ i

2
∂2

∂t2
φ

+
[
−i

Z ∞

−∞
dt′h∗(t− t ′)φ(t ′,x)φ+(t ′,x)+ΓR+(t,x)

]
φ+(t,x)

¤ for non-classical states, φ and φ+ are not complex conjugate
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+P noise correlations

〈Γ(ω,x)Γ∗(ω′,x′)〉 =
αG(ω)

n
δ(x−x′)δ(ω−ω′)

〈
ΓR(ω,x)ΓR+(ω′,x′)

〉
=

αR

n
(|ω|) [nth(|ω|)+Θ(−ω)]δ(x−x′)δ(ω−ω′)

〈
ΓR(ω,x)ΓR(ω′,x′)

〉
=

1
n

{
αR(|ω|) [nth(|ω|)+Θ(−ω)]− iRe[h(ω)]

}

×δ(x−x′)δ(ω+ω′)

¤ no initial noise for a coherent state

¤ but there is multiplicative noise due to spontaneous scattering
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Simulations

¤ soliton jitter, soliton squeezing, supercontinuum generation
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Application II: atoms in a lattice

Fermions

|1>

|2>

|1>

Bosons

Ĥ = −∑
i j ,σ

ti j ĉ
†
i,σĉ j,σ +U ∑

j

ĉ†
j,↑ĉ

†
j,↓ĉ j,↓ĉ j,↑

¤ simplest model of an interacting Fermi gas on a lattice

➜ weak-coupling limit → BCS transitions
➜ solid-state models; relevance to High-Tc superconductors
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Solving the Hubbard Model

¤ only the 1D model is exactly solvable (Lieb & Wu, 1968)

¤ even then, not all correlations can be calculated

¤ higher dimensions - can use Quantum Monte Carlo methods.

✘ except for a few special symmetrical cases, QMC suffers from sign problems
with the Hubbard model

¤ e.g. sign problems for repulsive interaction away from half filling

✘ sign problem increases with dimension, lattice size, interaction strength
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Fermionic sign problem

¤ Quantum Monte Carlo (QMC) samples many-body wavefunction φ(r) (wave-
function treated as a probability)

¤ but Fermion states are antisymmetric

➜ wavefunction nonpositive

¤ must introduce (possibly negative) weighting factors

➜ bad sampling errors (unless approximations used)

〈
A
〉∼

〈
sA

〉
〈
s
〉
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Applying the Gaussian representation

¤ Use thermal basis, and apply mappings

n̂σρ̂ →
{

2nσ− (I −nσ)
∂

∂nσ
nσ

}
P(Ω,n↑,n↓)

ρ̂n̂σ →
{

2nσ− I −nσ
∂

∂nσ
(I −nσ)

}
P(Ω,n↑,n↓)

ρ̂ → − ∂
∂Ω

ΩP(Ω,n↑,n↓)

=⇒ Fokker-Planck equation for P, with drift and diffusion

=⇒ sample with stochastic equations for Ω and nσ
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Positive-Definite Diffusion

¤ Modify interaction term with a ‘Fermi gauge’:

U ∑
j

: n̂ j j ,↓n̂ j j ,↑ : = −1
2
|U |∑

j

:

(
n̂ j j ,↓− U

|U |n̂ j j ,↑

)2

:

=⇒ diffusion matrix has a real ‘square root’ matrix

=⇒ realise the diffusion with a real noise process
=⇒ problem maps to a real (and much more stable) subspace
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Stratonovich Equations

¤ Itô stochastic equations, in matrix form:

dΩ
dτ

= −Ω

{
−∑

i j ,σ
ti jni j ,σ +U ∑

j

n j j ,↓n j j ,↑−µ∑
j,σ

n j j ,σ

}

dnσ

dτ
= −1

2

{
(I −nσ)∆(1)

σ nσ +nσ∆(2)
σ (I −nσ)

}
,

where the stochastic propagator matrix is

∆(r)
i j ,σ =

[−ti j +δi j

{
Un j j ,σ′−µ

}]±δi j

√
2|U |ξ(r)

j

¤ ξ(r)
j are delta-correlated white noises
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1D Lattice-100 sites
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Branching

¤ averages are weighted,eg

〈
n̂(τ)

〉
=

∑Np
j=1Ω( j)(τ)n( j)(τ)

∑Np
j=1Ω( j)(τ)

✘ but weights spread exponentially=⇒ many irrelevant paths

=⇒ delete low-weight paths and clone high-weight paths:

m( jp) = Integer
[
ξ+Ω( jp)/Ω

]

¤ ξ ∈ [0,1] is a random variable, Ω is an average weight
¤ after branching, weights of surviving paths are equalised
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16x16 2D Lattice
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No sign problem!
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Application III: Molecules in a well

¤ Hamiltonian: Ĥ = âb̂†
1b̂

†
2+ â†b̂1b̂2

ṅ1 = iχ(α+m−αm+)±
√

iχn1
(
mζ∗1+m+ζ∗2

)
,

ṅ2 = iχ(α+m−αm+)±
√

iχn2
(
mζ∗1+m+ζ∗2

)
,

ṁ = −iχα(1±n1±n2)+
√

iχ
(±m2ζ∗1+n1n2ζ∗2

)
,

ṁ+ = iχα+(1±n1±n2)+
√

iχ
(
n1n2ζ∗1±m+2ζ∗2

)
,

α̇ = −iχm−
√

iχζ1 ,

α̇+ = iχm+ +
√

iχζ2 ,
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Result: Pauli blocking
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Summary

¤ Generalised phase-space representations provide a means of simulating
many-body quantum physics from first principles, with precision limited only
by sampling error .

¤ Coherent-state-based methods have been successful in simulating quantum
dynamics of photons and weakly interacting ultracold gases.

¤ Gaussian-based methods extend the applicability to highly correlated sys-
tems of bosons and fermions.

¤ Simulated the Hubbard model (fermions in a lattice) without sign errors.
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