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How to measure the free energy and partition function from atom-atom correlations
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We propose an experimental approach for determining thermodynamic properties of ultracold atomic gases
with short-range interactions. As a test case, we focus on the one-dimensional (1D) Bose gas described by the
integrable Lieb-Liniger model. The proposed approach relies on deducing the Helmholtz or Landau free energy
directly from measurements of local atom-atom correlations by utilizing the inversion of a finite-temperature
version of the Hellmann-Feynman theorem. We demonstrate this approach theoretically by deriving approximate
analytic expressions for the free energies in specific asymptotic regimes of the 1D Bose gas and find excellent
agreement with the exact results based on the thermodynamic Bethe ansatz available for this integrable model.
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I. INTRODUCTION

Measurements of thermodynamic properties of interact-
ing many-body systems play a critical role in characterizing
and understanding the underlying physics of such systems.
As an example, measurements of isothermal compressibility
κT , through either the measurement of atom number fluctua-
tions [1–7] or the density profiles in well mapped-out trapping
potentials [8–15], have been an indispensable tool in the study
of strongly interacting quantum gases. This is because the
isothermal compressibility is a thermodynamic quantity that
can be used to deduce the equation of state (EOS) for, e.g.,
the mean particle number density n = n(μ, T ) as a function
of the chemical potential μ and the temperature T of the gas.
The EOS itself can then be further manipulated and used to
deduce the pressure P of the gas, the entropy S, and even-
tually the Helmholtz free energy F or the grand potential �

(Landau free energy), which play the central role in statistical
mechanics and quantum many-body physics.

In this work, we propose an alternative experimental ap-
proach for determining thermodynamic properties of ultracold
atomic gases with short-range s-wave scattering interactions.
The approach relies on deducing the Helmholtz or Landau
free energy directly from the measurements of the local (same
point) atom-atom correlation function g(2). This is aligned
more closely with the formalism of statistical mechanics,
wherein one first calculates the canonical (or grand-canonical)
partition function Z (Z) and the Helmholtz (Landau) free
energy F = −kBT ln Z (� = −kBT lnZ) and then uses these
to derive the corresponding equations of state and other
thermodynamic quantities, such as the entropy, pressure, or
isothermal compressibility.

For simplicity and definiteness, we will illustrate this ap-
proach using the example of an ultracold one-dimensional
(1D) Bose gas with short-range interactions that can be char-
acterized by the s-wave scattering length a and described
by the integrable Lieb-Liniger model [16–18]. We point
out, however, that the approach can generally be applied to
two- and three-dimensional systems as well. Our proposal
for determining the free energy directly from the measured

local pair correlation function g(2) relies on the reversal
of the extended version of the Hellmann-Feynman theo-
rem for finite-temperature thermal equilibrium states (instead
of the original form of the theorem [19,20], which was
for the zero-temperature ground state). The extended form of
the Hellmann-Feynman theorem was utilized in Refs. [21,22]
for calculating the pair correlation function g(2) of a finite-
temperature uniform 1D Bose gas from the Helmholtz free
energy. The Helmholtz free energy itself was evaluated nu-
merically using the exact Yang-Yang thermodynamic Bethe
ansatz (TBA) [23]. In the present work, we will instead as-
sume that the pair correlation function g(2) can be measured
experimentally, such as from photoassociation rates [24],
over a range of interaction strengths. The reversal of the
Hellmann-Feynman theorem then corresponds to integrating
the pair correlation function over that same range of interac-
tion strength, which in turn is equivalent to deducing the free
energy of the gas.

As a proof-of-principle illustration of the proposed ap-
proach, we will show how to derive the free energy from a
known g(2) in four out of a total of six different asymptotic
regimes of the 1D Bose gas [21,22]. In these asymptotic
regimes, the g(2) function can be calculated analytically us-
ing alternative approximate theoretical techniques, without
resorting to a prior knowledge of the free energy and the
use of the Hellmann-Feynman theorem. Such an alternative
calculation of the g(2) function is effectively equivalent to a
prior knowledge of g(2) from an experimental measurement,
which can then be used to deduce the free energy using the
same integration step, albeit now numerical.

The calculated free energy and the ensuing thermodynamic
properties [25] have not been previously known analytically in
two out of the four asymptotic regimes treated here, whereas
in the two remaining regimes they reproduce the previously
known results derived from the excluded-volume model in the
strongly interacting regime [26].

