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Squeezing spectrum for radiation of atoms in two laser fields 
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Nonclassical properties of the radiation from an ensemble of two-level atoms interacting with a bichromatic pump field in an 
optical cavity are studied. In particular, the intensity, squeezing spectrum and the second-order correlation function for the cavity 
output field are calculated, 

1. Introduction 

Over the past few years, properties of  nonclassical 
states o f  light as well as different methods for their 
production have been widely discussed. In most 
works, both theoretical and experimental ones, mon- 
ochromatic continuous-wave pump fields are con- 
sidered to obtain the nonclassical light, including 
squeezed states [ 1 ]. Several papers are also devoted 
to problems of  squeezed light pulses [ 2 ]. 

In this paper a new possibility for single mode 
squeezed light generation by coupling an ensemble 
o f  two-level atoms with a bichromatic laser field in 
an optical cavity is considered. This intense field is 
treated classically and chosen in the following form 

E ( t )  =Eo Re{exp[ - i ( t o o  + 5 ) t - 2 i 0 ]  

+exp [  - i ( t o o  - 5 ) t ]  } . (1) 

It contains two components  with equal amplitudes 
Eo/2, relative phase 20 and frequencies too + 5, too-5 ,  
symmetrically detuned from the atomic resonance 
frequency too. 

The dynamics o f  a bichromatically driven a tom 
has been considered in a series o f  works [ 3-8 ]. The 
spectrum of  resonance fluorescence o f  an atom in the 
bichromatic field ( 1 ) has a fine structure with peaks 
at the frequencies toq=too+qS, q = 0 ,  +1,  +2,  ..., 
provided that the detuning 5 is much greater than 
the spontaneous width y of  the excited atomic level 
[4,5]. 

As it is shown below, the mode with frequency 

equal to the resonance fluorescence central line too is 
excited into a squeezed state in the presence of  an 
optical cavity. The excitation of  the O9o mode by the 
atoms in the bichromatic field occurs due to the pro- 
cess o f  two-photon spontaneous radiation. There is 
a strong pair correlation between the photons of  the 
too-mode [5 ], and this correlation is manifested in 
the fluctuations o f  the quadrature field amplitude of  
the too-mode. 

Note, that the situation in the present problem dif- 
fers from the well-known scheme of  squeezed light 
generation in the process of  nondegenerate four-wave 
mixing [ 9 ], where the two weak-intensity sidebands 
are generated by the central high intensity pump field. 
For the case discussed here, one weak intensity mode 
too is excited by the influence of  two intense pump 
fields with frequencies too + 5 and too-5 .  

The aim of  present paper is to calculate the inten- 
sity, squeezing spectrum and temporal second-order 
correlation function of  the cavity output light around 
the frequency too. 

2. Matrix elements of atomic transitions in a 
bichromatic laser field 

The theoretical consideration of  the problems listed 
in the introduction is carried out on the basis of  
quantum Langevin equations for the radiated field 
operators. The coefficients o f  these equations are 
calculated within the quasi-energy state representa- 
tion o f  the system "two-level a tom + bichromatic 
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laser field". The description in detail of such an ap- 
proach as applied to four-wave mixing is discussed 
in papers [ 10,1 1 ]. 

Generalizing the results of papers [ 3-5 ] to the case 
of arbitrary relative phase 0 in eq. ( 1 ), one can ob- 
tain the following two linearly independent quasi-en- 
ergy wavefunctions of the two-level atom in the bi- 
chromatic pump field ( l ) 

q}, (t) =cos[  (~/2) sin ( & + 0 )  ]qh 

- i  sin[ (~/2) s i n ( & + 0 )  ] 

× exp [ - i {oo t - i (~+~p)  ] {o2, 

~2 ( t ) =  - i  sin[ (~/2) s in (6 t+0)  ] 

× exp[i(~+{0)] {0~ 

+cos[  (~/2) s i n ( r t + 0 )  ] exp(- i~oot)  ~02, (2) 

where ~= 2 Vo/ & Vo= IdEo/h, d= ( {o2[dl~ot ) = [dl 
exp(i~p), ~0~, {o2 are the wavefunctions of the non- 
perturbed atom and we assume that the field ( 1 ) is 
linearly polarized. In obtaining (2) the rotating-wave 
approximation under conditions 6<< {oo, Vo<< ~oo has 
been used. The wavefunctions q},, q}2 coincide with 
the states qh, {o2 as ~-~0. 

