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Controlling instability and squeezing from a cascaded frequency doubler
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We present a semiclassical and quantum analysis of a nonlinear optical interaction in a cavity in which an
externally driven fundamental mode at frequenrgyransforms into the second-harmonic mode &hd then
into the fourth-harmonic mode o via cascaded frequency-doubling processes w—2w and 2w
+2w—4w. In the adiabatic limit of the strongly damped fourth-harmonic mode the nonlinear system is
equivalent to the process of intracavity second-harmonic generation combined with nonlinear two-photon
absorption from the second-harmonic mode. Semiclassical steady states and linear stability analysis show that
possible operation regimes are substantially different from those for the pure second-harmonic-generation
process. It is shown in particular that the system is characterized by two critical points: Starting from a certain
critical value of the driving field intensity, one observes self-pulsing instability; however, at higher intensities,
beyond a second critical point, the system turns back to the stable generation regime. Moreover, under appro-
priate values of the control parameters, one may arrive at a complete quenching of self-pulsing behavior and at
stabilization of the steady states in the entire domain of the driving field intensity. These stabilization properties
become important when turning to the analysis of the quantum fluctuations and quadrature squeezing effect in
the fundamental and second-harmonic modes within the ranges of linearized treatment of fluctuations. Due to
the emergence of stability in the behavior of the system at high level of coherent excitation, the system
becomes capable of generation of bright light with enhanced squeezing prod&1i@50-294{®7)08911-1

PACS numbeps): 42.65—-k

I. INTRODUCTION frequency are related to utilizing a singly resonant
frequency-doubling scheni&].

Frequency doubling or second-harmonic generation It should be pointed out, however, that in SHG there exist
(SHQ) in a cavity is one of the basic processes in the field ofsome limitations on the intensity and degree of squeezing of
nonlinear and quantum optics. It consists of a transformationthe fundamental and second-harmonic modes available in the
via a x‘?-nonlinear crystal, of pairs of photons of an exter- stable steady-state regime. They originate from the instabil-
nally driven fundamental mode of the cavity with frequencyity appearing when the critical value of the driving field in-

w into photons of the second-harmonic mode with frequencytensity is approached. As is known from theoretical consid-
20w (w+w—2w). A consistent theoretical analysis of the erations [4], the maximal degree of squeezing in the
SHG, including quantum fluctuations and dissipation effectsfundamental and second-harmonic modes is approached in
has been presented fithi]. It was shown in particular that in the vicinity of the critical point. Hence the maximal intensi-
the steady-state regime this nonlinear process is characteies of the highly squeezed modes in the stable steady-state
ized by a certain critical point with respect to the driving regime turn out to be limited by their critical values. Note
field intensity, above which the system turns from the stablelso that although the squeezing in a generalized sense was
generation regime to the unstable regime. In the instabilityshown to survive in the instability domaf®], our attention
domain the intensities of the fundamental and secondin this paper is directed toward the bright squeezing obtain-
harmonic modes demonstrate self-pulsing temporal behavioable in the stable generation regime.

which has been observed experimentdlly. In the present paper we propose a nhonlinear optical

SHG was also one of the first processes that were consigcheme that is capable of generating bright squeezed light
ered for production of quadrature squeezed l{ghtl]. Sev-  with enhanced squeezing properties. It contains two cas-
eral experiments have been performéd-7] that demon- caded nonlinear processes of frequency doubling, taking
strated squeezed noise reduction in both the fundamental apdace inside the same cavity and transforming an externally
second-harmonic modes. We note that an attractive propergriven fundamental mode into the second-harmonic mode
of SHG is related to the fact that the squeezed light produce@w (w+ w—2w) and then into the fourth-harmonic mode
in this process is not the squeezed vacuum but an amplitudfw (2w+2w—4w). We consider the adiabatic limit of the
squeezed light with a nonzero coherent component. Thistrongly damped fourth-harmonic mode when only modes
property is of great importance when we look for a source ofw,2w effectively remain in the cavitysee Fig. 1a)]. In this
bright squeezed light, i.e., a squeezed light with a high levetase this nonlinear system becomes equivalent to a doubly
of coherent excitation. Recent experimental results on gerresonant SHG combined with a nonlinear two-photon ab-
eration of bright squeezed light at the second-harmonic modsorption from the second-harmonic mode.

We note also that although some effects of cascaded non-

linearities were studied a long time agp0-12, a strong
*Also at Yerevan State University, Alex Manookian 1, 375049, interest in the interaction of two nonlinear processes has
Yerevan, Armenia. Electronic address: root@ipr.arminco.com emerged within the past few years. For example, combina-
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from the second-harmonic mode changes substantially the
steady-state behavior of the fundamental and second-
harmonic modes as compared to the process of pure SHG.
Namely, the self-pulsing instability, arising at a certain criti-
cal value of the driving field intensity, vanishes at higher
intensities beyond a second critical point and one again ar-
rives at the stable steady-state regime. Moreover, by varia-
tion of control parameters of the system one may reduce the
instability domain and make it vanishing, arriving at com-
plete quenching of the self-pulsations and at stabilization of
@ the steady states in the entire domain of variation of the
driving field intensity. Turning then to the analysis of quan-

