
PHYSICAL REVIEW A JANUARY 1998VOLUME 57, NUMBER 1
Controlling instability and squeezing from a cascaded frequency doubler

K. V. Kheruntsyan, G. Yu. Kryuchkyan,* N. T. Mouradyan, and K. G. Petrosyan
Institute for Physical Research, National Academy of Sciences, Ashtarak-2, 378410, Armenia

~Received 22 July 1996; revised manuscript received 17 March 1997!

We present a semiclassical and quantum analysis of a nonlinear optical interaction in a cavity in which an
externally driven fundamental mode at frequencyv transforms into the second-harmonic mode 2v and then
into the fourth-harmonic mode 4v via cascaded frequency-doubling processesv1v→2v and 2v
12v→4v. In the adiabatic limit of the strongly damped fourth-harmonic mode the nonlinear system is
equivalent to the process of intracavity second-harmonic generation combined with nonlinear two-photon
absorption from the second-harmonic mode. Semiclassical steady states and linear stability analysis show that
possible operation regimes are substantially different from those for the pure second-harmonic-generation
process. It is shown in particular that the system is characterized by two critical points: Starting from a certain
critical value of the driving field intensity, one observes self-pulsing instability; however, at higher intensities,
beyond a second critical point, the system turns back to the stable generation regime. Moreover, under appro-
priate values of the control parameters, one may arrive at a complete quenching of self-pulsing behavior and at
stabilization of the steady states in the entire domain of the driving field intensity. These stabilization properties
become important when turning to the analysis of the quantum fluctuations and quadrature squeezing effect in
the fundamental and second-harmonic modes within the ranges of linearized treatment of fluctuations. Due to
the emergence of stability in the behavior of the system at high level of coherent excitation, the system
becomes capable of generation of bright light with enhanced squeezing properties.@S1050-2947~97!08911-7#

PACS number~s!: 42.65.2k
io
o

io
r-
cy
nc
e

cts

ct
g
b
ilit
nd
vio

s

l a
e
ce
tu
h
o

v
e
od

nt

ist
of
the

bil-
-
id-
e
d in
i-
tate

te
was

in-

ical
light
as-
ing
ally
e
e
e
es

ubly
ab-

on-

has
ina-

9

I. INTRODUCTION

Frequency doubling or second-harmonic generat
~SHG! in a cavity is one of the basic processes in the field
nonlinear and quantum optics. It consists of a transformat
via a x (2)-nonlinear crystal, of pairs of photons of an exte
nally driven fundamental mode of the cavity with frequen
v into photons of the second-harmonic mode with freque
2v (v1v→2v). A consistent theoretical analysis of th
SHG, including quantum fluctuations and dissipation effe
has been presented in@1#. It was shown in particular that in
the steady-state regime this nonlinear process is chara
ized by a certain critical point with respect to the drivin
field intensity, above which the system turns from the sta
generation regime to the unstable regime. In the instab
domain the intensities of the fundamental and seco
harmonic modes demonstrate self-pulsing temporal beha
which has been observed experimentally@2#.

SHG was also one of the first processes that were con
ered for production of quadrature squeezed light@3,4#. Sev-
eral experiments have been performed@5–7# that demon-
strated squeezed noise reduction in both the fundamenta
second-harmonic modes. We note that an attractive prop
of SHG is related to the fact that the squeezed light produ
in this process is not the squeezed vacuum but an ampli
squeezed light with a nonzero coherent component. T
property is of great importance when we look for a source
bright squeezed light, i.e., a squeezed light with a high le
of coherent excitation. Recent experimental results on g
eration of bright squeezed light at the second-harmonic m
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frequency are related to utilizing a singly resona
frequency-doubling scheme@8#.

It should be pointed out, however, that in SHG there ex
some limitations on the intensity and degree of squeezing
the fundamental and second-harmonic modes available in
stable steady-state regime. They originate from the insta
ity appearing when the critical value of the driving field in
tensity is approached. As is known from theoretical cons
erations @4#, the maximal degree of squeezing in th
fundamental and second-harmonic modes is approache
the vicinity of the critical point. Hence the maximal intens
ties of the highly squeezed modes in the stable steady-s
regime turn out to be limited by their critical values. No
also that although the squeezing in a generalized sense
shown to survive in the instability domain@9#, our attention
in this paper is directed toward the bright squeezing obta
able in the stable generation regime.

In the present paper we propose a nonlinear opt
scheme that is capable of generating bright squeezed
with enhanced squeezing properties. It contains two c
caded nonlinear processes of frequency doubling, tak
place inside the same cavity and transforming an extern
driven fundamental modev into the second-harmonic mod
2v (v1v→2v) and then into the fourth-harmonic mod
4v (2v12v→4v). We consider the adiabatic limit of th
strongly damped fourth-harmonic mode when only mod
v,2v effectively remain in the cavity@see Fig. 1~a!#. In this
case this nonlinear system becomes equivalent to a do
resonant SHG combined with a nonlinear two-photon
sorption from the second-harmonic mode.

We note also that although some effects of cascaded n
linearities were studied a long time ago@10–12#, a strong
interest in the interaction of two nonlinear processes
emerged within the past few years. For example, comb

,
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536 57K. V. KHERUNTSYAN et al.
tions of second-order nonlinearities have been investigate
order to induce largex (3) nonlinearities@13,14# and to pro-
duce tunable UV light@15#. In the context of quantum optics
a scheme with competing processes of SHG and nonde
erate parametric down-conversion has been analyzed
the purpose of generating highly regularized twin bea
@16#. Enhanced squeezing from the Kerr interaction co
bined with two-photon absorption@17# and generation of
nonclassical superposition states in a parametric do
conversion combined with two-photon absorption@18,19#
have also been predicted. Large quadrature squeezing at
intensities and other specific quantum optical effects h
been studied in combinations ofx (2)-nonlinear parametric
processes and Kerr interactions@20–22# and for combined
processes of four-wave mixing and phase modulat
@23,24#. Note that the relevance of these studies goes w
beyond the theoretical interests since recent advances in
technology of multiple quantum wells enable practic
implementation of some of these complicated devices~see
@20# and references therein!.