For the case 7t << 1 the spectral lines of radiation 
of the system "a tom + bichromatic field" are deter- 
mined by the negative- and positive-frequency com- 
ponents of the matrix elements of the dipole tran- 
sitions between the states I q}, ) ,  J {/}2) 

_ D { - }  D , ~ ( t ) = ( ~ , J d ] ~ l ) -  v (t)+D~J+)(t) 

( i , j = l ,  2 ) ,  

D ~ - ) ( t )  = Z d~f ) e x p [ - i ( { o q t + q 0 ) - i ( 0 + q ~ )  ] , 
q 

o , ~ +  ' = ( o ~ , - ) )  * , { 3 )  

d{q} -d{2~}=(d*/4)Ju(~)( l -cos:rq)  

{ ) ~Sqo +-Ju(~) dl~21 } -: 2 

Xexp[ +-i(0+~p) ] , (4) 

where Ju(~) are Bessel functions, and oou=Coo+q6, 
q=0,-2-_1, +_2 . . . . .  

3. lntracavity mode dynamics 

The following scheme to obtain single-mode 
squeezed light is considered below. Within the ring 
cavity the system of identical atoms is pumped by 
the bichromatic driving field with the frequencies of 
two components o9~ =~oo+& ~n2={oo-& which has 
the form ( I ) inside the cavity. We consider the case 
of a single cavity-mode excitation with the resonant 
frequency equal to the resonance fluorescence cen- 
tral line ~Oo, such that {0~+o92=2090 ( k l + k 2 = 2 k o ) .  
The frequencies oJ~ and o& of two pump fields are 
located away from the cavity resonance. The driving 
field incident to the cavity is written as follows 

Ei~(t)=E~ Re exp( -ko~  t - i % )  

+E2 Re exp( - i{02 t - i02)  . (5) 

Then the field inside the cavity would have the tbrm 
(1) with E o = x f ~ E ~  =x/T2E2 and 2 0 = 0 , - 0 L  if 
we choose 0 2 - 0 2 = 0 ,  where T~, 72 are the trans- 
mission coefficients of the input mirror and 0~, 02 
are the phase changes on transmission for the m~ and 
{o2 components, respectively. 

The weak ~Oo-mode spontaneously excited at the 
pump fields propagation direction in the atomic me- 
dium is described by the slowly varying creation and 
annihilation operators a*(t), a(t) .  The Langevin 
equation of motion for this mode, derived for a good 
cavity, where the atomic variables can be adiabati- 
cally eliminated, has the following form 

d a ( t ) / d t = - ( a + F ) a ( t ) + # a * ( t ) + f ( t )  . (6) 

(and complex conjugate equation), where a is the 
nonlinear polarizability of the atomic medium for 
the {oo-mode in the presence of the bichromatic pump 
field, F is the cavity damping constant for the o~o- 
mode (F<<cS), ~t is the coupling constant between 
the conjugate modes, and f ( t )  is a noise operator with 
zero mean. Eq. (6) is written in a general form with 
neglect of  pump depletion, and it describes the dy- 
namics of the ~o-mode in a cavity allowing for the 
mode absorption by the cavity and by the atomic 
medium, the excitation of the conjugate mode, and 
the quantum noise caused by spontaneous emission 
and vacuum fluctuations of the electromagnetic field. 

The standard method for calculating the coeffi- 
cients a, /z and the noise correlations is based on the 
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density matrix technique and on the fluctuation 
regression theorem. A variant of this method which 
uses quasi-energy wavefunctions is described in ref. 
[ 1 1 ], applied to four-wave mixing. The equation for 
the density matrix operator of the coupled system 
"atom + bichromatic pump field + quantized ra- 
diation field" is given in refs. [5,12]. Using these 
results with the expressions (3), (4) we find that the 
coefficient a is equal to 

a=16aj2(~) / [3+Jo(2~)][5-Jo(2~)]  , (7) 

where a=4~Ncooled*[2/hy is the absorption coeffi- 
cient of the coo-mode in the absence of any pump, N 
is the atomic number density, and e is the polari- 
zation vector of the coo-mode. The quantity o~ is real 
and describes the absorption of the coo-mode by the 
atoms. For the case ~<< 1 we have a ( ~ ) ~ r .  

The calculations show that the coupling coeffi- 
cient p becomes zero. This result is specific for the 
case of a bichromatic pump field in the form (1), 
and is related to the cancellation of the multiphoton 
processes of absorption and emission. 

