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An exact quantum theory of nondegenerate parametric generation in a
cavity is developed with allowance for quantum noise of arbitrary in-
tensity. Critical behavior of the second-order correlation functions
which describe photon correlation effects is found in the threshold re-
gion in the bistable generation regime. ©1996 American Institute of
Physics.@S0021-3640~96!00507-5#

1. Photon correlation in nonlinear optical processes was first investigated for p
metric scattering of light in ax (2) medium,1 where a photon is split into a pair of photons
Many consequences of this phenomenon in both parametric scattering and para
generation of light in a cavity are now known. Among the consequences in quan
optics we mention the generation of squeezed light2 and the suppression of quantum
fluctuations in the difference of the intensities of two correlated modes of a radia
field.3

The phenomenon of intermode correlation has practically escaped study for
metric generation in the threshold region, where the level and role of the quantum
tuations of light increase substantially. This question for degenerate and nondege
parametric generation in the absence of a bistable generation regime7,8 is mentioned in
passing in a few works.4–6 It follows from the results that, depending on the intensity
the pump field, the normalized second-order correlation functions have no features
threshold region, in contrast to the Fano factorF5^(Dn)2&/^n& (^(Dn)2& is the variance
of the photon number fluctuations and^n& is the average number of photons in a mode!,
which possesses a sharp peak in this region.

In the present paper an exact quantum-statistical analysis of the process of n
generate parametric generation in a cavity is performed on the basis of a non
treatment of the quantum fluctuations. The results obtained are applicable for arb
intensity of the quantum noise in the entire region of generation, including the thres
regime. In contrast to the results of Ref. 6, our results also describe the case of no
detunings of the cavity, which, as is well known,7,8 result in optical bistability. As is
shown below, in the latter case the correlation of the photons of the generated mode
increase substantially near the threshold.

2. The process of nondegenerate parametric generation in a cavity is based o
splitting of a pump-mode photon with frequencyv3 into two photonsv1 , v2

(v35v11v2) of the generated modes. In the resonance approximation it is describe
the following Hamiltonian:9
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Here ai
1 and ai are creation and annihilation operators of the cavity mod

v i ( i51,2,3);k is the coupling coefficient between the modes, which is proportiona
the second-order nonlinear susceptibilityx (2); e is a complex amplitude of the pump field
at the frequencyvL (vL.v3); and,G i are thermostat operators which determine t
damping constantsg i of the cavity modes.

We take into account the detuning of the cavityD35vL2v3 , D1,25vL/22v1,2 and
we also assume that inside the cavity the pump mode decays much more rapidly th
generated modes (g3@g1 ,g2), as a result of which the pump can be adiabatically elim
nated from the analysis. Thus we obtain by the standard procedures~see, for example,
Ref. 10! the following Fokker–Planck equation in the so-called compl
P-representation11 of the density matrix:
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1 F2ḡ2*a2

11S ke*
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ḡ3*
a1

1a2
1D a1G1

]2

]a1]a2
F ke

ḡ3

2
k2

ḡ3
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Here ā5(a1 ,a1
1 ,a2 ,a2

1),a i ,a i
1 ( i51, 2) are the independent complex variables co

responding to the operatorsai ,ai
1 and ḡ i5g i2 iD i . To find the stationary solution of

Eq. ~2!, in what follows we examine the case of equal damping constantsg15g2[g and
detuningsD15D2[D (ḡ15g2[ḡ) and we employ the method of potential equations10

Then the potential conditions hold, and we obtain for the indicated solution

PS~ ā !5N~e2ka1a2!
l~e*2ka1

1a2
1!le2~a1

1a11a2
1a2!, ~3!

wherel52112gg3 /k
2 andN is a normalization constant. Using the expression for t

moments of the normal-ordered products of the operatorsa1 , a2 in terms of the
P-representation,10 we obtain with the aid of the expression~3!, after integrations in the
complex plane, which are performed similarly to Ref. 6,

^a1
1ma1

ma2
1na2

n&5N0S e

kD
nS e*

k Dm G~n11!G~m11!

G~n1l12!G~m1l*12!
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where

N05
1

uG~l12!u2 (
l50

`
1

u~l12! l u2
S 2ueu
k D 2l ,

G(z) is the gamma function and (n) l5n(n11) . . . (n1 l21).

3. First we present the stable stationary solutions for the amplitudes of the mod
v1 andv2 in the semiclassical approximation7 neglecting quantum noise. Forueu,e th
(e th5ugg3u/k is the threshold value of the pump field! the amplitudes of the modes equal
zero; this corresponds to the excitation of modes at the level of spontaneous noise.
ueu.e th the above-threshold generation regime is obtained. The intensities of the mo
v1 andv2 at the cavity exit~in units of average photon number per unit time! are equal
to one another and have the form

I out5
2g2g3

k2 S 211
DD3

gg3
1AS kueu

gg3
D 22S D

g
1

D3

g3
D 2D . ~5!