] tum fluctuations of the modes and taking into account the
® 1 fact that both the processes of SHG and two-photon absorp-
®

tion are responsible for amplitude squeezisge, e.g.[4]),

2o-mode NI one may anticipate capability of our nonlinear system to pro-
® Y duce bright light beams with enhanced squeezing properties
" in the stable steady-state regime.
The paper is organized as follows. In Sec. Il we formulate
the model of the intracavity cascaded frequency doubler, de-
® © rive stochastic equations of motion for the three resonant
cavity modes, and then eliminating adiabatically the fourth-
FIG. 1. (a) Principal scheme of the cascaded frequency doubleharmonic mode arrive at a reduced set of equations for the
in the adiabatic regime of generatidib) Diagrammatic representa- fundamental and second-harmonic modes. This is equivalent
tion of the processes described by the Hamiltor(ign The boxes to the model of SHG combined with resonant two-photon
represent the intracavity modes at frequendigs= w, w,=2w, absorption. In Sec. Il we present a semiclassical analysis of
andwz=4w. The arrows correspond to the photons being put intothe system. We calculate the steady-state solutions and carry
or taken out of the mode@ith pairs of arrows denoting pairs of out a linear stability analysis, as well as turn to the cavity
photong due to the processes @ff fundamental mode drivingat  output intensities of the modes. Section IV is devoted to the
rate E), (i) nonlinear transformationgwith coupling strengthk  analysis of quantum fluctuations of the fundamental and
andy), and(iii) damping of the mode@t ratesy., 72, andys). (6} second-harmonic modes within the framework of lineariza-
Diagram representing the adiabatically equivalent mddelthe  tjon procedure around the stable steady state. We analyze the
model described by the Hamiltonid8)], in which the influence of ;yacavity variances of quadrature amplitude fluctuations of
the strongly dumped fourth-harmonic mode is reduced to the tWOthe modes and calculate the squeezing spectra of the cavity-
photon loss mechanisrtat the rateg=yx/4y;) for the second- ;1\t fields. Concluding remarks are given in Sec. V. In
harmonic mode. the Appendix we derive the equations of motion for the con-

tions of second-order nonlinearities have been investigated ifrete physical system with two crystals and obtain expres-

order to induce largg® nonlinearities 13,14 and to pro- sions for the coupling constants.
duce tunable UV lighf15]. In the context of quantum optics,

a scheme with competing processes of SHG and nondegen-
erate parametric down-conversion has been analyzed witty MODEL AND STOCHASTIC EQUATIONS OF MOTION

the purpose of generating highly regularized twin beams The nonlinear optical interaction under consideration is
[16]. Enhanced squeezing from the Kerr interaction comyeglized within a triply resonant cavity that supports the
bined with two-photon absorptiofil7] and generation of |y odes at frequencies, = », w,=2w andw;=4w, referred
nonclassical superposition states in a parametric downg as fundamental, second-harmonic, and fourth-harmonic
conversion combined with two-photon absorptift8,19  modes, respectively. The fundamental mode is resonantly
have also been predicted. Large quadrature squeezing at higlayen by an external driving field, while the second- and
intensities and other specific quantum optical effects havgyrth-harmonic modes are created via cascaded
been studied in combinations af®-nonlinear parametric x@-nonlinear processes of frequency doublifsecond-
processes and Kerr interactiof@0—22 and for combined  harmonic generation The losses in the input-output cavity
processes of four-wave mixing and phase modulationyirror are accounted for by means of independent reservoir

[23,24. Note that the relevance of these studies goes Welhteractions for each mode. We adopt the following model
beyond the theoretical interests since recent advances in theymiltonian, in the rotating-wave approximation:

technology of multiple quantum wells enable practical
implementation of some of these complicated devite=s
[20] and references thergin 3 K

W+ w—2w I:l&+2w—>4w

: . . . h h
In the nonlinear system under consideration, an importanH=>" #w;ala,+i —(al%a,_a%a})+i —X(a;2a3—a§ag)
point relevant to the remarkable results is related to the sta- =1 2 2
bility properties of the steady states. As it will be shown 3

below, the addition of the second frequency-doubling pro- +ik(Ee etal —E* eiwtal)+2 (alf+alT)) 1)
cess or of an equivalent two-photon-absorption mechanism ! =t
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wherea! anda; (i=1,2,3) are creation and annihilation op- derive Egs(3) and the Hamiltoniait1) on the basis of semi-
erators for the modes; , k is the coupling constant for the classical equations of nonlinear opti¢see, for example,
frequency-doubling process+ w—2w (w;+ w;—w,), in  [29-31). Such consideration allows us to obtain the follow-
which two photons of the fundamental mode annihilate taing expressions for the coupling constants and damping rates
create a photon of the second-harmonic mode, andythe in Egs.(3):
constant is responsible for the subsequent frequency-
doubling process @+ 2w—4w (w,+ w,— w3) creating the 1-R
photons of the fourth-harmonic modE. is associated with Yi=¢ L—L;—L+nP2L +n22,’
the coherent driving field amplitude alft;T ,I'; are reservoir
operators, giving rise to the cavity damping ratgsor the
modesw; . A diagrammatic representation of the processes k=477ﬁ1’2wf’2)(1L1f uz(p)us (p)d?p, (5)
described by the Hamiltoniai) is shown in Fig. 1b). S

We use the standard approdske, e.g.,25,26]) to elimi-
nate the reservoir operators and to derive the following mas- _ 12 302 2 . 5
ter equation for thepdensity operatprof the modes in gtjhe x=4mh" w; Xszfsuz(P)Ua(P)d P
interaction picture:

_e _ @
where x1=x?(w;= 01+ 1), andx,=xP(w3= 0o+ wy)

dp k X . -
= E[aizaz—afa;f’ﬁ E[a’zﬂas_aga;,p] are r_10nI|near susqeptlbmues for each of two crystals, the
functions u; describe the cross-section structure of the
3 modesR; is the output reflectivity of the input-output mirror

+[Eal—E*a;.pl+ > yi(2apa —pala—alap).  for theith mode,n{) is the linear susceptibility for théth
i=1 mode in thejth crystal,L, , are the lengths of the crystals,
2) andL is the cavity length.
In what follows we shall consider the limigs> vy, , of
The master equatiori2) is then transformed into the high cavity losses for the fourth-harmonic mode. This allows
Fokker-Planck equation in the positiVe-representation us to eliminate it adiabatically, using the relation
[25,26,28, which is equivalent to the stochastic differential

equations X
3= — 2_’)’3a§, (6)
da
—l=—'y1a1+ka1a2+E+Fl(t), . A A
dt and to arrive at the following reduced set of equations of
motion for the fundamental and second-harmonic modes:
daz k
gt =~ Y202 5 @it xagazt o), 3 do
W = — 'yla’l"‘ kaIa’2+ E+ Fl(t),
daz X 5 ()
at Y3as §a21 das, Kk 2