The nonzero correlators of the quantum noise op- 
erators turn out to be equal to 

( f * ( t )  f ( t ' )  ) = [ 1 + 2 ( a + F ) / f l ] - l ( f ( t )  f t ( t ' )  ) 

= flS( t -  t' ) , 

( f (  t) f (  t') ) =AS( t - t ' )  , 

( f t ( t ) f * ( t ' ) )  = 2 * f i ( t - t ' ) ,  (8) 

where the diffusion coefficient fl describes the rate of 
photon emission at frequency coo in the process of 
resonance fluorescence in the bichromatic field and 
is equal to 

fl=2v [ l + j 2 ( ~ ) ]  [3+Jo(2~) ] -8J :o (~)  (9) 
[3 +Jo(2~) l [5 - Jo (2~)  ] 

The coefficient 2 describes the spontaneous process 
of photon pair radiation at the frequency coo and is 
equal to 

2=2a{[ l -J2o(~)] / [5 -Jo(2~)]}exp(2 i¢ ) .  (10) 

Note that the coefficient 2 contains only the relative 
phase 20 between the two components of the bich- 
romatic field, and the phase ~0 of the atomic dipole 
transition matrix element d is absent in the final 
results. 

Another specific characteristic of the radiation of 
the considered bichromatically driven atomic sys- 
tem in a cavity should be pointed out. As the cal- 
culations show [ 1 3 ], the coupling coefficients/Z,j be- 
tween the two arbitrary cavity resonant modes co, and 
coj are equal to zero if the following condition is sat- 
isfied, co,+coj=2coo+p6, where p is an odd number 
or p = 0 (the case with p = 0 gives/Zoo =-/1 = 0 ). There- 
fore the results of this paper could be applied, when 
the cavity is tuned to the frequency coo and to the 
frequencies of the driving field co~=coo+& 
co2=coo-O too (providing the conservation of the 
form ( 1 ) for the driving field inside the cavity by the 
suitable choice of the cavity mirrors). In this case we 
have/zo~ =/zo2 = 0, and the equation of motion for the 
COo-mode will not contain the operators of the col and 
o92 modes and it will remain in the same form (6) 
with/Z = 0. 

4. Intensity of the output field 

Using the solutions of eq. (6) (with/t = 0) and the 
correlators (8), in terms of Fourier-transformed fre- 
quency components we obtain the following results 
for the second-order expectation values 

(a*(co) a(co') ) = {fl/[ ( a+F)2+co2 l}  6 (co-  co') ,  
(11) 

(a(co) a(co') ) = {~/[ ( a + F ) 2 + c o  2 ] },~(co+ co'). 
(12) 

The corresponding temporal means are 

( a t ( t + r )  a(t)  > = [ f l / 2 ( a + F )  ] exp[ - ( a + F ) z ]  , 
(13) 

( a ( t + r )  a(t)> = [ 2 / 2 ( a + F ) ]  e x p [ -  ( a + F ) z ]  , 

( r > 0 )  . (14) 

Let us now calculate the intensity of the output 
field. Using the well-known relation between the 
cavity output electric-field operators E +- (t) and the 
intracavity operators a (t), a* (t) [ 14 ] for the case of 
a single cavity-output mirror, we obtain the follow- 
ing result for the total intensity of the output field 
centred on the frequency coo 
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I= ( 4nhOJo/ c S ) F (  a +a ) = ( 4nhFoJo/ cS) 

[ 1 + j 2 ( ~ ) ]  [ 3 + J o ( 2 ~ )  ] - 8 J g ( ~ )  

X 16 j2 ({  ) + ( e l a )  [ 5 - J o ( 2 { )  ] [ 3 + J o ( 2 { ) 1  ' 

(15)  

where S is the transverse area, defined by the cavity 
and detection optics. 

For the corresponding spectral intensity we have 

I((o) = ( 8nhFo)o/ cS) 

-t-~o 

× R e  J d z e x p [ - i ( w - O ) o ) r l  ( a + ( t + z ) a ( t ) )  
0 

= 2 I ( o ~ + F ) / [ ( o ~ + F ) 2 + ( c o - o ) o )  2 ] . (16)  

The peak value of  the spectral intensity in the cen- 
ter of  the Lorentz line (~o = O)o) is 

I (o&) ( 2nhcoo/ cS ) - l  

= ( 4 F / a )  [ 5 - J o ( 2 ~ )  ] [ 3 +Jo(2~)  ] 

× { [1 + j 2 ( ~ )  ] [ 3 + Jo(2~) ] - 8 j2(~)  } 

× { 16j2 (~) + ( F / a )  [ 5 - J o  (2~) ] [ 3 +Jo (2¢ )  ] } -2 
(17)  

The dependence of  intensities (15) ,  (17)  on the 
pump  intensity parameter  ~= Vo/g is plotted in figs. 
1, 2. The max ima  of intensities I, l (oJ)  lie near those 
values of  ~ for which the absorption coefficient 
oe(~) = 0  and the atomic med ium is transparent.  