We compare our approximate analytic results for the free
energy with the exact numerical results obtained using the
Yang-Yang TBA and demonstrate excellent agreement. We
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also explain why the same calculation cannot be carried out in
the remaining two (out of a total of six) asymptotic regimes.
We emphasize though that while this limitation is only due
to the applicability of the analytic approximation in the two
regimes in question, the experimental extraction of the free
energy from the measured pair correlation function is not
restricted to any particular regime of the 1D Bose gas. Instead,
the method only requires that the free energy is a priori known
in one of the bounds (lower or upper) of the range of the in-
teraction strength over which the pair correlation is measured.
In practice, the role of these bounds can be taken by, e.g., the
ideal (noninteracting) Bose gas limit or the Tonks-Girardeau
limit of infinitely strong interactions, where the free energy
is the same as that for an ideal Fermi gas by the Fermi-Bose
mapping [27–31].

II. PRELIMINARIES

A. Lieb-Liniger model

We start by considering the Lieb-Liniger Hamiltonian de-
scribing a uniform 1D gas of N bosons of mass m interacting
via a pairwise δ-function potential, on a line of length L with
periodic boundary conditions, with a linear 1D density of
n = N/L. In second-quantized form, this is given by

Ĥ = h̄2

2m

∫
dx ∂x�̂

†∂x�̂ + g

2

∫
dx �̂†�̂†�̂�̂, (1)

where g quantifies the strength of atom-atom interactions,
assumed to be repulsive (g > 0); it can be expressed in terms
of the 3D s-wave scattering length a via g ≈ 2h̄ω⊥a [18],
away from a confinement induced resonance, where ω⊥ is the
frequency of the harmonic potential in the transverse (tightly
confined) dimension.

It is convenient to define the two dimensionless quantities

γ = mg

h̄2n
, τ = 2mkBT

h̄2n2
, (2)

characterizing the interaction strength between atoms and the
temperature of the system, respectively. These two parameters
completely characterize the thermodynamic properties of a
uniform 1D Bose gas.

B. Atom-atom correlations and regimes of the uniform
Lieb-Liniger gas

In a 1D system, the normalized two-point atom-atom cor-
relation function can be defined in terms of the bosonic field
creation and annihilation operators �̂†(x) and �̂(x), respec-
tively, corresponding to the expectation value of a normally
ordered product of two density operators n̂(x) = �̂†(x)�̂(x)
and n̂(x′) = �̂†(x′)�̂(x′),

g(2)(x, x′) = 〈�̂†(x)�̂†(x′)�̂(x′)�̂(x)〉
n(x)n(x′)

, (3)

which is normalized to the product of mean densities n(x) =
〈n̂(x)〉 and n(x′) = 〈n̂(x′)〉 at points x and x′. Furthermore, as
we are restricting ourselves to a uniform system that is transla-
tionally invariant [with n(x) = n(x′) ≡ n], the two-point pair
correlation g(2)(x, x′) can only depend on the relative distance

|x − x′|, i.e., g(2)(x, x′) = g(2)(|x − x′|). The local or same-
point correlation then corresponds to x = x′, and hence to
g(2)(0) ≡ g(2),

g(2) = 〈�̂†(x)�̂†(x)�̂(x)�̂(x)〉
n2

. (4)

As was shown in Ref. [21] (see also [22,25,32,33] for
further details), the 1D Bose gas described by the above Lieb-
Liniger model can be characterized by six asymptotic regimes
(separated by smooth crossovers), depending on the approxi-
mations made for deriving analytic forms of the normalized
pair correlation function g(2) [Eq. (4)]. These asymptotic
regimes, shown in Fig. 1 in the (γ , τ ) parameter space, can
be broadly identified as the nearly ideal Bose gas regime, the
quasicondensate regime, and the strongly interacting regime.

The quasicondensate regime, corresponding to the weakly
interacting 1D Bose gas (γ � 1), can be treated using the
Bogoliubov theory [34] and is characterized by suppressed
density fluctuations but fluctuating phase (which is unlike a
3D condensate with true long-range order). Depending on
temperature τ , this regime can be further subdivided into
the quantum (I) and thermal (II) quasicondensate regimes,
which are dominated by quantum and thermal fluctuations,
respectively.

The nearly ideal Bose gas (IBG) regime can be treated
using the perturbation theory with respect to γ around a
noninteracting Bose gas [21,32]; it is characterized by large
fluctuations of both density and phase and it can be further
subdivided into quantum degenerate (III, τ � 1) and nonde-
generate, nearly classical ideal gas (IV, τ 	 1) regimes.