X

2 2

ot Y% 500 gazalﬂz(t)-
wherel'; (t) are Gaussian noise terms with zero means and 3

nonzero correlators .
Now the nonzero correlators of the noise terms are

(PO (1)) =kap8(t—t"), (T1(OT (1)) =kad(t—t"),

<F2(t)rz(t’)>:)((135(t_t’) (4) 2
I\ — X 2 ’
We recall that in the positivé representation used;” and (Ta(OT ()=~ 2_),30‘25“_t ). ®

«; are independent complexnumber variables, correspond-
ing to the operatora; anda. The equations for; variables

are obtained from Ed3) by exchangingy; < a, I'; ,~T1, Model of the frequency doubler combined
and termE by its complex conjugate. with two-photon absorption
It should be noted that the Hamiltonigh) and Eq.(3) in In the considered limit of the strongly damped fourth-

particular describe the following cascaded scheme of generdzarmonic mode its influence on the dynamics of the second-
tion with two crystals of different nonlinear susceptibilities harmonic mode may be visualized as a nonlinear two-
placed within a triply resonant ring cavity. We assume forphoton-absorption mechanism. Indeed, the set of equations
definition that phase-matching conditions for modesw,  of motion of the form(7) may be directly obtained by con-
are satisfied in the first crystal and for modes, w5 in the  sidering a combined nonlinear system in which the
second crystal. In other words, we assume that both of th&tequency-doubling process+ w— 2w is accompanied by a
frequency-doubling processesw;+w;—w, and w, nonlinear two-photon absorption from the second-harmonic
+ w,— w4 take place effectively only in the definite nonlin- mode w,=2w. The corresponding effective Hamiltonian
ear crystal. In the Appendix we study in detail this point andmay be written as



538 K. V. KHERUNTSYAN et al. 57

2 hk bility analysis with respect to small deviations from the
H=> hoala+i 7(a12a2—a§a;) steady states.
=1 For this purpose it is more convenient to transform the
2 semiclassical counterpart of Eqg) to the intensity(in pho-
+ih(Ee*i“"aJ1r—E*ei“"a1)+2 (airi‘r+ai‘rri) ton number units and phase variables of the modes
=1 = /n,exple)). This yields
+(@ " +alT). 9)
O 5yny 2kn, Jiycog 2 )
- <Y P1— @
Here the first four terms describe the well-known model of dt v tee v
intracavity second-harmonic generatiph], while the last B
term is responsible for the process of two-photon absorption +2[E| \/n—1005{¢ 1),
from the second-harmonic mode via a nonlinear nonsaturable q )
absorbef4,32], with ' andT" being the corresponding res- any _ 2 — ke Tacod 20 — o) — Xon2
ervoir operators giving rise to the photon-absorption ate dt Yalla 1\/_2 1261~ ¢2) 2 12
The processes described by this Hamiltorjianby Eqgs.(7)] (12)
are represented in Fig(d. d |E|
Eliminating the reservoir operatol ,I'; andI'T,T", now TR Sin(¢— 1) —kyn,SiN(2¢; — ¢5),
we arrive at the following master equation for the fundamen- \/n—l
tal and the second-harmonic mode:
des kng
ap k = = SiN2¢1— ¢3),
—t = 5lal%,—alal,p]+[Eal~E*ay p] a2,
2 where ¢ is a phase of the driving fielt = |E|exp(¢).
+> yi(2apal —pala;—ala;p) Then the steady-state solutiorsn{/dt=d¢; /dt=0) for
=1 the intensitiesn] , and phases? , of the fundamental and
the second-harmonic modes are found to satisfy the relations
+g(2a3pa)’*~ paja—aj’adp). (10 v
0
. . . n
Transforming again to the corresponding Fokker-Planck ngz \/% (2r+Gng), (13)

equation and turning then to the equivalent stochastic equa-
tions, we obtain a set of equations of motion, which have the

same form and noise properties as E@$.and (8) with the ng o 5
only difference being that the relatigpf/4y; should be re- e?= w« (2r+Gny)(1+ VKn3)?, (14
placed by
X )=¢, ©3-2¢7=m, (15)
Y3 where we have introduced the dimensionless parameters
Thus all the results of the subsequent sections can be equally K2 2 IE|2
applied to both the nonlinear optical schemes by means of K=—, G= X , rE—Z, g?=—. (16
the variable change formuld ). Y1 Y173 Y1 1

The physical meaning of the above considerations is re-
lated to the fact that the influence of the adiabatically elimi-To check the stability properties of these steady-state solu-
nated fourth-harmonic mode is reduced to an additional eftions we linearize the equations of moti¢h2) and write
fective loss mechanism for the second-harmonic modegjown the equations for small deviatiods; (t)=n;(t) —n?
which is of two-photon dissipation variety. All the specific and 6¢;(t)= ¢;(t)— ¢ from the steady states in the matrix
results(as compared with those of the well-known model of form
pure second-harmonic generati¢th,4]) discussed below
originate actually from this additional two-photon loss déon déo
mechanism and its stabilizing influence on the nonlinear dy- ar - Ao =T A, 17)
namics of the system.

wheredn=(én,,6n,)T, o= (8¢,,5¢,)", and the matrices

Ill. SEMICLASSICAL ANALYSIS A, andA<P are
In this section we proceed with the analysis of our non- 0
linear system in the semiclassical approximation. This is +k\/F ﬂ
achieved by ignoring the noise terms in E@g) and by N 2 Jnd
treating the aiT variables as complex conjugates tgq An= 22 ) (18
(aiT—>ai*). We calculate in particular the corresponding —k\/ﬁg Yot ing
steady-state solutions and carry out the standard linear sta- 23



yi—kyng kyn

knd  knd

Vng  2yn3
The steady-state solutiori$3) and (14) are stable if the
real parts of the eigenvalues of the matriggsand A, are

positive. We denote these eigenvalues\ag and A3 4, re-
spectively, and with use of the notatio(i5) find