In the nonlinear system under consideration, an impor
point relevant to the remarkable results is related to the
bility properties of the steady states. As it will be show
below, the addition of the second frequency-doubling p
cess or of an equivalent two-photon-absorption mechan

FIG. 1. ~a! Principal scheme of the cascaded frequency dou
in the adiabatic regime of generation.~b! Diagrammatic representa
tion of the processes described by the Hamiltonian~1!. The boxes
represent the intracavity modes at frequenciesv15v, v252v,
andv354v. The arrows correspond to the photons being put i
or taken out of the modes~with pairs of arrows denoting pairs o
photons! due to the processes of~i! fundamental mode driving~at
rate E!, ~ii ! nonlinear transformations~with coupling strengthsk
andx!, and~iii ! damping of the modes~at ratesg1 , g2 , andg3!. ~c!
Diagram representing the adiabatically equivalent model@or the
model described by the Hamiltonian~8!#, in which the influence of
the strongly dumped fourth-harmonic mode is reduced to the t
photon loss mechanism~at the rateg5x/4g3! for the second-
harmonic mode.
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from the second-harmonic mode changes substantially
steady-state behavior of the fundamental and seco
harmonic modes as compared to the process of pure S
Namely, the self-pulsing instability, arising at a certain cri
cal value of the driving field intensity, vanishes at high
intensities beyond a second critical point and one again
rives at the stable steady-state regime. Moreover, by va
tion of control parameters of the system one may reduce
instability domain and make it vanishing, arriving at com
plete quenching of the self-pulsations and at stabilization
the steady states in the entire domain of variation of
driving field intensity. Turning then to the analysis of qua
tum fluctuations of the modes and taking into account
fact that both the processes of SHG and two-photon abs
tion are responsible for amplitude squeezing~see, e.g.,@4#!,
one may anticipate capability of our nonlinear system to p
duce bright light beams with enhanced squeezing prope
in the stable steady-state regime.

The paper is organized as follows. In Sec. II we formula
the model of the intracavity cascaded frequency doubler,
rive stochastic equations of motion for the three reson
cavity modes, and then eliminating adiabatically the four
harmonic mode arrive at a reduced set of equations for
fundamental and second-harmonic modes. This is equiva
to the model of SHG combined with resonant two-phot
absorption. In Sec. III we present a semiclassical analysi
the system. We calculate the steady-state solutions and c
out a linear stability analysis, as well as turn to the cav
output intensities of the modes. Section IV is devoted to
analysis of quantum fluctuations of the fundamental a
second-harmonic modes within the framework of lineariz
tion procedure around the stable steady state. We analyz
intracavity variances of quadrature amplitude fluctuations
the modes and calculate the squeezing spectra of the ca
output fields. Concluding remarks are given in Sec. V.
the Appendix we derive the equations of motion for the co
crete physical system with two crystals and obtain expr
sions for the coupling constants.

II. MODEL AND STOCHASTIC EQUATIONS OF MOTION

The nonlinear optical interaction under consideration
realized within a triply resonant cavity that supports t
modes at frequenciesv15v, v252v andv354v, referred
to as fundamental, second-harmonic, and fourth-harmo
modes, respectively. The fundamental mode is resona
driven by an external driving field, while the second- a
fourth-harmonic modes are created via casca
x (2)-nonlinear processes of frequency doubling~second-
harmonic generation!. The losses in the input-output cavit
mirror are accounted for by means of independent reser
interactions for each mode. We adopt the following mod
Hamiltonian, in the rotating-wave approximation:

H5(
i 51

3

\v iai
†ai1 i

\k

2
~a1

†2a22a1
2a2

†!1 i
\x

2
~a2

†2a32a2
2a3

†!

1 i\~Ee2 ivta1
†2E* eivta1!1(

i 51

3

~aiG i
†1ai

†G i !, ~1!
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57 537CONTROLLING INSTABILITY AND SQUEEZING FROM . . .
whereai
† andai ( i 51,2,3) are creation and annihilation o

erators for the modesv i , k is the coupling constant for th
frequency-doubling processv1v→2v (v11v1→v2), in
which two photons of the fundamental mode annihilate
create a photon of the second-harmonic mode, and thx
constant is responsible for the subsequent frequen
doubling process 2v12v→4v (v21v2→v3) creating the
photons of the fourth-harmonic mode.E is associated with
the coherent driving field amplitude andG i

† ,G i are reservoir
operators, giving rise to the cavity damping ratesg i for the
modesv i . A diagrammatic representation of the proces
described by the Hamiltonian~1! is shown in Fig. 1~b!.

We use the standard approach~see, e.g.,@25,26#! to elimi-
nate the reservoir operators and to derive the following m
ter equation for the density operatorr of the modes in the
interaction picture:

]r

]t
5

k

2
@a1

†2a22a1
2a2

† ,r#1
x

2
@a2

†2a32a2
2a3

† ,r#

1@Ea1
†2E* a1 ,r#1(

i 51

3

g i~2airai
†2rai

†ai2ai
†air!.

~2!

The master equation~2! is then transformed into the
Fokker-Planck equation in the positive-P representation
@25,26,28#, which is equivalent to the stochastic differenti
equations

da1

dt
52g1a11ka1

†a21E1G1~ t !,

da2

dt
52g2a22

k

2
a1

21xa2
†a31G2~ t !, ~3!

da3

dt
52g3a32

x

2
a2

2 ,

whereG1,2(t) are Gaussian noise terms with zero means
nonzero correlators

^G1~ t !G1~ t8!&5ka2d~ t2t8!,

^G2~ t !G2~ t8!&5xa3d~ t2t8!. ~4!