The strongly interacting regime γ 	 1 can be treated using
the perturbation theory with respect to 1/γ around a spin-
polarized ideal (noninteracting) Fermi gas (IFG) [32,35,36],
which is then mapped to the strongly interacting 1D Bose gas
near the Tonks-Girardeau regime of γ → ∞. This regime can
be further subdivided into regions V and VI, corresponding to
high-temperature (nondegenerate) and low-temperature (de-
generate) fermionization, respectively.

In the (γ , τ ) parameter space, the six asymptotic regimes
identified above can be defined via the following inequalities:

τ/2 � γ � 1 (regime I), (5)

2γ � τ � 2
√

γ (regime II), (6)

2
√

γ � τ � 1 (regime III), (7)

τ 	 max{1, γ 2} (regime IV), (8)

π2/(1 + 2/γ )2 � τ � γ 2 (regime V), (9)

τ � π2/(1 + 2/γ )2, γ 	 1 (regime VI). (10)

Note that here we are using the updated, more accurate regime
boundaries from Ref. [25] (see also [26]), for which we no
longer ignore numerical factors of order one as was done
in Ref. [21]. In each of these regimes, the pair correlation
function g(2) can be derived in closed analytic form, quoted
below in Eqs. (15)–(20).
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FIG. 1. Crossover regimes diagram for the Lieb-Liniger gas at thermal equilibrium in the (γ , τ ) parameter space. (a) We distinguish six
different asymptotic regimes, separated by smooth crossovers, corresponding to the quasicondensate regime (where g(2)  1 [21]), which can
be further subdivided into the quantum (I) and thermal (II) quasicondensate regimes, respectively; the nearly ideal Bose gas regime (where
g(2)  2 [21]), which can be further subdivided into degenerate (III) and nondegenerate (IV) regimes; and the strongly interacting regime (where
g(2) � 1 [21]), which can be further subdivided into regions V and VI, corresponding to high-temperature and low-temperature fermionization,
respectively. The blurred region in the middle of the diagram, as well as the vicinity of the regime boundaries (solid and dashed lines), is where
the different analytic approximations are expected to break down. (b) Integration paths in Eq. (23) shown as horizontal (blue) dotted lines, in
four asymptotic regimes, in which we calculate the reduced Helmholtz free energy F (γ , τ ) and illustrate the results in Fig. 2 below.

C. Free energy and atom-atom correlation

In the canonical formalism, the partition function
Z (T, N, L, g) can be written in terms of either the Helmholtz
free energy F or the Hamiltonian Ĥ via Z = exp(−F/kBT ) =
Tr exp(−Ĥ/kBT ). By differentiating the Helmholtz free
energy F (T, N, L, g) = −kBT ln Z with respect to the inter-
action strength g, at constant N , L, and T one finds that [21]

(
∂F

∂g

)
T,N,L

= 1

Z
Tr

(
e−Ĥ/kBT ∂Ĥ

∂g

)
= L

2
〈�̂†�̂†�̂�̂〉 , (11)

and hence

g(2) = 2

Ln2

(
∂F

∂g

)
T,N,L

= 2m

Nh̄2n2

(
∂F

∂γ

)
T,N,L

. (12)

Similarly, in the grand-canonical formalism, we start
with the grand-canonical partition function Z (T, μ, L, g) =
exp(−�/kBT ) = Tr exp[−(Ĥ − μN̂ )/kBT ], where � = F −
μN = −PL is the Landau free energy, with N = 〈N̂〉. By
differentiating �(T, μ, L, g) = −kBT lnZ with respect to g,
but now at constant T , μ, and L, one finds [22](

∂�

∂g

)
T,μ,L

= L

2
〈�̂†�̂†�̂�̂〉 , (13)

and hence

g(2) = 2

Ln2

(
∂�

∂g

)
T,μ,L

. (14)

Extracting the Helmholtz or Landau free energies by in-
tegrating the pair correlation function in Eq. (12) or (14)
(discussed below) depends on the experimental implemen-
tation. If the pair correlation g(2) is measured over a range

of interaction strengths at constant temperature and parti-
cle number, then the appropriate approach is to adopt the
canonical formalism and deduce the Helmholtz free energy
first, before applying other thermodynamic relations to eval-
uate other thermodynamic quantities of interest (see, e.g.,
Ref. [25]). However, if the pair correlation g(2) as a function
of the interaction strength is measured at constant temperature
and chemical potential, then it is natural to adopt the grand-
canonical formalism and first deduce the Landau free energy
from Eq. (14).