2 0  

IO L 
to 

Fig. 1. Intensity I/(4n'hFcoo/cS) versus parameter ~= 2 Vo/~ for 
two values of ratio F/oz. ( 1 ) F/a= 0.1 and (2) F/a=O.O1. 

8o 

o 5 1o i~ 

Fig. 2. Peak value l(~oo) / (2rchcoo/cS) of spectral intensity as 
function of (for F/a as in fig. 1. 

5. Squeezing spectrum and correlation function 

The other quanti ty of  interest is the spectrum of 
the quadrature-ampli tude fluctuations for the output  
radiation field. This quanti ty is defined by the 
expression 

+ o o  

S(co, O ) = 4 F R e  f d z e x p ( - i ~ o z )  
0 

X [ ( : X o ( t + T )  Xo(t ) :  ) 

- ( X o ( t + r ) )  ( X o ( t ) )  ] , 

where Xo(t)  is the quadrature-ampli tude operator  

X o ( t ) = a ( t )  e x p ( - i O ) + a + ( t )  exp(iO) . (19) 

The quantity S(~o, O ) > - I  by definition and 
squeezing is realized if S(co, O) < 0. Using the results 
( 13 ), (14) we obtain 

S ( o ,  O) = {4F(o~+ F ) / [  (0¢-1-F)2-t-o) 2 ] } 

X ( : ( A X o ) 2 : )  • (20) 

Here ( : (AXo)2:)  is the normally-ordered intracav- 
ity variance of  the ~Oo-mode quadrature-ampli tude 

( :  (AXo)2:)  = [ 1 / ( a + F ) ]  [fl+ 12[ c o s ( 2 0 - 2 0 )  ] ,  
(21) 

which can be negative for properly chosen phase 0. 
Note, that  due to the coupling coefficient # = 0 ,  the 
squeezing spectrum is determined merely by the 
contr ibution of the noise correlators (8).  

The opt imal  value of  the quantity S(co, 0) ,  which 
is realized for the phase 0 = ~ + n /2  and for zero fre- 
quency co = 0, is 
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Sm~,(0) = - (1 - J o ( 2 ~ ) )  

(a [5-Jo(2¢)]Ia+Jo(2¢)])-' 
× [ ' +  16Joe(() (22) 

The dependence of this quantity on parameter ~ is 
plotted in fig. 3. The squeezing is absent for very in- 
tense (~>> 1 ) and weak (~<< I ) pump fields and for 
values of ~ determined by the equation Jo (~) = 0. As 
follows from eq. (7) the atomic medium is trans- 
parent for such values of ~. For the wide range of in- 
termediate values of  ~ there is a significant reduction 
of fluctuations below the vacuum level. The analysis 
shows that the maximal squeezing may reach 35% 
for F~ot (~) .  As for the intracavity variance (21), 
this is minimized for F<< or(C). 

The pair correlation between the photons of  the 
tOo-mode also comes out in another optical phenom- 
enon - in the intensity interference of the radiated 
field, described by the second-order correlation 
function 

g2(r)  = ( E  ~-)( t)  E ( - ) ( t + r )  

x E ( + ) ( t + z )  E(+)(t) ) /I 2 . (23) 

Expressing the operators E ¢-+)(t) in terms of a ( t ) ,  
at(t) and using the gaussian-type noise properties of  
the vacuum fluctuations to factorize the fourth-order 
expectation value we obtain (with the help of  eqs. 
(13) and (14))  

g~2)(z)= 1 

+ 1+ 1-J~(~)[5-Jo(~)]/[3+Jo(2~)] 

× e x p { -  2[F+o~(~) I t} .  (24) 

For zero delay time r = 0  the correlation function 
g ~ z ) (0) >~ 3 for all values of  ~. For small ~ and ar  << 1 
the correlation shows photon superbunching and 
super-poissonian statistics (g~2) >> 2 ). 
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Fig. 3. Peak squeezing Smi.(0) versus ~ for: (a)  F/a=O.I and 
(b)  F / a = 0 . 0 1 .  
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