We recall that in the positive-P representation used,a i
1 and

a i are independent complexc-number variables, correspond
ing to the operatorsai

† anda. The equations fora i
† variables

are obtained from Eq.~3! by exchanginga i↔a i
† , G1,2→G1,2

1

and termE by its complex conjugate.
It should be noted that the Hamiltonian~1! and Eq.~3! in

particular describe the following cascaded scheme of gen
tion with two crystals of different nonlinear susceptibilitie
placed within a triply resonant ring cavity. We assume
definition that phase-matching conditions for modesv1 ,v2
are satisfied in the first crystal and for modesv2 ,v3 in the
second crystal. In other words, we assume that both of
frequency-doubling processesv11v1→v2 and v2
1v2→v3 take place effectively only in the definite nonlin
ear crystal. In the Appendix we study in detail this point a
o

y-

s

s-

d

ra-

r

e

derive Eqs.~3! and the Hamiltonian~1! on the basis of semi-
classical equations of nonlinear optics~see, for example,
@29–31#!. Such consideration allows us to obtain the follow
ing expressions for the coupling constants and damping r
in Eqs.~3!:

g i5c
12Ri

L2L12L21ni
~1!2L11ni

~2!2L2
,

k54p\1/2v1
3/2x1L1E

S
u1

2~r!u2* ~r!d2r, ~5!

x54p\1/2v2
3/2x2L2E

S
u2

2~r!u3* ~r!d2r,

wherex1[x1
(2)(v25v11v1), andx2[x2

(2)(v35v21v2)
are nonlinear susceptibilities for each of two crystals,
functions ui describe the cross-section structure of t
modes,Ri is the output reflectivity of the input-output mirro
for the i th mode,ni

( j ) is the linear susceptibility for thei th
mode in thej th crystal,L1,2 are the lengths of the crystals
andL is the cavity length.

In what follows we shall consider the limitg3@g1,2 of
high cavity losses for the fourth-harmonic mode. This allo
us to eliminate it adiabatically, using the relation

a352
x

2g3
a2

2 , ~6!

and to arrive at the following reduced set of equations
motion for the fundamental and second-harmonic modes

da1

dt
52g1a11ka1

†a21E1G1~ t !,
~7!

da2

dt
52g2a22

k

2
a1

22
x2

2g3
a2

2a2
†1G2~ t !.

Now the nonzero correlators of the noise terms are

^G1~ t !G1~ t8!&5ka2d~ t2t8!,

^G2~ t !G2~ t8!&52
x2

2g3
a2

2d~ t2t8!. ~8!

Model of the frequency doubler combined
with two-photon absorption

In the considered limit of the strongly damped fourt
harmonic mode its influence on the dynamics of the seco
harmonic mode may be visualized as a nonlinear tw
photon-absorption mechanism. Indeed, the set of equat
of motion of the form~7! may be directly obtained by con
sidering a combined nonlinear system in which t
frequency-doubling processv1v→2v is accompanied by a
nonlinear two-photon absorption from the second-harmo
mode v252v. The corresponding effective Hamiltonia
may be written as
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H5(
i 51

2

\v iai
†ai1 i

\k

2
~a1

†2a22a1
2a2

†!

1 i\~Ee2 ivta1
†2E* eivta1!1(

i 51

2

~aiG i
†1ai

†G i !

1~a2
2G†1a2

†2G!. ~9!

Here the first four terms describe the well-known model
intracavity second-harmonic generation@1#, while the last
term is responsible for the process of two-photon absorp
from the second-harmonic mode via a nonlinear nonsatur
absorber@4,32#, with G† andG being the corresponding res
ervoir operators giving rise to the photon-absorption rateg.
The processes described by this Hamiltonian@or by Eqs.~7!#
are represented in Fig. 1~c!.

Eliminating the reservoir operatorsG i
† ,G i andG†,G, now

we arrive at the following master equation for the fundam
tal and the second-harmonic mode:

]r

]t
5

k

2
@a1

†2a22a1
2a2

† ,r#1@Ea1
†2E* a1 ,r#

1(
i 51

2

g i~2airai
†2rai

†ai2ai
†air!

1g~2a2
2ra2

†22ra2
†2a2

22a2
†2a2

2r!. ~10!

Transforming again to the corresponding Fokker-Plan
equation and turning then to the equivalent stochastic eq
tions, we obtain a set of equations of motion, which have
same form and noise properties as Eqs.~7! and ~8! with the
only difference being that the relationx2/4g3 should be re-
placed by

x2

4g3
→g. ~11!

Thus all the results of the subsequent sections can be eq
applied to both the nonlinear optical schemes by mean
the variable change formula~11!.

The physical meaning of the above considerations is
lated to the fact that the influence of the adiabatically elim
nated fourth-harmonic mode is reduced to an additional
fective loss mechanism for the second-harmonic mo
which is of two-photon dissipation variety. All the specifi
results~as compared with those of the well-known model
pure second-harmonic generation@1,4#! discussed below
originate actually from this additional two-photon lo
mechanism and its stabilizing influence on the nonlinear
namics of the system.

III. SEMICLASSICAL ANALYSIS

In this section we proceed with the analysis of our no
linear system in the semiclassical approximation. This
achieved by ignoring the noise terms in Eqs.~7! and by
treating the a i

† variables as complex conjugates toa i

(a i
†→a i* ). We calculate in particular the correspondin

steady-state solutions and carry out the standard linear
f

n
le

-

k
a-
e

lly
of

-
-
f-
e,

f

-

-
s

ta-

bility analysis with respect to small deviations from th
steady states.

For this purpose it is more convenient to transform t
semiclassical counterpart of Eqs.~7! to the intensity~in pho-
ton number units! and phase variables of the modesa i

5Aniexp(iwi). This yields

dn1

dt
522g1n112kn1An2cos~2w12w2!