III. FREE ENERGIES FROM THE ATOM-ATOM
CORRELATION FUNCTION

The approach outlined in Sec. II C was used for the first
time in Ref. [21] for calculating the pair correlation func-
tion g(2) of a finite-temperature uniform 1D Bose gas. More
specifically, the g(2) function was calculated by numerically
differentiating the Helmholtz free energy, which itself was
calculated exactly using the Yang-Yang TBA. In the same
paper, the authors calculated the g(2) function in six asymp-
totic regimes of the 1D Bose gas using approximate analytic
techniques, such as the Bogoliubov theory and the pertur-
bation theories with respect to γ and 1/γ , around the ideal
Bose gas and the ideal Fermi gas, respectively (with the latter
case enabling them to treat the strongly interacting regime of
γ 	 1).

The analytic calculations of the g(2) function in Ref. [21]
did not rely on the knowledge of the Helmholtz free
energy and therefore can be used as prototypical data
for deducing the corresponding free energy by inverting
the Hellmann-Feynman theorem, i.e., by integrating the
known g(2) functions. Employing the same procedure on an
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experimentally measured g(2) function constitutes the mea-
surement approach that we are proposing in this work. We
now demonstrate this approach by using the analytically cal-
culated g(2) functions from Ref. [21], given by

g(2)  1 − 2

π
γ 1/2 + πτ 2

24γ 3/2
, τ/2 � γ � 1 (regime I),

(15)

g(2)  1 + τ

2
√

γ
, 2γ � τ � 2

√
γ (regime II), (16)

g(2)  2 − 4γ

τ 2
, 2

√
γ � τ � 1 (regime III), (17)

g(2)  2 − γ

√
2π

τ
, τ 	 max{1, γ 2} (regime IV), (18)

g(2)  2τ

γ 2
,

π2

(1 + 2/γ )2
� τ � γ 2 (regime V), (19)

g(2)  4π2

3γ 2

(
1+ τ 2

4π2

)
, τ � π2

(1+2/γ )2
, γ 	1 (regime VI).

(20)

A. Helmholtz free energy

Before we proceed, we note that in the canonical for-
malism, from dimensional considerations, the Helmholtz free
energy per particle can be rewritten as

F

N
= h̄2n2

2m
F (γ , τ ), (21)

where F (γ , τ ) is a dimensionless function of its arguments,
which is similar to Lieb and Liniger’s e(γ ) corresponding
to the ground-state energy per particle of the 1D Bose gas
E0/N = h̄2n2

2m e(γ ) [16]. Using the reduced Helmholtz free en-
ergy F (γ , τ ), Eq. (12) can be rewritten in a dimensionless
form as

g(2)(γ , τ ) =
(

∂F (γ , τ )

∂γ

)
τ

. (22)

In order to find the reduced Helmholtz free energy F (γ , τ )
from a known g(2)(γ , τ ), we can integrate the pair correlation
function g(2)(γ , τ ) in Eq. (22) with respect to the dimension-
less interaction strength γ :

F (γ , τ ) = F (γ0, τ ) +
∫ γ

γ0

dγ ′g(2)(γ ′, τ ). (23)

Here the reduced Helmholtz free energy at the lower bound,
F (γ0, τ ), plays the role of the integration constant and is
assumed to be known for the method to work. The role of
F (γ0, τ ) can be played by, e.g., the Helmholtz free energy
of the ideal Bose gas in limit of γ0 = 0, i.e., F (0, τ ) ≡
FIBG(τ ), or by that of an ideal Fermi gas in the opposite
limit of infinitely strong interactions (the Tonks-Girardeau
gas) γ0 = ∞, where F (∞, τ ) ≡ FIFG(τ ). When using the
analytical results for the g(2)(γ , τ ) function in a particular
regime (15)–(20), we must impose an additional constraint
that both integration bounds lie within the same asymptotic
regime of the 1D Bose gas, where the integrand g(2)(γ , τ )
has the same functional form. This is because the analytic

expressions for the pair correlation functions are valid only
deep within each regime and in particular not at the crossover
between boundaries. Consequently, the analytic approach that
we are using here, which relies solely on the knowledge of
g(2)(γ , τ ) and the value of F (γ0, τ ) within the same analytic
regime and at the same τ , is only applicable in regimes III–VI,
but not in regimes I and II. This restriction, however, does
not apply to experimentally measured data for the correlation
function g(2)(γ , τ ).