The corresponding stationary phasesw1 andw2 of the generated modes satisfy the ex-
pression

cos~w11w22w!5
gD31g3D

kueu
, ~6!

wherew of the phase of the pump field.

For gg32DD3,0 the regions of stability of the zeroth and above-threshold solu
tions overlap and therefore optical bistability is realized in the system.7,8 The result for
the intensityI out in the semiclassical approximation is presented in Fig. 1~curves1 and
2!.

The quantum-mechanical result for the average intensity of the modes,

I out[2g^n1&52g^n2&,

whereni5ai
1ai , (^n1&5^n2&[^n&), is obtained from the general formula~4! by setting

m51, n50 (n51, m50) and it is also presented in Fig. 1~curves3 and 4!. It is
evident that the quantum-mechanical average intensity is different from the semiclass
result in the threshold region and, moreover, it does not exhibit hysteresis
gg32DD3,0. This is a general result for bistable systems~see, for example, Ref. 12!.

4. The effects arising from the photon correlations in each mode as well as betwe
two modes are investigated with the aid of the normalized second-order correlation fu
tions

gii
~2!5

^ai
12ai

2&

^ai
1ai&

2 , g12
~2!5

^a1
1a1a2

1a2&

^a1
1a1&^a2

1a2&
~ i51,2!.
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These functions are calculated using the general result~4!. This gives, specifically,
g11
(2)5g22

(2)[g(2). The numerical results are plotted in Figs. 2 and 3. They show
qualitative effects forgg32DD3,0, where according to the semiclassical results opt
bistability obtains: Peaks appear in the correlation functions in the critical or thres
regions of generation. Forgg32DD3.0, when there is no bistability, the correlatio
functions do not exhibit critical behavior~peaks! in the threshold region. As is wel
known, the correlation functionsg(2) andg12

(2) describe the ratio of the number of photo
pairs emitted simultaneously to the product of the number of photons emitted ind
dently of one another. Therefore critical growth of the correlation functions means
the number of emitted photon pairs in the region of bistable behavior of the inte
increases substantially because the system, being in two different energy states b
which quantum tunneling occurs, can radiate.

FIG. 1. Normalized intensity of the generated modesI out/(2g2g3 /k
2) as a function of the dimensionles

parameter of the pumping intensityJp5(kueu/gg3)
2 with D3 /g352. The curves1 and2 describe the semi-

classical result obtained withD/g50.1 andD/g51, respectively; the dashed extension of the curve2 describes
the unstable semiclassical solution. The curves3 and4 represent the quantum-mechanical average intensit
the modes fork2/gg350.01 and are presented for the same values ofD/g as the curves1 and2, respectively.

FIG. 2. Autocorrelation functiong(2) as a function ofJp for k2/gg350.01 andD3 /g352. Curve 1 —
D/g50.1; curve2— D/g51.
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Below the generation thresholdueu,e th the correlation functiong
(2) describes pho-

ton bunching (g(2).2 for ueu!e th). This is, of course, a reflection of the Gaussia
statistics of the photons in each mode. The behavior of the correlation functiong12

(2) for
ueu,e th describes photon superbunching, whose nature corresponds to the creatio
photon pairv1 , v2 in the regime of spontaneous parametric excitation of the modes
the region above thresholdueu@e th the correlation functions describe the quantum stat
tics of coherent states (g(2),g12

(2)→1).

As can be verified by a direct calculation with the aid of Eq.~4! the following
relation between the correlation functions holds for all values of the parameters:

g12
~2!5g~2!1

1

2^n&
. ~7!

This relation demonstrates the breakdown of the classical Cauchy–Schwarz ine
ity ~see, for example, Ref. 6! in the entire region of analysis and leads to the followin
interesting effect. As is well known,3 the correlation of the instantaneous fluctuations
the number of photons in the two modes is reflected in the variance of the fluctuatio
the photon number difference. For the system under consideration this variance, no
ized to the level of the fluctuations for the coherent states, is given by

V[
^D~n12n2!

2&

^n1&1^n2&
511^n&~g~2!2g12

~2!!. ~8!

As a consequence of the result~7!, we obtainV51/2. Therefore, for the system unde
study the quantum fluctuations in the photon number difference is suppressed by
below the coherent level for the entire region of generation and for arbitrary values o
parameters. It is significant that this result was obtained in the exact quantum th
without resorting to a linear treatment of the quantum fluctuations.

In summary, one of the main consequences of the results obtained is, in our op
the possibility of obtaining strongly correlated light beams in the near-threshold regio
generation, where the mode intensities grow rapidly. This behavior in the photon c

FIG. 3. Cross correlation functiong12
(2) as a function ofJp for the same values of the parameters as in Fig.
530 530JETP Lett., Vol. 63, No. 7, 10 April 1996 Kryuchkyan et al.
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lation is qualitatively different from the well-known superbunching effect far below
threshold — in the mode excitation regime at the spontaneous noise level, where
mode intensities are low.
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