12uEuAn1cos~f2w1!,

dn2

dt
522g2n22kn1An2cos~2w12w2!2

x2

g3
n2

2 ,
~12!

dw1

dt
5

uEu

An1

sin~f2w1!2kAn2sin~2w12w2!,

dw2

dt
52

kn1

2An2

sin~2w12w2!,

wheref is a phase of the driving fieldE5uEuexp(if).
Then the steady-state solutions (dni /dt5dw i /dt50) for

the intensitiesn1,2
0 and phasesw1,2

0 of the fundamental and
the second-harmonic modes are found to satisfy the relat

n1
05An2

0

K
~2r 1Gn2

0!, ~13!

«25An2
0

K
~2r 1Gn2

0!~11AKn2
0!2, ~14!

w1
05f, w2

022w1
05p, ~15!

where we have introduced the dimensionless parameters

K[
k2

g1
2 , G[

x2

g1g3
, r[

g2

g1
, «2[

uEu2

g1
2 . ~16!

To check the stability properties of these steady-state s
tions we linearize the equations of motion~12! and write
down the equations for small deviationsdni(t)5ni(t)2ni

0

anddw i(t)5w i(t)2w i
0 from the steady states in the matr

form

ddn

dt
52Andn,

ddw

dt
52Awdw, ~17!

wheredn5(dn1 ,dn2)T, dw5(dw1 ,dw2)T, and the matrices
An andAw are

An5S g11kAn2
0 kn1

0

An2
0

2kAn2
0 g21

3x2

2g3
n2

0
D , ~18!
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Aw5S g12kAn2
0 kAn2

0

2
kn1

0

An2
0

kn1
0

2An2
0
D .

The steady-state solutions~13! and ~14! are stable if the
real parts of the eigenvalues of the matricesAn and Aw are
positive. We denote these eigenvalues asl1,2 and l3,4, re-
spectively, and with use of the notations~16! find

l1,25
g1

2 S 11r 1AKn2
01

3G

2
n2

0D
6

g1

2 F S 11r 1AKn2
01

3G

2
n2

0D 2

24Kn1
0

24~11AKn2
0!S r 1

3G

2
n2

0D G1/2

,
~19!

l3,45
g1

2 S 12AKn2
01

n1
0

2
AK

n2
0D

6
g1

2 F S 12AKn2
01

n1
0

2
AK

n2
0D 2

22Kn1
022n1

0AK

n2
0G1/2

.

A. Self-pulsing instability and stabilization

Using relation~13!, one may express the eigenvaluesl1,2

andl3,4 in terms ofn2
0 and check that the real parts ofl1,2

are always positive, while Rel3,4 can take negative values

Y[11r 1
G

2
n2

02AKn2
0,0. ~20!

Thus the inequality~20! represents the condition for the o
currence of instability in our nonlinear system, which orig
nates from the phase-variable subsystem. This conditio
fulfilled for the case

2G~11r !

K
,1 ~21!

in the domain

n2
~2 !,n2

0,n2
~1 ! , ~22!

where

n2
~6 !5

K

G2 F16A12
2G~11r !

K G2

~23!

represents the values ofn2
0 at critical Hopf bifurcation points.

At these points the real parts ofl3 and l4 vanish, leaving
nonzero imaginary parts.

Using the steady-state relation~14!, one may express th
two critical points in terms of the cavity-input driving fiel
intensity parameter«25uEu2/g1

2:
is

~«~6 !!25
1

G S 16A12
2G~11r !

K D
3S 2r 1

K

G F16A12
2G~11r !

K G2D
3S 11

K

G F16A12
2G~11r !

K G D 2

. ~24!

In the instability domain (« (2))2,«2,(« (1))2 the intensi-
ties n1(t) and n2(t) of the fundamental and the secon
harmonic modes demonstrate self-pulsing temporal behav
This is shown in Fig. 2 by numerical solution of the sem
classical counterpart of Eqs.~7! ~i.e., without the noise
terms!, yielding in particular realizations forn1(t)
5ua1(t)u2 and n2(t)5ua2(t)u2 as depending on the initia
conditionsa1(0) anda2(0).

As for the case

2G~11r !

K
.1, ~25!

the reverse of inequality~21!, the quantityY becomes always
positive, leading to positive real partsl3,4. As a conse-
quence, in this case we do not observe instability at all, i
the steady-state solutions~13!–~15! become stabilized in the
entire domain of the driving field intensity parameter«2. The
relation 2G(11r )/K51 marks the boundary where the tw
critical points « (2)2 and « (1)2 become coincident and th
self-pulsing behavior becomes completely quenched.

Let us discuss now in more detail the conditions~25! of
stabilization of generated modes. As mentioned previousl
Sec. II for equations of motion, the results obtained desc
both nonlinear optical schemes. For the model of Sec. II
in which the frequency-doubling processv11v1→v2 is ac-
companied by two-photon absorption, the intensities a
phases of modes can be obtained from the general resul
using the variable change formula~11! G→4g/g1 . This pro-
cedure gives the condition of stability

FIG. 2. Self-pulsing instability of the fundamental and secon
harmonic mode photon numbersn1(t)5ua1(t)u2 ~curve 1! and
n2(t)5ua2(t)u2 ~curve 2! as depending ong1t: K51028, G52.5
31029, r 51, «553105, a1(0)511 i , anda2(0)50.
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540 57K. V. KHERUNTSYAN et al.
g>
k2

8~g11g2!
, ~26!

which can be fulfilled for a sufficiently large rate of the e
fective two-photon losses. Then, we recall that the casca
frequency-doubler system is considered here in the adiab
approximation forg3@g1 ,g2 . In this limit the condition of
complete stabilization of the steady-state solutions occ
when

x2

k2 >
g3

2~g11g2!
@1. ~27!