Substituting Eqs. (17) and (18) into Eq. (23) with γ0 = 0
and carrying out the respective integrations, we obtain the
Helmholtz free energy in regimes III and IV; similarly, substi-
tuting Eqs. (19) and (20) into Eq. (23), but now with γ0 = ∞,
and carrying out the respective integration, we obtain the
Helmholtz free energy in regimes V and VI. The resulting
expressions for F in regimes III–VI, constituting the main
results of this work, are given below in Eqs. (26)–(29). For
completeness and for the benefit of the reader, we also give
the results for F in regimes I and II, even though they have not
been obtained from g(2)(γ , τ ). Instead, the Helmholtz free en-
ergy in regimes I and II can be obtained using the Bogoliubov
theory by first calculating the partition function of Bogoliubov
quasiparticles [26,37,38]; within this approach, additional ap-
proximations corresponding to τ/2γ � 1 in regime I and
τ/2γ 	 1 in regime II allow for the derivation of simple an-
alytic results, quoted here in Eqs. (24) and (25) (derivation of
these results, which extend those reported in Refs. [26,37,38],
is beyond the scope of this paper, and we refer the reader to
Ref. [25] for details):

F  γ − 4

3π
γ 3/2 − π

12
τ 2γ −1/2 + π3

960
τ 4γ −5/2

− π5

4608
τ 6γ −9/2 (regime I), (24)

F  γ − ζ (3/2)

2
√

π
τ 3/2 + τγ 1/2 + ζ (1/2)√

π
τ 1/2γ

−ζ (−1/2)√
π

τ−1/2γ 2 (regime II), (25)

F  −ζ (3/2)

2
√

π
τ 3/2 + τ 2

4
+ 2γ − 2γ 2

τ 2
(regime III), (26)

F  τ ln

(
2
√

π√
τ

)
− τ −

√
πτ

2
+ 2γ

−γ 2

√
π

2τ
(regime IV), (27)

F  τ ln

(
2
√

π√
τ

)
− τ +

√
πτ

2
− 2τ

γ
(regime V), (28)

F  π2

3
− τ 2

12
− τ 4

180π2
− 4π2

3γ
− τ 2

3γ
(regime VI). (29)

In Eq. (25), ζ (s) is the Riemann zeta function. We note
that in Eq. (24) for regime I, the zero-temperature limit of
τ = 0 reproduces (as expected) the ground-state energy of the
weakly interacting Bose gas, E0 = N h̄2n2

2m e(γ ), with e(γ ) =
γ − 4

3π
γ 3/2 [16]. We further note that in regimes III–VI the

terms independent of γ correspond to the integration con-
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FIG. 2. Helmholtz free energy per particle F/N = h̄2n2

2m F (γ , τ ) for (a) τ = 0.2, (b) τ = 10, (c) τ = 100, and (d) τ = 0.01. For each τ , the
range of γ over which we plot our approximate analytic results is the same as the blue dotted horizontal lines in Fig. 1 in regimes III–VI.

stants in Eq. (23), representing the Helmholtz free energies of
the ideal Bose gas [FIBG(τ ) = F (0, τ ), regimes III and IV]
and the ideal Fermi gas [FIFG(τ ) = F (∞, τ ), regimes V and
VI]; their derivation is outlined in the Appendix. Moreover,
we point out that additional correction terms in 1/γ in the
strongly interacting regimes V and VI can be derived from the
excluded-volume model (see [25,26,38] for details).

In Fig. 2 we compare our approximate analytic expres-
sions (26)–(29) with the exact Helmholtz free energy per
particle calculated from the TBA. We find excellent agreement
in all four regimes as γ approaches the respective IBG or
IFG boundaries. Conversely, as γ approaches the boundary
between adjacent regimes, the analytic expressions for g(2)

become less accurate and hence start to deviate from the TBA.
From F (T, N, L, g) determined in this way, one can now

deduce other thermodynamic quantities of interest, such as
the pressure, entropy, chemical potential, or the isothermal
compressibility in one dimension (κT ) following the

standard prescriptions of statistical mechanics [39,40],
i.e., P = −(∂F/∂L)T,N,g, S = −(∂F/∂T )N,L,g, μ =
(∂F/∂N )T,L,g, or κT = −(∂L/∂P)N,L,g/L, which can
alternatively be determined from κ−1 = n(∂P/∂n)T,N,g.

