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A quantum analysis of intensity fluctuations for the above-threshold parametric four-wave mixing in a cavity, driven by two 
laser fields, is presented. A new possibility for the reduction of quantum fluctuations below the shot-noise level in the sum of 
intensities of two cavity-output coupled beams at the driving field frequencies is predicted. The calculation of the corresponding 
interbeam second-order correlation function displays photon anticorrelation. 

1. Introduction 

In recent years there have been achieved consid- 
erable advances in the investigation of quantum 
fluctuations in correlated light beams. In the process 
of nondegenerate parametric oscillation and four- 
wave mixing (FWM) the photons of signal and idler 
modes are created in pairs and a positive correlation 
(An~ An2)  > 0 between the photon number fluctua- 
tions An~ and An2 of these two modes occurs. As has 
been shown theoretically [1-4] and demonstrated 
experimentally [ 1,5,6 ], it results in the reduction of 
quantum fluctuations below the shot-noise level in 
the intensity difference of these two modes. The cou- 
pling between the fluctuations in highly-correlated 
beams may be used, in particular, for the production 
of a single light beam with reduced intensity fluc- 
tuations by monitoring the intensity fluctuations of 
the other beam [7]. Another application relates to 
the absorption spectroscopy below the shot noise 
limit. 

In this paper we present another scheme for re- 
duction of quantum noises, based upon the anticor- 
relation <Anj An2> < 0 between the photon number 
fluctuations of two coupled beams. Such situation 
takes place, for example, in the process of parametric 
FWM in two laser driving fields. This process is stip- 
ulated by the intracavity nonlinear interaction of two 
pump modes with frequencies o91, toz and two signal 

modes with degenerate frequency COo, such that 
col + co2 = 2090. A quantum phenomenological anal- 
ysis in the below- and above-threshold regimes of os- 
cillation was given in our previous paper [ 8 ], where 
it has been shown, particularly, that this process is 
quite effective for production of intense one-mode 
squeezed light with reduced quadrature-phase fluc- 
tuations. Nonclassical optical effects in FWM in two 
driving fields with the inclusion of quantization of 
nonlinear medium and in the undepletted pump ap- 
proximation are considered in papers [ 9,10 ]. 

The aim of this paper is to present an analysis of 
intensity fluctuations in the above-threshold regime 
of parametric FWM oscillation. As is shown below, 
in the nonlinear system under consideration the re- 
duction of fluctuations below the shot-noise level oc- 
curs in the intensity sum of two pump modes col and 
092. A similar prediction concerning quantum cor- 
relations in the sum of the intensities of the funda- 
mental and second-harmonic mode in the second- 
harmonic generation process was done recently in 
ref. [11]. 

2. Equations of motion, steady-states and 
linearization 

We consider the following phenomenological 
model of parametric FWM in two driving fields. A 
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nonlinear medium placed inside a suitably tuned ring 
cavity couples two pump modes of frequencies COl, 
09z and the signal mode of frequency 09o = (09 t + 092 ) / 
2 with the wave-vector-matching condition k~ + k2 = 
2ko. The pump modes are driven by two coherent 
external driving fields with different frequencies o91 
and 0)2, equal amplitudes and arbitrary phases. All 
three cavity modes are damped via cavity losses and 
treated in quantum way. 

The dynamics of modes in the cavity and quan- 
tum statistics of this system is described by the sto- 
chastic differential c-number Langevin equations for 
the independent complex field variables oq, ct + , 
which correspond to the slowly-varying creation and 
annihilation operators aj, a f of  three modes 09j ( j=0,  
l, 2). These equations are obtained in standard 
manner on the basis of  Fokker-Planck equation in 
positive P-representation and have the following form 
[8] 

&o(t) = - 7 o a o  + xa~ a 2 a ~  +Ro( t )  , 

1 ~,-tu2 + & l ( / ) = - - ) ) O / l -  ~n-t-toOg2 + E e x p ( i O l ) + R l ( t ) ,  

1 .~2~  + +Eexp( i~2)  +R2( t )  &2(t)= - - y o t 2 - - ~ o ~ l  

(1) 

where ½x is the effective coupling constant propor- 
tional to the third-order susceptibility, E is the am- 
plitude of the driving fields inside the cavity, 01 and 
02 are their phases, and 70, Y (Y=YI=Y2) are the 
damping constants for the modes 090 and col, 092, re- 
spectively. The gaussian noise terms Rj( t )  have the 
following nonzero correlations 

( Ro( t ) Ro( t') ) =rot1 a2 8( t - t ' )  , 

( RI ( t )R2( t') ) = - ½xO~2o 8( t - t ' )  . (2) 

We assume that the cavity has a single input-out-  
put port. Then the field operators cj and bj around 
the frequencies 09j at the cavity input and output are 
connected with E and intracavity operators cej as fol- 
lows (see, e.g., ref. [ 12 ] ) 

Eexp(iOk)=~/-~(Ck) (k=l ,2) ,  (3) 

b j = ~ j c ~ j - c j  ( j=0,  1, 2 ) .  (4) 

In the semiclassical limit the stable steady-state so- 
lutions are ot ° = l a ° l  exp(i~u ° ) ,  (or°)*= ( a ° )  + of 
set (1) in the above-threshold regime E > E t =  
Y o x / ~  (Et is the threshold value of E)  are follow- 
ing [8]. 