In Fig. 3 we plot examples of the curves for the stead
state photon numbersn1

0 and n2
0 depending on«2. The

FIG. 3. Semiclassical steady-state photon numbersn1
0 andn2

0 for
the ~a! fundamental and~b! second-harmonic modes as depend
on «2. The broken parts of the curves are related to the unst
domains:~1! K510210, G50 ~pure SHG!, r 51; ~2! K510210,
G52.49310211, r 51; and~3! K510210, G510210, r 50.1.
ed
tic

rs

-

dashed parts of the curves correspond to the instability
mains and the curves for the case of pure SHG are
plotted for comparison. We note that the results on pure S
can be directly reproduced from our present results by set
x50 ~or G50!. In this case the location of the formall
defined second critical point is moved to the infinity so th
the system becomes characterized by a single critical po
above which it demonstrates self-pulsing instability. The
cation of the critical point is determined now by Eq.~20!
with G50. Using also relation~14!, we arrive at the follow-
ing well-known results@1# for critical values ofn2

0 and« in
the process of SHG:

n2
cr5

~g11g2!2

k2 , «cr5
~2g11g2!

kg1
@2g2~g11g2!#1/2.

~28!

Curves~3! on Figs. 3~a! and 3~b! describe the examples o
complete stabilized behavior of the photon numbers, wh
is realized for the parametersG5K and the ratio of the
coupling constantsx2/k25g3 /g1@1. This quality can be
written in terms of the nonlinear susceptibilities of two com
bined crystalsx1 /x252A2g1 /g3L2 /L1 if we use Eqs.~5!
and neglect the cross-section structure of the modes. If
chooseg3 /g1'200 ~according to the adiabatic approxima
tion!, thenx1 /x25L2/5L1 , which is a quite acceptable situ
ation for real physical systems.

Thus the inclusion of an additional two-photon lo
mechanism into the model of SHG changes substantially
stability properties of the resulting nonlinear system. It b
comes characterized@in the case of Eq.~21!# by two critical
points and hence by a finite instability domain, above wh
the steady states become again stable. Moreover, when
two-photon loss efficiency becomes strong enough to y
the inequalities~25!–~27!, we do not observe any critica
point or instability. Another obvious influence of the effe
tive two-photon losses from the second-harmonic mode c
sists in a decrease of the magnitude ofn2

0 as compared to the
case of pure SHG@see Fig. 3 curve~2!#.

B. Cavity-output intensities

We consider the special scheme of generation when
coupling in and out fields occur at one of the ring-cav
mirrors. To calculate the intensities of the cavity-output
tensities at the fundamental and second-harmonic mode
quencies in this case we use the well-known relation@32#

ai
out5A2g iai2ai

in ~ i 51,2!, ~29!

which expresses the cavity-output field operators (ai
out) in

terms of the intracavity (ai) and cavity-input (ai
in) operators.

The cavity-output intensities in photon number units p
unit time are determined byni

out5^(ai
out)†ai

out&. Taking into
account that only the fundamental mode is coherently dri
by an external field witĥ a1

in&5E/A2g1@n1
in5^(a1

in)†a1
in&

5uEu2/2g1#, while the second-harmonic mode is initially i
the vacuum state@^a2

in&5^(a2
in)†a2

in&50#, we obtain for
ni

out , in the steady-state regime and in the semiclassical
proximation@^ai&5Ani

0 exp(iwi
0), ^ai

†ai&5ni
0#,

le



t-
d

ta

tal
ding

da-
ism

of
out

ed
l

, an
the
the
ar-

in
pli-
to

op-
uch
on
HG
gh
ase
si-
at
e-
de

re-

s-
tum
can

l
-

57 541CONTROLLING INSTABILITY AND SQUEEZING FROM . . .
n1
out52g1SAn1

02
uEu
2g1

D 2

, ~30!

n2
out52g2n2

0 . ~31!

With the use of Eqs.~13! and~14!, the quantitiesn1,2
out may

be expressed in terms of the cavity-input field intensityn1
in

5uEu2/2g15g1«2/2. Examples of the curves for scaled ou
put intensitiesn1

out/g1 andn2
out/g1 depending on the scale

input intensity 2n1
in/g15«2 are plotted in Fig. 4. A closeup

view, showing the complete depletion of the fundamen
beam, i.e., vanishing ofn1

out at a certain value of«2, is also
shown in Fig. 4.

In Fig. 5 we plot the coefficient

h5
v2n2

out

v1n1
in 5

2n2
out

n1
in ~32!

FIG. 4. Scaled cavity-output intensitiesn1,2
out/g1 of the ~1! fun-

damental and~2! second-harmonic modes as depending on«2 for
K510210, G52.49310211, andr 51.

FIG. 5. Dependence of the coefficienth on «2 for ~1! K
510210, G52.49310211, r 51; ~2! K510210, G52.49310211,
r 510; and~3! K510210, G510210, r 510.
l

of energy transformation from the cavity-input fundamen
beam to the cavity-output second-harmonic beam depen
on «2. The fact that the maximal value of theh coefficient
does not approach unity due to the depletion of the fun
mental beam is caused by the two-photon loss mechan
from the second-harmonic mode.

IV. QUANTUM FLUCTUATIONS
AND QUADRATURE SQUEEZING

Let us turn now to the analysis of quantum fluctuations
the fundamental and second-harmonic modes. We carry
this analysis within the framework of standard lineariz
treatment of quantum fluctuations~around the semiclassica
steady states!, which is valid in the stability domains of the
nonlinear system.