)\1,22% 1+r+ Kng+?ng)
L7 (1+r+\/K_rng+?ng)2—4Kn2
—4(1++/KnJ) r+?n2) 1/2,
(19
)\3,4=%(1— Kn2+n?(1) \/nEg)
e (1— Kng+n§\/n§)2

K 1/2
—2Kn?—2n? \/% :

2

A. Self-pulsing instability and stabilization

Using relation(13), one may express the eigenvalugs,
and\3 4 in terms ofng and check that the real parts »f ,
are always positive, while Re; 4 can take negative values if

G
Y=1+r1r+ -

5 ny— VKn3<o0.

(20

Thus the inequality20) represents the condition for the oc-
currence of instability in our nonlinear system, which origi-

nates from the phase-variable subsystem. This condition i

fulfilled for the case

2G(1+r)<1 21
K G
in the domain
n,'<nd<n\"), (22)
where
- K 2G(1+1)|?
ny~ I? 1+ l_T (23)

represents the values og at critical Hopf bifurcation points.
At these points the real parts af and A\, vanish, leaving
nonzero imaginary parts.

Using the steady-state relatioh4), one may express the
two critical points in terms of the cavity-input driving field
intensity parametes?=|E|?%/y3:
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FIG. 2. Self-pulsing instability of the fundamental and second-
harmonic mode photon numbers,(t)=]|a,(t)|? (curve 3 and
ny(t) =] a(t)|? (curve 2 as depending om,t: K=10"8, G=2.5
X107° r=1, e=5x10, a,(0)=1+i, anda,(0)=0.

1 2G(1+r
(e)?=5 1:\/1——(K )
s +K 1 /1 2G(1+1)?
Y K
K 2G(1+1)]\?
X[ 1+ g1 \1-—— (24)

In the instability domain £(7))?<e?<(e("))? the intensi-
ties ny(t) and n,(t) of the fundamental and the second-
harmonic modes demonstrate self-pulsing temporal behavior.
This is shown in Fig. 2 by numerical solution of the semi-
classical counterpart of Eq47) (i.e., without the noise
termg, yielding in particular realizations forn,(t)
=|a(1)|? and n,y(t)=|ay(t)|? as depending on the initial
conditionsa;1(0) anda,(0).

As for the case

n

2G(1+r)

K >1, (25
the reverse of inequalit§21), the quantityyY becomes always
positive, leading to positive real parts;4. As a conse-
quence, in this case we do not observe instability at all, i.e.,
the steady-state solution$3)—(15) become stabilized in the
entire domain of the driving field intensity parametér The
relation 2G(1+r)/K=1 marks the boundary where the two
critical points ()2 and £(*)2 become coincident and the
self-pulsing behavior becomes completely quenched.

Let us discuss now in more detail the conditiq2%) of
stabilization of generated modes. As mentioned previously in
Sec. Il for equations of motion, the results obtained describe
both nonlinear optical schemes. For the model of Sec. Il A,
in which the frequency-doubling process + w;— w5 is ac-
companied by two-photon absorption, the intensities and
phases of modes can be obtained from the general results by
using the variable change formutal) G—4g/y,. This pro-
cedure gives the condition of stability



540 K. V. KHERUNTSYAN et al. 57

dashed parts of the curves correspond to the instability do-
mains and the curves for the case of pure SHG are also
plotted for comparison. We note that the results on pure SHG
can be directly reproduced from our present results by setting
x=0 (or G=0). In this case the location of the formally
defined second critical point is moved to the infinity so that
the system becomes characterized by a single critical point,
above which it demonstrates self-pulsing instability. The lo-
cation of the critical point is determined now by E@O)

with G=0. Using also relatioril4), we arrive at the follow-

ing well-known resultg1] for critical values ofng ande in

the process of SHG:

3x10"

2x10"

0
n

1x10"

(y1+7v2)? (2y1t+72)
ngr:T, 8°r=k—yl[2)’2(7’1+7’2)]1/2-

(28)

’ 050 10" Curves(3) on Figs. 3a) and 3b) describe the examples of
2

(a) £ complete stabilized behavior of the photon numbers, which
is realized for the parametelS=K and the ratio of the
, coupling constantg?/k?=y3/y,>1. This quality can be
210" written in terms of the nonlinear susceptibilities of two com-

’ bined crystalsy,/x,=2+27y,/v3L, /L, if we use Eqs.(5)
and neglect the cross-section structure of the modes. If we
chooseys/y1~200 (according to the adiabatic approxima-
tion), theny,/x>=L,/5L4, which is a quite acceptable situ-
ation for real physical systems.

Thus the inclusion of an additional two-photon loss
mechanism into the model of SHG changes substantially the
stability properties of the resulting nonlinear system. It be-
comes characterizdih the case of Eq21)] by two critical
points and hence by a finite instability domain, above which
the steady states become again stable. Moreover, when the
two-photon loss efficiency becomes strong enough to yield
the inequalities(25)—(27), we do not observe any critical
point or instability. Another obvious influence of the effec-

0 0.5x10% 0x10% tive two-photon losses from the second-harmonic mode con-
sists in a decrease of the magnituden&fas compared to the
case of pure SHGsee Fig. 3 curve2)].

(b) £?