(i) In the region 1 < c < 2 ,  where e=E/Et ,  the sta- 
ble steady-state solution for the mode amplitudes is 

l a° l  = x / ( 2 ~ / x ) ( ~ - 1 ) ,  I ol° I = I o~° I =v/~-o/X, 
(5) 

(ii) In the region ~> 2 the stable steady-state am- 
plitudes are 

I c ~ ° l = l x / ~ ( , +  ~ x / ~ - 4 ) ,  

I c e ° l = ½ ~ ( , -  ~x/'~S-4), (6) 

or  

In both cases (i) and (ii) the corresponding steady- 
state phases of three modes are 

~u°=0,,  ~u°=¢2, ~ / ° = ( 0 , + 0 2 ) / 2 .  (7) 

The values e = 1, 2 are instability points, since the 
all steady-state solutions are unstable at these points. 
The below-threshold solution and linearizated treat- 
ment of quantum fluctuations as well as the quad- 
rature-phase squeezing spectra for each of three 
modes above threshold are considered in ref. [ 8 ]. In 
the present paper we shall consider the phase insen- 
sitive intensity fluctuations in the above threshold 
regime. 

To analyze the quantum fluctuations above 
threshold we transform the set of equations ( 1 ) to 
the new variables nj= ajaT , ~uj = ( 1 /2 i ) ln(aJo~ 7 ) 
and, introducing small fluctuations Anj (t) = nj (t) - 
n ° (n ° = l a  ° 12), A~uj(t)=~j(t)-~u °, linearize the 
equations for nj(t) ,  and % ( 0  about the steady-state 
values n ° and ~,o. The Fourier-transformed linear- 
ized equations of  motion for the photon number 
fluctuations Anj in the matrix form are 

(A- i09I )  An(w)=F°(09)  , (8) 
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0 Y°n° 
n o 

A =  7o Y 

y o n  ° 

7o 2n o 

~,on ° 

n o 

Yon ° 
2n o , (9) 

where I is the identity matrix, An(og)= [Ano(og), 
And(m), Anz(m)] x, F°(m)=[F°(og), F°(og), 
FO(m) ]r. The nonzero correlations of noise terms 
are  

( F°(m) F°(to ') ) = - 2 <F°(to) F°(m ') ) 

=27ono ° d(m+o~') . (10) 

The results for the mean photon number per unit 
time Nj= ( b + bj ) for each of three cavity-output 
fields around the frequency ~,j are following. For the 
coherent components of the output field amplitudes 
we have from eq. (4) 

~ , , 2 - < c , , 2 > ,  b ° = , / ~ o ~  °.  
(11) 

In the linear approximation Nj = [ b ° 12, and we ob- 
tain in the region l < e < 2: 

No= 4?7o ( e - l ) ,  NI=N2=2770  ( 1 - e / 2 ) 2 ;  
/( /( 

(12a) 

and in the region e > 2: 

No=4yY°,  N~=N2=2YT° ( e 2 / 4 _ 1 ) .  (12b) 
K /( 

It should be pointed out that because of interfer- 
ence of the amplitudes a°.2 and (c, 2) in the quan- 
tities N~ and N2 the latters coincide in the whole re- 
gion E > l, though the mean photon numbers for the 
pump modes inside the cavity I or° 12 and I or° 12 dif- 
fer in the region ~ > 2. 

3. Quantum noise reduction in the intensity 
fluctuation spectra 

The following scheme of experimental measure- 
ments is considered. Two photodetectors measure 
the intensities of the cavity-output fields around the 

pump mode frequencies (/)l, (-02, and the fluctuation 
spectrum 

+oo 

P ± ( m ) = 2  J dzcosmr(i±(O),i+(z)) (13) 
0 

of the sum or difference of corresponding photocur- 
rents i± = i~ + i2 is being analyzed. The photocurrent 
correlator ( i+ (0 ) ,  i+(z))=(i+(O) i + ( z ) ) -  
(i+ ( 0 ) )  (i+ ( z ) ) ,  in accordance with a standard 
theory of photodetection [ 13,14 ], is 

(i_+(0), i ± ( z ) )  = ( i ( 0 )  i(z))sn 

+ (Qq)2(:N+ (0), N± (z ) : )  , (14) 

where ( i ( 0 )  i (z))sh is the shot-noise term, which is 
the same for the photocurrent sum and difference and 
proportional to the sum of two field intensities, Q is 
the total charge per pbotopulse, q is the dimension- 
less efficiency of detectors (0<~/~< 1), :: denotes 
normal ordering, and the operators N+, N are 

N+ =b + bl + b~ b2 . 