In accordance with the results of the preceding section
attractive property of our nonlinear system consists in
stabilization of the steady states at high intensities of
modes. This leads to the validity of the results of the line
ized theory at high intensities and motivates the study,
particular, the quantum fluctuations of the quadrature am
tudes of the high-intensity light beams. The purpose is
obtain bright light with enhanced quadrature squeezing pr
erties in the stable generation regime. Our reasoning for s
an expectation relates to the origin on the restriction
squeezing results, obtainable for the process of pure S
@4#. These restrictions originate from the fact that althou
the quadrature amplitude fluctuations of the modes decre
monotonically with an increase of the corresponding inten
ties, the results of the linearized theory become invalid
high intensities in the above critical region. As a cons
quence, the minimal variance of the quadrature amplitu
fluctuations ~maximal squeezing! and the corresponding
maximal intensity turn out to be bounded, in the stable
gime, by their values at the critical point.

The linearized equations of motion for our nonlinear sy
tem, which contain the noise terms and describe the quan
fluctuations of the intensities and phases of the modes,
be derived from Eqs.~7! and~8! by transforming to the new
stochastic variables

ni5a i
†a i , w i5

1

2i
ln

a i

a i
† . ~33!

Using then the same notations for fluctuationsdni(t)
5ni(t)2ni

0 and dw i(t)5w i(t)2w i
0 as in the semiclassica

equation~17!, one may arrive at following linearized equa
tions:

d

dt S dn1

dn2
D52AnS dn1

dn2
D1S F1~ t !

F2~ t ! D , ~34!

d

dt S dw1

dw2
D52AwS dw1

dw2
D1S f 1~ t !

f 2~ t ! D , ~35!

where matricesAn and Aw are given by Eq.~18! and the
nonzero correlators of the noise termsFi(t) and f i(t) are

^F1~ t !F1~ t8!&522kn1
0An2

0d~ t2t8!,
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^F2~ t !F2~ t8!&52
x2

g3
~n2

0!2d~ t2t8!, ~36!

^ f 1~ t ! f 1~ t8!&5
kAn2

0

2n1
0 d~ t2t8!,

^ f 2~ t ! f 2~ t8!&5
x2

4g3
d~ t2t8!. ~37!

A. Intracavity variances

To study the squeezing properties of the fundamental
second-harmonic modes we calculate first the correspon
intracavity variances
n-

es
e
en
er
se
l
ns
ad
he
th
h

tio

pr
th

f t
n

tu

n
s

d
ng

Vi~u i !5^@DXi~u i !#
2&5^@Xi~u i !#

2&2^Xi~u i !&
2 ~ i 51,2!

~38!

of the rotated quadrature phase amplitude operatorsXi(u i)
5a†exp(iui)1a exp(2iui), with u i being the phases of th
local oscillators. The varianceVi(u i) may be expressed in
terms of the correlatorŝdni

2& and ^dw i
2& @23#, which are

calculated with the use of the solutions of Eqs.~34! and~35!
and of the correlators~36! and~37!. Due to the negativity of
the noise correlators~36! of the intensity variable subsystem
the squeezing effect@Vi(u i),1# is realized for the caseu i

5w i
0 , i.e., for amplitude fluctuations of the modes. The fin

results for the variancesVi(u i5w i
0)[Vi take the form
V1511
^dn1

2&

n1
0 512

GKn1
0n2

012AKn2
0@Kn1

01~r 1 3
2 Gn2

0!~11r 1 3
2 Gn2

01AKn2
0!#

2@11r 1 3
2 Gn2

01AKn2
0#@Kn1

01~11AKn2
0!~r 1 3

2 Gn2
0!#

, ~39!

V2511
^dn2

2&

n2
0 512

2Kn1
0AKn2

01Gn2
0@Kn1

01~11AKn2
0!~11r 1 3

2 Gn2
01AKn2

0!#

2@11r 1 3
2 Gn2

01AKn2
0#@Kn1

01~11AKn2
0!~r 1 3

2 Gn2
0!#

. ~40!
e

e

In
es

th a
Using Eqs.~13! and ~14! for n1
0 andn2

0 , the results~39!
and ~40! may be expressed in terms of the driving field i
tensity parameter«2. Examples of the curves forV1 andV2
depending on«2 are represented in Fig. 6 for different valu
of parametersK, G, and r . The curves relating to the pur
SHG (G50) are also given for comparison. The brok
parts of the curves relate to the instability domains, wh
the linearized treatment of quantum fluctuations fails. We
that both the variancesV1 and V2 demonstrate substantia
noise reduction in the below- and above-instability domai
as well as in the case of complete stabilization of the ste
state~full curves!. The squeezing effect is greater than in t
case of pure SHG and an essential property is that
squeezing is realized at higher intensities of the modes. T
implies that our nonlinear system is capable of genera
bright light beams with enhanced squeezing properties.

B. Cavity-output squeezing spectra

When discussing the squeezing properties of a mode
radiation field, one needs to take into account that an ap
priate experimentally measurable quantity is related to
squeezing spectrum for the cavity-output field@4#. Using the
standard definition, we calculate the squeezing spectra o
cavity-output fields at the fundamental and second-harmo
mode frequencies, corresponding to the amplitude fluc
tions @23#

Si~v!511
2g i

ni
0 ^dni~2v!dni~v!& ~ i 51,2!. ~41!

The unity on the right-hand side of Eq.~41! corresponds to
the shot-noise level and the squeezed noise reductio
realized when Si(v),1. The spectral correlator
e
e

,
y

e
is
n

of
o-
e

he
ic
a-

is

^dni(2v)dni(v)& may be calculated with the use of th
Fourier transform of Eqs.~34! and ~36!, yielding

S1~v!512
1

d~v! H 4AKn2
0F S r 1

3

2
Gn2

0D 2

1S v

g1
D 2G

12KGn1
0n2

0J , ~42!

S2~v!512
1

d~v! H 2rGn2
0F ~11AKn2

0!21S v

g1
D 2G

14Krn1
0AKn2

0J , ~43!

where

d~v!5F ~11AKn2
0!~r 1 3

2 Gn2
0!1Kn1

02S v

g1
D 2G2

1S v

g1
D 2

@11r 1 3
2 Gn2

01AKn2
02#. ~44!