FIG. 3. Semiclassical steady-state photon numbh@endn for _ ) -
the (a) fundamental andb) second-harmonic modes as depending B. Cavity-output intensities

on 82._ The brokenﬂgrts of the curves are related to theilir(')lstable We consider the special scheme of generation when the
domains:(1) K=10"%, G=0 (pure SHG, r=1; () K=10"% ¢4 pling in and out fields occur at one of the ring-cavity
G=2.49<10"", r=1; and(3) K=10"", G=10"", r=0.1. mirrors. To calculate the intensities of the cavity-output in-

tensities at the fundamental and second-harmonic mode fre-
(26) guencies in this case we use the well-known relaf@2]

att'= \/Z_)ﬁai—a:n (i=1,2), (29

k2
=g -7
8(y1tv2)

which can be fulfilled for a sufficiently large rate of the ef-
fective two-photon losses. Then, we recall that the cascad
frequency-doubler system is considered here in the adiabat ; o o in

approximation fory;>vy4,7y,. In this limit the condition of terms of the intracavityg;) and cavity-input &) operators.

complete stabilization of the steady-state solutions occurs The cavity-output intensities in photon number units per
P y unit time are determined by?"'=((a’"")Ta?"". Taking into

e'x?éhich expresses the cavity-output field operatc&é”b in

when account that only the fundamental mode is coherently driven
¥2 Va by an external field with{a")=E/\2y,[n]'=((a]")"a]"
ks m>1. (27)  =|E|?/2y,], while the second-harmonic mode is initially in

the vacuum statd(al")=((al")'al")=0], we obtain for
In Fig. 3 we plot examples of the curves for the steady-ni"“t, in the steady-state regime and in the semiclassical ap-
state photon numbera? and nJ depending ons2. The  proximation[(a;}=n® expi¢?), (ala)=n’],
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°
2x10 25109

1x10°

out
j=)

%10 v’
= o e

0 0.5%x10% 10x10®

E2
FIG. 4. Scaled cavity-output intensitiaa@luz‘/y1 of the (1) fun-
damental and2) second-harmonic modes as dependingedrfor
K=10"1° G=2.49x 10", andr=1.
|El)?
noul=2 ( nd—-—| , (30)
1 1 1 271

n3''=2y,n9. (31

With the use of Eqg(13) and(14), the quantitiesr;fi“zt may
be expressed in terms of the cavity-input field intensify

of energy transformation from the cavity-input fundamental
beam to the cavity-output second-harmonic beam depending
on 2. The fact that the maximal value of thgcoefficient
does not approach unity due to the depletion of the funda-
mental beam is caused by the two-photon loss mechanism
from the second-harmonic mode.

IV. QUANTUM FLUCTUATIONS
AND QUADRATURE SQUEEZING

Let us turn now to the analysis of quantum fluctuations of
the fundamental and second-harmonic modes. We carry out
this analysis within the framework of standard linearized
treatment of quantum fluctuatioriaround the semiclassical
steady statg@swhich is valid in the stability domains of the
nonlinear system.

In accordance with the results of the preceding section, an
attractive property of our nonlinear system consists in the
stabilization of the steady states at high intensities of the
modes. This leads to the validity of the results of the linear-
ized theory at high intensities and motivates the study, in
particular, the quantum fluctuations of the quadrature ampli-
tudes of the high-intensity light beams. The purpose is to
obtain bright light with enhanced quadrature squeezing prop-
erties in the stable generation regime. Our reasoning for such
an expectation relates to the origin on the restriction on
squeezing results, obtainable for the process of pure SHG

=|E|?12y,= v,£2/2. Examples of the curves for scaled out- [4]. These restrictions originate from the fact that although
put intensitiesnd"Yy, andn3"Yy, depending on the scaled the quadrature amplitude fluctuations of the modes decrease
input intensity 21'1”/7,1:82 are plotted in Fig. 4. A closeup monotonically with an in(_:reas_e of the Corresponding int_ensi-
view, showing the complete depletion of the fundamentafies, the results of the linearized theory become invalid at

beam, i.e., vanishing ai{"' at a certain value o2, is also
shown in Fig. 4.
In Fig. 5 we plot the coefficient

wynd"t 2n3Y
= in — ~in (32
(l)lnl nl
10
(2}
(3)
— 0.5
(1)
0
0 110" 2x10™

52
FIG. 5. Dependence of the coefficient on &2 for (1) K
=101 G=2.49x107%, r=1; (2) K=10"1° G=2.49x10" %,
r=10; and(3) K=10"1°, G=10"1° r=10.

high intensities in the above critical region. As a conse-
guence, the minimal variance of the quadrature amplitude
fluctuations (maximal squeezing and the corresponding
maximal intensity turn out to be bounded, in the stable re-
gime, by their values at the critical point.

The linearized equations of motion for our nonlinear sys-
tem, which contain the noise terms and describe the quantum
fluctuations of the intensities and phases of the modes, can
be derived from Eq47) and(8) by transforming to the new
stochastic variables

t 1 a;
n,=ea; a;, QDi:EIn?.

(33

Using then the same notations for fluctuatiods;(t)
=n;(t)—n° and S¢;(t) = ¢;(t) — ¢’ as in the semiclassical
equation(17), one may arrive at following linearized equa-

tions:
dfon) 5n1> (Fl(t))
a(anz)‘ An(5n2 e 34
d [J¢, _ o1 f1(t)
a(&Pz T e 5@2)+(f2(t))’ 39

where matricesA, and A, are given by Eq(18) and the
nonzero correlators of the noise termgt) andf;(t) are

(F1(HF ()= —2knd/n3s(t—t"),
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2 Vi(0:)=([AXi(6)]%) =([Xi(6)]?) —(Xi(6))* (i=1,2
<F2(t)F2(t’)>=—%(ng)zé(t—t’), (36) i(0)=([AX;(6)]5)=([Xi(6;))]) —(Xi(6;))" ( (3)8)
kynj |
(f1(D)f1(t"))= Wé(t—t’), of the rotated quadrature phase amplitude operato(8;)