B. Landau free energy

From dimensional considerations in the grand-canonical
formalism, the Landau free energy per particle can be rewrit-
ten as

�

N
=

√
h̄2n2kBT

4m
O(γ , μ), (30)

where O is a dimensionless function of its arguments γ and μ

and we have defined a dimensionless chemical potential

μ = μ/kBT (31)
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and a new dimensionless parameter characterizing the inter-
action strength,

γ =
√

m

h̄2kBT
g, (32)

using the thermal energy kBT as the energy scale. Using the
reduced Landau free energy O, Eq. (14) can be rewritten in a
dimensionless form as

g(2)(γ , μ) =
(

∂O(γ , μ)

∂γ

)
μ

, (33)

and hence

O(γ , μ) = O(γ 0, μ) +
∫ γ

γ 0

dγ ′g(2)(γ ′, μ). (34)

Similarly to the Helmholtz free energy, the term O(γ 0, μ)
here plays the role of the integration constant and is assumed
to be known; for example, it can be taken to be the Landau
free energy of the ideal Bose gas in the limit of γ 0 = 0, i.e.,
O(γ0 = 0, μ) ≡ OIBG(μ), or that of the ideal Fermi gas in the
Tonks-Girardeau limit, where O(γ 0 → ∞, μ) ≡ OIFG(μ).

As a simple example to illustrate this approach, we derive
the reduced Landau free energy (30) as a function of γ in
regime V. We first rewrite Eq. (19) for the pair correlation
function g(2) in terms of γ and μ,

g(2)(γ , μ)  4

γ 2 . (35)

We note here that the pair correlation in this regime does not
actually depend on μ at this level of approximation, consistent
with the fact that in the strictly fermionized Tonk-Girardeau
limit of γ → ∞, the pair correlation should be exactly zero
irrespective of the chemical potential and temperature due to
the hard-core repulsion, which is analogous to the Pauli exclu-
sion principle for noninteracting fermions. By using Eq. (34)
and identifying γ 0 = ∞, we then find

O(γ , μ)  OIFG(μ) − 4

γ
= 2

√
2π

Li3/2(−eμ̄)

[Li1/2(−eμ̄)]2
− 4

γ
,

(36)

where Lis(z) is the polylogarithm function of order s and
argument z.

In Fig. 3 we compare our analytical result with the exact
predictions of the TBA by plotting the reduced Landau free
energy O(γ̄ , μ) as a function of γ̄ for a system with μ̄ = 0,
in which case

O(γ , μ = 0)  − 2
√

πζ (3/2)

(
√

2 − 1)ζ (1/2)2
− 4

γ
. (37)

We find excellent agreement between our predictions and the
TBA deep within regime V. Analogous to the canonical case,
however, our analytics disagree with the TBA as γ̄ departs
further from the Tonks-Girardeau limit of γ → ∞ and to-
wards the regime crossover boundary γ = √

2 [corresponding
to τ = γ 2 in Fig. 1(a)], for which the relation (35) is no longer
valid.

Using �(T, μ, L, g) determined in this way, we can
now deduce other thermodynamic quantities of interest us-
ing the standard prescriptions of statistical mechanics for

FIG. 3. Landau free energy per particle �/N =√
h̄2n2kBT/4mO(γ , μ), as a function of γ , for μ = 0.

grand-canonical formalism [39,40], such as P = −�/L, S =
−(∂�/∂T )μ,L,g, or 〈N〉 = −(∂�/∂μ)T,L,g.

IV. SUMMARY

We have derived approximate analytic expressions for the
Helmholtz free energy of the uniform 1D Bose gas in four
asymptotic regimes characterizing the system at finite tem-
peratures and finite interaction strengths. The method relies
on inverting the finite-temperature version of the Hellmann-
Feynman theorem and integrating previously known analytic
expressions for atom-atom pair correlation. The method can
be similarly applied to derive the Landau free energy in the
grand-canonical formalism.

Our calculation can be regarded as a proof-of-principle
illustration of an experimental method to deduce the free en-
ergy, and hence the ensuing thermodynamic properties of the
system, from measurements of atom-atom correlations such
as those utilized in Ref. [24] using photoassociation.