Examples of the squeezing spectraS1(v) andS2(v) are
represented in Fig. 7 for different values of parametersK, G,
r , and «2. For small values of«2, the spectra have on
minimum at zero frequency, while with increasing«2 we
have divisions into two minima at sideband frequencies.
Fig. 8 we plot the dependence of the minimal valu
Si(vopt) at the optimal frequency as depending on«2. The
squeezing effect in the fundamental mode is increased wi
decrease of the relationr 5g2 /g1 and it is increased in the
caser @1 for the second-harmonic mode.
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An interesting peculiarity of the squeezing properties
our nonlinear system is that, in contrast to a number of p
viously studied nonlinear optical interactions@4#, the maxi-
mal squeezing is not approached at the critical point of
system. When comparing our squeezing results with th
for the process of pure SHG, we also arrive at the follow
conclusion. The maximal degree of squeezing achievabl
our system at a particular frequency does not exceed
squeezing in pure SHG. However, a moderate degree
squeezing still remains achievable when turning to hig
intensities of the modes and to the integral characteristic
the squeezing spectra. We recall that the integral squeezi
related to the intracavity varianceVi

1

2p E
2`

`

dv@Si~v!21#52g i~Vi21!. ~45!

FIG. 6. Quadrature amplitude variancesVi for the ~a! funda-
mental and~b! second-harmonic modes as depending on«2: ~1!
K510210, G50 ~pure SHG!, r 51; ~2! K510210, G52.49
310211, r 51; and~3! K510210, G510210, r 50.1.
f
-

e
se
g
in
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Using this relation and the results of Sec. IV A, one m
conclude that the enhanced squeezing at a high level of
herent excitation is related to the broadening of the spec
range where the noise reduction effect is substantial. In o
words, our results indicate the possibility of production
high-intensity broadband squeezed-light beams.

V. CONCLUSION

In conclusion, we have presented a semiclassical
quantum analysis of a model of an intracavity cascaded

FIG. 7. Squeezing spectraSi(v) of the ~a! fundamental and~b!
second-harmonic modes as depending onv/g i : ~a! K510210, G
52.49310211, r 50.1, «257.53109 @curve ~1!#; K510210, G
510210, r 50.1, «258.243109 @curve ~2!#; and K510210, G
510210, r 50.1, «251.83109 @curve ~3!#. ~b! K510210, G
52.49310211, r 510, «250.6231013 @curve ~1!#; K510210, G
52.49310211, r 510, «251.9731013 @curve ~2!#; andK510210,
G510210, r 510, «250.2431013 @curve ~3!#.
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544 57K. V. KHERUNTSYAN et al.
quency doubler, in which an externally driven fundamen
mode at frequencyv transforms subsequently into th
second- and fourth-harmonic modes~v1v→2v and 2v
12v→4v!. In the adiabatic limit of the strongly dampe
fourth-harmonic mode, the model becomes equivalent to
process of intracavity SHG combined with two-photon a
sorption from the generated second-harmonic mode.

The final results, written in a general form, are equa
applied to both models. The inclusion of an addition
frequency-doubling process or an equivalent two-photon
mechanism from the second-harmonic mode influen

FIG. 8. Dependence of the minimal valuesSi(vopt) of the
squeezing spectra at the optimal frequencies on«2: ~a! fundamental
mode with K510210, G52.49310211, r 50.1 @curve ~1!#; K
510210, G510210, r 50.1 @curve ~2!#; and K510210, G52.49
310211, r 51 @curve ~3!# and ~b! second-harmonic mode withK
510210, G52.49310211, r 510 @curve ~1!#; K510210, G52.49
310211, r 51 @curve ~2!#; and K510210, G510210, r 510
@curve ~3!#.
l

e
-

l
ss
s

strongly the nonlinear dynamics and stability properties
the nonlinear system as compared to the process of
SHG. The system under consideration demonstrates
critical points and a finite instability domain: The semicla
sical steady-state solutions are stable in two domains, be
the first critical point and beyond the second critical point
higher pump intensities. Moreover, when the rate of the
fective two-photon losses exceeds some critical value@see
Eqs.~25!–~27!#, the instability domain vanishes and we o
serve completed stabilization of the steady-state behavio
the system. In terms of thex (2)-nonlinear coupling constant
k andx, which are responsible, respectively, for the first a
second frequency-doubling processes, the complete stab
tion occurs whenx2/k2;g3 /g1@1, or, more exactly, when
the conditions~26! and~27! are valid. As shown, our analy
ses~Sec. III A! of these conditions can be fulfilled for rea
physical systems containing two crystals with different no
linear susceptibilitiesx1 andx2 @see Fig. 1~a!#. For example,
the crystal KH2PO4 gives x1'0.245310212 m/V for l1
51.06mm and KD2PO4 gives x2'0.25310212 m/V for
l250.53mm. In this case and for other parametersR1
5R2599.5%, R3515%, L1'0.9 cm, L2'2 cm, L
530 cm and spot size 0.47 mm, we haveK510210, G
52.49310211, r 51, which lead to regimes shown in Fig. 3
curves ~2!. If the cavity-input field power is Pin

5\v1g1« (2)2/252.3 W at the first critical point we have
Pout

(1)50.785 W andPout
(2)50.54 W for the fundamental and

the second-harmonic modes. ForPin53.45 W, at the second
critical point we obtainPout

(1)51.3 W andPout
(2)50.665 W.