At the calculation of correlator (N+ (0), N± ( z ) )  
in the lowest order in small fluctuations the contri- 
bution of phase fluctuations is cancellated and the 
resulting expression reduces to 

(N± (0),  N± ( z ) )  = 2y(b°) 2 

[ - (Ant(0)  Anl (z ) )  (An2(0) An2(r))  
X L n o + n o 

+ ( < A n l ( 0 )  An2(r))  <A n 2 (0 )A n l ( z )> ) ]  
o o  d- 0 0 ' 

(15) 

where b °= I b °[ = I b °1. 
Converting eq. (13) into frequency space, and us- 

ing eqs. (14), ( 15 ) and ~-function properties of noise 
correlators, one can obtain 

( Ank(--OJ) Ank(W) ) 
P± (m) =Psh 1 +qY k__~1.2 n o 

"k ~ ( ( Anl ( - (D)0 An2(°9))o 
x / ~ n 2  

+ (An2(--m)Anl(°9))~] 
j j ,  (16) 
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where we have used the frequency-independent sim- 
plified expression for the shot-noise term [ 14 ] 

Psh =qQ2(Nl  +N2)  . 

The calculation o f  the second-order averages in eq. 
(16) on the basis o f  solution of  eq. (8) results in the 
following final expression for the normalized fluc- 
tuation spectra 

P+-(CO) 1+ 4~/ { P ~ -  ~ rZ[p( l+q)+4q(p-1)]  

[pr2+ 2q( 1 -- 2r) ] (co~y)2} + 

-+ 4qx/qd(co) { 2r2(1 - p - 3 q )  

+[2r2+Zr(p--q--1)](co/7)2--(CO/7)4} , (17) 

where the quanti ty d(CO)=ldet (A- iCOI)12/7  6 is 
equal to 

d(CO) =4[r(p-2q)  - (co/y)2 ] 2 

+ (COh)2[ 1 +2rp--q-- (CO/~)2 ] 2, 

and the following notations are used 

7o 7o ( n  o n°~ y2(n°)2 
r =  - -  p =  + 2-~ \~°l° n-~2) q =  2 0  o" ' ' 4~ nin2 

The result (17) is written in a general form and it 
describes the spectrum of  fluctuations in the inten- 
sity photocurrent  sum and difference in both above- 
threshold regions (i) and (ii). In each of  these re- 
gions the stable steady-state amplitudes I or° [ are dif- 
ferent, and the parameters p and q are equal to 

(i) 1 < ~ < 2 :  p = 2 ( e - 1 ) ,  q = ( ~ - l )  2 , (18a) 

(ii) E<2: p = e 2 - 1  , q = l  . (18b) 

The spectrum of  fluctuations in the photocurrent  
sum for the case o f  ideal photodetectors with r/= 1 is 
represented in fig. 1 for different values o f  ~ and r. 
The reduction o f  fluctuations below the shot-noise 
level ( 0 < P +  (Og)/Psh< 1) Occurs at the sideband 
frequencies o f  spectrum and absent at zero fre- 
quency. The max imum effect is close to perfect 
(100%) reduction in the neighborhood of  E = 2 and 
for small values o f  parameter  r=~'o/~'<< 1. The de- 

o~ 2 

O. + 

i 

-2 -i 0 i 2 w/Y 

i i  
; I I ] " %  

o 
-L -2 0 2 4 oo/~" 

Fig. 1. The photocurrent fluctuation spectrum for the intensity 
sum P+(to)/Psh versus to/?: (a) ~= 1.3, r=0.05 (-.-); ~=1.8, 
r=0.05 ( - - ) ;  E= I.8, r=0.1 (---); (b) ~=3, r=0.1 (---);~=3, 
r=0.05 ( - - ) ;e=6,  r=0.05 (-.-). 

O .  ÷ 

0.5 
2 

0 
2 5 4 5 6 

E 
Fig. 2. The dependence of P+ ((.Oopt)/esh on parameter E: r=0.5 
curve (1), r=0.1 curve (2), r=0.05 curve (3). 

pendence o f  fluctuation spectrum P+ (coopt)/Psh at 
the points of  minima 09 = coopt on parameter e is plot- 
ted in fig. 2 for different r. In the region e > 2 the size 
of  fluctuations at COopt tends to the shot-noise level 
with increase o f  e and the reduction is lost. 