Our proposed approach is complementary to the techniques
utilized in experiments of Refs. [41–43], in which the ther-
modynamic properties of a strongly interacting Fermi gas
were extracted from the contact parameter [44–50], which
itself was measured from the high-momentum tails of the
momentum distribution or the static structure factor. The com-
plementary character of the two approaches stems from the
fact that the local atom-atom correlation and contact are re-
lated by being directly proportional to each other (see, e.g.,
Refs. [26,50–53]).
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APPENDIX: FREE ENERGY OF THE IDEAL 1D BOSE
AND FERMI GASES

In this Appendix we outline the derivation of the Lan-
dau and Helmholtz free energies of the ideal 1D Bose gas
(γ = 0) and a spin-polarized ideal 1D Fermi gas, with the
thermodynamic properties of the latter system being iden-
tical to those of the strongly interacting 1D Bose gas in
the Tonks-Girardeau limit of γ → ∞ due to the Fermi-Bose
gas mapping [27–30,54,55]. The thermodynamic properties
of the 1D IBG and IFG can be most conveniently obtained
within the grand-canonical formalism of statistical mechan-
ics [39], with the recognition that in the thermodynamic
limit the expectation values of physical observables (such as
the thermodynamic quantities that we are interested in this
work) will be the same as in the canonical formalism. In the
grand-canonical formalism, the grand-partition function ZIBG

and the corresponding grand (or Landau) potential �IBG =
−kBT lnZIBG for the 1D IBG or IFG are given by

ZIBG/IFG =
∏

k

1

1 ∓ ze−ε(k)/kBT
(A1)

and

�IBG/IFG = kBT
∑

k

ln(1 ∓ ze−ε(k)/kBT ), (A2)

where z = eμ/kBT is the fugacity and ε(k) = h̄2k2/2m is
the free particle dispersion for a box of length L and
periodic boundary condition, with k = (2π/L) j and j =
0,±1,±2, . . .. Taking the thermodynamic limit, i.e., convert-
ing the discrete sum in Eq. (A2) into a continuous integral,
we recognize (after some algebra and integration by parts) the
resulting integral for �IBG/IFG as the integral representation
(also referred to as Bose function or Bose-Einstein function)

Lis(z) = 1

(s)

∫ ∞

0
dt

t s−1

et/z − 1
(A3)

of a polylogarithm function Lis(z) = ∑∞
k=1 zk/ks (valid for

complex s and |z| < 1), with (s) the Euler Gamma function,
namely, we find that the final result for �IBG/IFG takes the form

�IBG/IFG = ∓LkBT

λT
Li3/2(±eμIBG/kBT ), (A4)

where λT =
√

2π h̄2/mkBT is the thermal de Broglie wave-
length.

The partition function ZIBG = ZIBG(T, μ, L, g) or the
grand potential �IBG = �IBG(T, μ, L, g) (and similarly ZIFG

and �IFG) can be used to calculate the total thermal average
number of particles in the system 〈N〉 (for a given chemi-
cal potential μ) by using 〈N〉 = (kBT/ZIBG)(∂ZIBG/∂μ) =
−∂�IBG/∂μ; alternatively, 〈N〉 can be calculated by inte-
grating the Bose-Einstein (Fermi-Dirac) distribution function.
This in turn gives the average 1D density n ≡ 〈n〉 = 〈N〉/L,
which now takes the role of the fixed n = N/L from the
canonical formalism. The final result for the 1D density n

evaluated in this way can be written as

nIBG/IFG = ± 1

λT
Li1/2(±eμ/kBT ). (A5)

By inverting this expression for μIBG/IFG, we find

μIBG/IFG = h̄2n2

2m
τ ln

[
±Li−1

1/2

(
±2

√
π√
τ

)]
, (A6)

where we have used the fact that nλT = 2
√

π/τ in dimension-
less units.