N1 =a'exp(#)+aexp(—if), with 6; being the phases of the
2 local oscillators. The varianc¥®;(6;) may be expressed in
(fz(t)fz(t’)>=375(t—t’). (37)  terms of the correlatorésn?) and (Se?) [23], which are
3

calculated with the use of the solutions of E¢g3)) and(35)
and of the correlator&36) and(37). Due to the negativity of
A. Intracavity variances the noise correlator&86) of the intensity variable subsystem,
To study the squeezing properties of the fundamental anthe squeezing effedtv;(6;)<1] is realized for the casé,
second-harmonic modes we calculate first the corresponding ¢}, i.€., for amplitude fluctuations of the modes. The final
intracavity variances results for the variances; (6, = ¢°)=V; take the form

(6nf)  GKniny+ 2 JKnJ[Kn9+ (r+32Gnd)(1+r+32Gnd+KnJ)]

Vi=1+ - (39)
! n 2[1+r+2Gn2+ VKnOJ[KnS+ (1+ VKnd)(r + 3Gnd)]
Voo 1t (6n3 L 2Kn9VKnY+GnI[Knd+ (1+ VKnd)(1+r+3Gnd+\KnJ)] 0
? ny 2[1+1+2Gn+ JKnOJ[Knd+ (1+ VKnO)(r+ 3Gnd)]

2
+

3.0
r+§Gn2

1
Sl(w)zl— m (4 an

(1+ \/Kng)2+(yﬂ

)

+4Krn? Kng], (43

Using Egs.(13) and (14) for n(l’ and ng, the resultg39) (8n;(— w) 5nj(w)) may be calculated with the use of the

and (40) may be expressed in terms of the driving field in- Fourier transform of Eq9:34) and(36), yielding

tensity parametes2. Examples of the curves for; andV,

depending orz? are represented in Fig. 6 for different values w\?

of parameter¥, G, andr. The curves relating to the pure z

SHG (G=0) are also given for comparison. The broken

parts of the curves relate to the instability domains, where +2KGnn° (42)

the linearized treatment of quantum fluctuations fails. We see 2

that both the variance¥; andV, demonstrate substantial

noise reduction in the below- and above-instability domains, 0

as well as in the case of complete stabilization of the steady ~ So(@)=1- d(w) [ZVG n;

state(full curves. The squeezing effect is greater than in the

case of pure SHG and an essential property is that the

squeezing is realized at higher intensities of the modes. This

implies that our nonlinear system is capable of generation

bright light beams with enhanced squeezing properties.  \where
B. Cavity-output squeezing spectra

d(w)=

212

o0 3~ 0 O
When discussing the squeezing properties of a mode of (1+VKm)(r+2Gng) +Kny (71) }
radiation field, one needs to take into account that an appro-
priate experimentally measurable quantity is related to the +
squeezing spectrum for the cavity-output figdd. Using the
standard definition, we calculate the squeezing spectra of the
cavity-output fields at the fundamental and second-harmonic Examples of the squeezing spec8d ») and S;(w) are
mode frequencies, corresponding to the amplitude fluctuakepresented in Fig. 7 for different values of paramekers,
tions[23] r, and £2. For small values of?, the spectra have one
minimum at zero frequency, while with increasirg we
have divisions into two minima at sideband frequencies. In
Fig. 8 we plot the dependence of the minimal values
S(wopy) at the optimal frequency as depending &h The
The unity on the right-hand side of E(1) corresponds to squeezing effect in the fundamental mode is increased with a
the shot-noise level and the squeezed noise reduction decrease of the relation=y,/vy, and it is increased in the
realized when S(w)<1. The spectral correlators caser>1 for the second-harmonic mode.

2
[1+r+2Gnd+ VKn$?]. (44)

S(w)=1+ %<5ni(—w)5ni(w)> (i=1,2. (4)
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FIG. 6. Quadrature amplitude varianc¥s for the (a) funda- FIG. 7. Squeezing spect@(w) of the (a) fundamental andb)

mental and(b) second-harmonic modes as dependingsdn (1) second-harmonic modes as dependingedty; : (3) K=10"1° G
K=10"1 G=0 (pure SHG, r=1; (2 K=10"" G=249  =249x10°Y r=0.1, £2=7.5x10° [curve ()] K=10"%° G
X107, r=1; and(3) K=10"", G=10""%, r=0.1. =101 r=0.1, £2=8.24x10° [curve (2)]; and K=10"1, G
=101 r=0.1, £2=1.8x10° [curve (3)]. (b) K=10"1% G

An interesting peculiarity of the squeezing properties of:2.49>< 1071 r=10, 62=0.62¢ 10 [curve (]: K=10"% G

our nonlinear system is that, in contrast to a number of pre-_ T 5 3 ; 10
viously studied nonlinear optical interactiof¥], the maxi- 53?851%0 _’12)_ 12(18 7__41?075; 10 [cu;ve ()], andK=10""
mal squeezing is not approached at the critical point of the” » 1=10,£7=0.24% [curve(3)]
system. When comparing our squeezing results with those . )

for the process of pure SHG, we also arrive at the followingUsing this relation and the results of Sec. IV A, one may
conclusion. The maximal degree of squeezing achievable ifonclude that the enhanced squeezing at a high level of co-
our system at a particular frequency does not exceed therent excitation is related to the broadening of the spectral
squeezing in pure SHG. However, a moderate degree dRnge where the noise reduction effect is substantial. In other
squeezing still remains achievable when turning to highewords, our results indicate the possibility of production of
intensities of the modes and to the integral characteristics diigh-intensity broadband squeezed-light beams.