The analysis o f  expression ( 17 ) for P_ (CO) shows 
that fluctuation suppression for the photocurrent 
difference is absent. 

The reduction o f  fluctuation in the sum of  inten- 
sities may be explained in the following way. It is 
known that the correlation between the instanta- 

331 



Volume 93, number 5,6 OPTICS COMMUNICATIONS 15 October 1992 

neous intensity fluctuations for two coherent driving 
fields at the cavity input  is absent, 
(An~"(t) Ani2"(t))=0. As a result of  the nonl inear  
four-photon interaction in the above-threshold re- 
gime, when the pump depletion is taken into ac- 
count, the two beams acquire correlated statistical 

properties, which are characteristic for two-photon 
absorption. Namely, the correlation between the in- 
tensity fluctuations of two pump fields becomes neg- 
ative ( An I ( t )  An2 ( t ) ) < 0 (for certain values of pa- 
rameters e and r). As a result the reduction of 
quan tum fluctuations below the shot-noise level, as 
it is seen from eqs. ( 15 ), (16),  is realized for the sum 
of pump intensities. 

The quant i ty  (An~ (t)  An2(t) ) is connected in the 
small f luctuation approximation with the equal-time 
interbeam second-order correlation funct ion 
g12)(0) as follows 

g}~)(0) = (a+(t)ce+(t)o~2(t)a2(t)) 
(a?a~) (a~a2) 

= 1 +  (Anl(t) A n a ( t ) )  (19) 
0 0 t / i  t /2  

and it may be calculated by the formula 
+ ~  

( A n l ( t )  A n 2 ( t ) ) =  ~ de) 

X [ ( A n ~ ( - e ) )  An2 ( e ) ) )  

+ ( A n 2 ( - e ) )  A n l ( e ) ) )  ] . (20) 

Using the solutions of eq. (8) and calculating the 
second-order averages in eq. (20) we obtain at the 
region 1 < e < 2: 

70 e -  (1 + r ) ( 2 - e )  
(An~( t )  A n 2 ( t ) ) = -  x 2 e ( 2 - e )  , (21) 

and at the region e > 2 for the case e 2 >> 1: 

Yo (l+r-r2) e2-r 
(An~( t )  A n 2 ( t ) ) = -  x e 2 ( l + r e 2 )  (22) 

The expressions (21) ,  (22) allow to determine 
immediately the values of parameter e and r, for 
which an interbeam anticorrelation g[~)(0) < 1 is re- 
alized. It should be noted, however, that this anti- 

correlation is insufficient for the reduction of quan- 
tum noises below the shot noise level in the intensity 
sum due to the presence of intrabeam intensity fluc- 
tuat ion terms in eqs. (15) and (16),  which are al- 
ways positive. 

References 

[ 1 ] S. Reynaud, C. Fabre and E. Giacobino, J. Opt. Soc. Am. B 
4 (1987) 1520. 

[2] R. Horowicz, M. Pinard and S. Reynaud, Optics Comm. 61 
(1987) 142. 

[3] A.S. Lane, M.D. Reid and D.F. Wails, Phys. Rev. A 38 
(1988) 788. 

[4] W. Zhang and D.F. Walls, Optics Comm. 79 (1990) 397. 
[ 5 ] T. Debuisschert, S. Reynaud, A. Heidmann, E. Giacobino 

and C. Fabre, J. Quantum Optics 1 (1989) 3. 
[6] M. Vallet, M. Pinard and G. Grynberg, Europhys. Len. l 1 

(1990) 739. 
[7 ] J. Mertz, A. Heidmann, C. Fabre and S. Reynaud, Phys. 

Rev. Len. 64 (1990) 2897. 
[8] G.Yu. Kryuchkyan and K.V. Kheruntsyan, J. Quantum 

Optics (1992) in press. 
[9] G.Yu. Kryuchkyan, Zh. Exp. Teor. Fiz. 99 ( 1991 ) 1416; J. 

Quantum Optics 3 ( 1991 ) 209. 
[ 10] G.Yu. Kryuchkyan and K.V. Kheruntsyan, Optics Comm. 

87 (1992) 181. 
[ 11 ] R.J. Horowics, Europhys. Len. 10 (1989) 537. 
[ 12] M.J. Collet and C.W. Gardiner, Phys. Rev. A 30 (1984) 

1386. 
[ 13 ] R.J. Glauber, in: Quantum Optics and Electronics, eds. C. 

de Witt, A. Blandim and C. Cohen-Tannouji (Gordon & 
Breach, New York, 1965 ). 

[ 14] H.J. Carmichael, J. Opt. Soc. Am. B 4 (1987) 1588. 

332 