We can now use the thermodynamic relation F = μN + �,
in addition to eliminating μ in favor of n using Eq. (A6), to
find that the Helmholtz free energy per particle for the IBG
and IFG is given, in terms of the 1D density and temperature,
by the expression

FIBG/IFG

N
= h̄2n2

2m

{
τ ln

[
±Li−1

1/2

(
±2

√
π√
τ

)]

∓ τ 3/2

2
√

π
Li3/2

[
Li−1

1/2

(
±2

√
π√
τ

)]}
, (A7)

which we note is exact, valid at any temperature τ . The above
expression for FIBG in the highly degenerate IBG regime (τ �
1, region III) can be further simplified using the series1. [56]

Lis(e
−α ) = (1 − s)αs−1 +

∞∑
k=0

(−1)k ζ (s − k)

k!
αk, (A8)

which itself is valid for e−α ≈ 1, i.e., for small and positive
α � 1. We let 2

√
π/τ ≡ x = Lis(e−α ), so that Li−1

s (x) =
e−α , and restrict ourselves to the first two terms in the ex-
pansion (A8), i.e., the first term and the k = 0 term from the
sum. We then obtain that α  {[x − ζ (s)]/(1 − s)}1/(s−1),
and therefore Li−1

s (x)  exp (−{[x − ζ (s)]/(1 − s)}1/(s−1)).
This in turn implies

Li−1
s

(
2
√

π√
τ

)
 exp

[
−

(
2
√

π/τ − ζ (s)

(1 − s)

)1/(s−1)
]
. (A9)

Using Eq. (A9), the reduced Helmholtz free energy F =
F/N (h̄2n2/2m) of a highly degenerate IBG, from Eq. (A7),
can then be shown to be given by

FIBG  τ 3/2

2
√

π

⎛
⎝−ζ (3/2) + π

2
√

π√
τ

− ζ (1/2)

⎞
⎠ + O(τ 5/2)

 −ζ (3/2)

2
√

π
τ 3/2 + τ 2

4
(regime III). (A10)

An analogous low-temperature expansion was performed
within the Hartree-Fock theory in Ref. [26], where the IBG
case is recovered for zero coupling constant g = 0.

In the opposite nondegenerate limit of the IBG
(τ 	 1, region IV), one can instead use direct expansion
of the Helmholtz free energy (A7) in powers of the small

1We note that the series in question given in Ref. [56] (see 1.11.8)
is for the Lerch function �(z, s, v) = ∑∞

k=0 zk/(k + v)s. However,
given that the polylogarithm function Lis(z) is a special case of the
Lerch function for v = 1, i.e., Lis(z) = �(z, s, 1), the series (1.11.8)
can be adopted for the polylogarithm function, resulting in Eq. (A8).

033308-7



MATTHEW L. KERR AND KAREN V. KHERUNTSYAN PHYSICAL REVIEW A 109, 033308 (2024)

parameter x = 2
√

π/τ � 1 using the series expansion of the
inverse of the polylogarithm function Li−1

1/2(x) to the desired
order. Such an expansion, in general, can be shown to be given
by Li−1

s (x) = ∑∞
k=1 akxk , where a1 = 1, a2 = −2−s, a3 =

21−2s − 3−s, a4 = 56−s − 8−s(5 + 2s), etc. [57]. The reduced
Helmholtz free energy for the nondegenerate IBG is then
given by, up to the fourth-order terms (proportional to 1/

√
τ ),

FIBG  τ ln

(
2
√

π√
τ

)
− τ −

√
πτ

2
+ π

(
1 − 4

3
√

3

)

+ π3/2 (2
√

3 − 5)

3
√

2τ
(regime IV). (A11)

Similar expansions can be performed in the nondegenerate
and highly degenerate limits of the 1D IFG, except that the
temperature of quantum degeneracy is now given by the Fermi
temperature TF = h̄2π2n2/2mkB. Accordingly, the nondegen-
erate and highly degenerate limits for the IFG correspond to
τ 	 π2 (region V) and τ � π2 (region VI), respectively.

For region V, where x = 2
√

π/τ � 1 in Eq. (A7), we
proceed as in region IV, i.e., using a direct series expansion of

Li3/2 in terms of its argument and the expansion of the inverse
of the polylogarithm function −Li−1

1/2(−x), which we note is
positive valued. The resulting expression for the reduced free
energy is nearly identical to that in Eq. (A11), except for the
opposite sign in front of the third term:

FIFG  τ ln

(
2
√

π√
τ

)
− τ +

√
πτ

2

+ π

(
1 − 4

3
√

3

)
+ π3/2 2

√
3 − 5

3
√

2τ
(regime V).

(A12)

This result agrees with the one derived recently in
Refs. [26,38] within the high-temperature virial expansion.

Finally, for region VI, the Helmholtz free energy of the
highly degenerate (τ � π2) IFG can be obtained using the
Sommerfeld expansion [26,38,39,58], yielding

FIFG  π2

3
− τ 2

12
− τ 4

180π2
− 7τ 6

1296π4
(regime VI).

(A13)
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