the squeezing spectra. We recall that the integral squeezing is

related to the intracavity variandé V. CONCLUSION
1 9 . . .
il j do[S(0)—1]=2y(V,—1). (45) In conclu5|on_, we have present_ed a Sf_emlclassmal and
27 ) o quantum analysis of a model of an intracavity cascaded fre-
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0 strongly the nonlinear dynamics and stability properties of
the nonlinear system as compared to the process of pure
SHG. The system under consideration demonstrates two
critical points and a finite instability domain: The semiclas-
sical steady-state solutions are stable in two domains, below
the first critical point and beyond the second critical point at
higher pump intensities. Moreover, when the rate of the ef-
fective two-photon losses exceeds some critical vihes
Egs.(25—-(27)], the instability domain vanishes and we ob-
serve completed stabilization of the steady-state behavior of
the system. In terms of thg(®-nonlinear coupling constants
k andy, which are responsible, respectively, for the first and
second frequency-doubling processes, the complete stabiliza-
tion occurs wheny?/k?>~ y3/y,>1, or, more exactly, when
the conditiong26) and(27) are valid. As shown, our analy-
ses(Sec. lll A) of these conditions can be fulfilled for real
physical systems containing two crystals with different non-
0 210" 410" 610" linear susceptibilitieg; and x, [see Fig. 1a)]. For example,
5 the crystal KHPQ, gives y;~0.245<10 2 m/V for A,
@ ‘ =1.06um and KD,PO, gives y,~0.25x10 22 m/V for
10 N>=0.53um. In this case and for other parametd®s
=R,=99.5%, R3;=15%, L;~09cm, L,~2cm, L
=30 cm and spot size 0.47 mm, we haike=10"1° G
=2.49x10 1 r=1, which lead to regimes shown in Fig. 3,
curves (2). If the cavity-input field power is Py,
=fhw;y,e7)%/2=2.3 W at the first critical point we have
Pl =0.785 W andP{?,=0.54 W for the fundamental and
the second-harmonic modes. AR, =3.45 W, at the second
critical point we obtainP{}.=1.3 W andP{?,=0.665 W.
However, the chosen parameters are not the only ones for
this optical scheme. As mentioned above, the obtained re-
sults, including those for critical points, intensitidys.(23)
and (24)], and squeezing spectf&gs. (42) and (43)], are
expressed by means of dimensionless valde&,r,e. That
is why the dimensionless values, used in Figs. 2—8 can also
be realized for other crystals and reflectivities of cavity
R;,R,,R3. In particular, for cavities with high reflectivities
0 0.5x10® 10x70® (see[27]) the critical points may be achieved at lower inten-
() £2 sities of the driving field.
For the crystal GSiIM0Q,);, x;~0.025<10 2 m/V at

1
FIG. 8. Dependence of the minimal valuSyw,,) of the )‘1:}'128"““ and  for  KC4H406.5H0,  x2~0.06
squeezing spectra at the optimal frequenciesdr(@) fundamental <10 m/V at A,=0.54 um, for other parametersR;
mode with K=10"1° G=2.49x10"*% r=0.1 [curve (1)]; K =R,=99.96%, R3=90%, L;=L,~1cm, L=10 cm, and
=101 G=10"1° r=0.1[curve (2)]; andK=10"1°, G=2.49  spot size of 1 mm we have the same parameersl0 *°,
%101, r=1 [curve (3)] and (b) second-harmonic mode witk ~ G=2.49x10 !, andr=1. In this case the first critical point
=101, G=2.49x10" !, r=10[curve (1)]; K=10"%°, G=2.49  was achieved aP;,=0.42 W and we havé{})=0.14 W

X107, r=1 [curve (] and K=10"%% G=10"", r=10  and P)=0.1 W for the fundamental and the second-

S1 (wopt)

S2 (wopt)

[curve (3)]. harmonic modes. The second critical point was achieved at
P,,=0.7 W and we havée{}=0.27 W andP{?)=0.13 W.

guency doubler, in which an externally driven fundamentalln the presence of instability, the temporal behavior of the
mode at frequencyw transforms subsequently into the fundamental and second-harmonic mode intensities is of
second- and fourth-harmonic modés+ w—2w and 2o well-known self-pulsing character.
+2w—4w). In the adiabatic limit of the strongly damped  The stability properties of our nonlinear system are re-
fourth-harmonic mode, the model becomes equivalent to th8ected also in the quantum analysis carried out within the
process of intracavity SHG combined with two-photon ab-linearized treatment of quantum fluctuations. The peculiari-
sorption from the generated second-harmonic mode. ties of the corresponding results on quadrature amplitude
The final results, written in a general form, are equallysqueezing are caused by the fact that the linearized calcula-
applied to both models. The inclusion of an additionaltions are applicable not only for relatively small or moderate
frequency-doubling process or an equivalent two-photon lositensities of the modes in the below-instability domain but
mechanism from the second-harmonic mode influencealso at higher intensities in the above-instability domain. The
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results of the calculation of the intracavity variances and + 2 wz)(}z)(w2=w3—w2)A(3j)A(2j)* eXp(iA(gjz)U,

cavity-output squeezing spectra of the fundamental and (A3)
second-harmonic modes demonstrate that the nonlinear sys-
tem is capable of generating bright amplitude-squeezed light
with enhanced noise-reduction properties.

Although the maximal degree of squeezing in the cavity-
output beams, which is approached at a particular frequency,
is of the same order as in the case of pure SHG, the noise ) @ ()2 )
reduction at higher intensities remains substantial if we look =2miwax;” (w3= wyt wy) Ay “exp( —iAzl)
for integral characteristics of the squeezing spectra. The
squeezed noise reduction is realized now in a wide spectrd crystals (=1,2) and
range. In other words, the cavity-output fields demonstrate a
broadband squeezing with high coherent excitation. IA® oA

—+ =
T a0

() ()
(J)ﬂJr (29As”
s T T T
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APPENDIX (1) (0) (0) _ 1 (1)
AP, D)=A" 1, Oexdil (k™ —ki™)],
In this appendix we derive the equations of moti@) o - (vexilall ]
and the interaction Hamiltoniafl) for the intracavity modes
at frequencieso,2w,4w. We consider the scheme of genera-
tion with two x(®-nonlinear crystals placed one directly after _
another within a triply resonant ring cavity. AP, =A (1, hexdil (k¥ —k?)],  (Ad)
The nonlinear polarization amplitude in the medium is

A1+ Ly, =AY+ Ly, Hexdi(l+Ly) (kY -k,

A1+ Ly, 1) = AP (1,+ Ly, tyexd i (1,+ L) (kP — k)],
P=x?:EE, (A1) AP 01)=RAO(L,t)expikOL) + A%,

where x(?) is a third-rank susceptibility tensor. We expresswherel 1 are the coordinates of crystals’ entrandeg, are
the electric fields in the cavity as the lengths of crystald, is the cavity lengthR; is the output
reflectivity of input or output mirror for theth mode, and
A" are the amplitudes of driving fields.
(j)_E (| ot ikl 5 Assume the amplitudes of all the modes vary slo_wly
EV= : AV (L Dexp —iwt+ikih+e.c.,  (A2)  giong the crystals’ length. Then we can state they are inde-
pendent from the path variablan all Egs.(A3), in addition

wherei=1,2,3 correspond to the, 2e,4e modes E2 are to the termsd/dl. Using the conditiongA4) we define

the electric fields in the first and second crystals, respec-
tively, andE© in vacuum k)= w;nV/c is the wave vector,
andn{" is the linear susceptibility for theth mode injth
crystal.

Let us derive the equations of moti¢8). The classical
wave equations in the slowly varying envelope approxima-
tion [30,31] read AP =AexdiL (kY =k, Tell;+Lq,l5],

A=A, 1€[0]4]

AV =Aexdily(k” =k, Tellyli+Ly]

AP=AexidiL (kP =K +il (k¥ —K?)], (A5)

(j) (i)
e AL 2 P
Loal ooat lellz,l+L,]
= 2mi 10 (01= wp— 0 AP AL expi AL, A= AexgfiL (K K®) +iL o (kD — k)],
Y le[l,+L,,L].
) < J)e 2
ey T Then substituting EqA5) into Egs.(A3) and taking integral

) ) 02 o over the cavity length, we obtain using the boundary condi-
:27”602)(} (2= w1+ 0 AP ?exp( —iAY)]) tions (A4)
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IA
(L—Ly—Lo+n{M2L +n{22L,) a_tl = —c(1—-Ryexpid,)A; +cAY
+ 2701 (01 = 0, - 01) AAT [expli AL L) —11/AL
+ 27w XY (01= ;= 1) AAT exp(i AT L) [expi A L,) — 11/A%,
IA
(L—Ly—Lo+niY2L, +n22L,) a_tz — —c(1—Ryexp ®,)A,

+2mwox P (0= w1+ 0 ) A 1—exp(—iASPL,) /A
+ 270X P (0= 03— 0) AAS [expli AGF L) —11/A%
+ 277(02)((22)(0)2: w1+ wl)A%qu —i A(le)l-l)[l_ exp(—i A(zzl)Lz)]/A(zzi)

2T (0= w3— wy) AzAS expli AL )[expiAZL,) —11/A), (AB)

A
(L—Ly—Lo+niP2L, +n22L,) a—t3 = —c(1—Raexp ®3)Aq

+ 2770’3)((12)(‘03: wy+ wz)Ag[l_ exp(—i Aglz)Ll)]/Aglz)

+ 2Tz (w3=wr+ wy) Adexp(—iASL)[1—exp —iAZL,)/1AD),

where we assumei(j)~1 in the terms withy/dl and we use 2k(11>: k(21> (Agll):()),
the definitiond;=kO(L— L, —L,) + kL, +k@L,.
We suppose the validity of conditions 2kP=kP (AZ=0). (A8)
®;=27N;, (A7) In addition, we use also the equalities
whereN; are some integer numbers, which define the wave APL=27N,, ARL,=27N,, (A9)

vectors and assume that the phase-matching conditions for
the modesw,2w are satisfied in the first crystal and for the which are a consequence of Eq#7) and (A8). On the
modes 2,4w in the second crystal. These conditions are  whole we obtain

dA
(L_ Ll_ L2+ ng_l)le+ n(lz)sz) a_tl = - C(l_ Rl)Al+ CAgr+ 27T| (1)1)(%_2)((1)1: wy— (l)l)AzAI Ll’

IA
(L—Ly—Lo+n$P2L, +n@2L,) a_t2 — — (1= Ry)Ag+ 27 wox P (wy= wq + wq) AL,

+ 2 wox (w2= 03— w2) AAS L, (A10)

oA
(L—L;—L+nY2L+n22L ) a_t3 =—c(1—R3)Ag+ 27 wax2 (w3= wy+ wp) AlL,.

We express then the amplitudasin the form[28] 02 2)2 . )
[L=Li—Lo+ni7Ly+n; Lz]JSUi(P)Ui (p)d“p=1,

=i/ 55, Ui(P)ai, ) i=1.2,3. (A12)

whereu;(p) (i=1,2,3) define the beams cross-section struc-Substituting Eq.(A11) into Egs.(A10) and taking into ac-
ture and satisfy the normalization conditions count the condition of normalizatiofA12) and the relations
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Xi?(01=wo— w1) =2x|? (0= w1+ @y), darg _ X 5

ot V33— 50‘2,
2 (@y=w3—w )—ZX(Z)(w =wy+ w>y)

Xj 2T W3T W) =L)X 3T W2 2 - .
! . where the coefficients are given by H§).

(see[29]), we integrate over the cross section and then obtain Let us now derive the interaction Hamiltonidm). The

Eq. (3) in a semiclassical approximation Hamiltonian is defined a29]
B2 &oE? 4m
day .| 43 0 2)e3].
7:_»),1a,1_|_E_|_ka,*lfa,z’ H .fdl’(zluo-i- > + 3 X E°|:, (Al9)

where :: denotes normal ordering. Using E¢s7)—(A9) and

dap k * Al12), it is easily proved that expressidAl4) leads to the
gt Ve paitxapas, (AL3) fﬁam?ltonian(l) v}\//itphout the part c?f the crﬁeser)voir.
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