However, the chosen parameters are not the only ones
this optical scheme. As mentioned above, the obtained
sults, including those for critical points, intensities@Eqs.~23!
and ~24!#, and squeezing spectra@Eqs. ~42! and ~43!#, are
expressed by means of dimensionless values:K,G,r ,«. That
is why the dimensionless values, used in Figs. 2–8 can
be realized for other crystals and reflectivities of cav
R1 ,R2 ,R3 . In particular, for cavities with high reflectivities
~see@27#! the critical points may be achieved at lower inte
sities of the driving field.

For the crystal Gd2~MoO4!3, x1'0.025310212 m/V at

l151.08mm and for K2C4H4O6.1
2H2O, x2'0.06

310212 m/V at l250.54mm, for other parametersR1
5R2599.96%, R3590%, L15L2'1 cm, L510 cm, and
spot size of 1 mm we have the same parametersK510210,
G52.49310211, andr 51. In this case the first critical poin
was achieved atPin50.42 W and we havePout

(1)50.14 W
and Pout

(2)50.1 W for the fundamental and the secon
harmonic modes. The second critical point was achieve
Pin50.7 W and we havePout

(1)50.27 W andPout
(2)50.13 W.

In the presence of instability, the temporal behavior of t
fundamental and second-harmonic mode intensities is
well-known self-pulsing character.

The stability properties of our nonlinear system are
flected also in the quantum analysis carried out within
linearized treatment of quantum fluctuations. The peculia
ties of the corresponding results on quadrature amplit
squeezing are caused by the fact that the linearized calc
tions are applicable not only for relatively small or modera
intensities of the modes in the below-instability domain b
also at higher intensities in the above-instability domain. T
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results of the calculation of the intracavity variances a
cavity-output squeezing spectra of the fundamental
second-harmonic modes demonstrate that the nonlinear
tem is capable of generating bright amplitude-squeezed l
with enhanced noise-reduction properties.

Although the maximal degree of squeezing in the cav
output beams, which is approached at a particular freque
is of the same order as in the case of pure SHG, the n
reduction at higher intensities remains substantial if we lo
for integral characteristics of the squeezing spectra.
squeezed noise reduction is realized now in a wide spe
range. In other words, the cavity-output fields demonstra
broadband squeezing with high coherent excitation.
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APPENDIX

In this appendix we derive the equations of motion~3!
and the interaction Hamiltonian~1! for the intracavity modes
at frequenciesv,2v,4v. We consider the scheme of gener
tion with two x (2)-nonlinear crystals placed one directly aft
another within a triply resonant ring cavity.

The nonlinear polarization amplitude in the medium is

P5x~2!:EE, ~A1!

wherex (2) is a third-rank susceptibility tensor. We expre
the electric fields in the cavity as

E~ j !5(
i

Ai
~ j !~ l ,t !exp~2 iv i t1 ik i

~ j !l !1c.c., ~A2!

wherei 51,2,3 correspond to thev,2v,4v modes,E(1,2) are
the electric fields in the first and second crystals, resp
tively, andE(0) in vacuum,ki

( j )5v ini
( j )/c is the wave vector,

and ni
( j ) is the linear susceptibility for thei th mode in j th

crystal.
Let us derive the equations of motion~3!. The classical

wave equations in the slowly varying envelope approxim
tion @30,31# read

cn1
~ j !

]A1
~ j !

] l
1n1

~ j !2
]A1

~ j !

]t

52p iv1x j
~2!~v15v22v1!A2

~ j !A1
~ j !* exp~ iD21

~ j !l !,

cn2
~ j !

]A2
~ j !

] l
1n2

~ j !2
]A2

~ j !

]t

52p iv2x j
~2!~v25v11v1!A1

~ j !2exp~2 iD21
~ j !l !
d
d

ys-
ht

-
y,
se
k
e

ral
a

e
r-

-

c-

-

12p iv2x j
~2!~v25v32v2!A3

~ j !A2
~ j !* exp~ iD32

~ j !l !,

~A3!

cn3
~ j !

]A3
~ j !

] l
1n3

~ j !2
]A3

~ j !

]t

52p iv3x j
~2!~v35v21v2!A2

~ j !2exp~2 iD32
~ j !l !

in crystals (j 51,2) and

c
]Ai

~0!

] l
1

]Ai
~0!

]t
50,

in vacuum, wherei 51,2,3, andDnm
( j ) 5kn

( j )22km
( j ) . Neglect-

ing the reflection waves from the crystals’ faces we wr
down the following boundary conditions for the mode am
plitudes:

Ai
~1!~ l 1 ,t !5Ai

~0!~ l 1 ,t !exp@ i l 1~ki
~0!2ki

~1!!#,

Ai
~0!~ l 11L1 ,t !5Ai

~1!~ l 11L1 ,t !exp@ i ~ l 11L1!~ki
~1!2ki

~0!!#,

Ai
~2!~ l 2 ,t !5Ai

~0!~ l 2 ,t !exp@ i l 2~ki
~0!2ki

~2!!#, ~A4!

Ai
~0!~ l 21L2 ,t !5Ai

~2!~ l 21L2 ,t !exp@ i ~ l 21L2!~ki
~2!2ki

~0!!#,

Ai
~0!~0,t !5RiAi

~0!~L,t !exp~ ik i
~0!L !1Ai

dr ,

wherel 1,2 are the coordinates of crystals’ entrances,L1,2 are
the lengths of crystals,L is the cavity length,Ri is the output
reflectivity of input or output mirror for thei th mode, and
Ai

dr are the amplitudes of driving fields.
Assume the amplitudes of all the modes vary slow

along the crystals’ length. Then we can state they are in
pendent from the path variablel in all Eqs.~A3!, in addition
to the terms]/] l . Using the conditions~A4! we define

Ai
~0![Ai , l P@0,l 1#

Ai
~1!5Aiexp@ i l 1~ki

~0!2ki
~1!!#, l P@ l 1 ,l 11L1#

Ai
~0!5Aiexp@ iL 1~ki

~1!2ki
~0!!#, l P@ l 11L1 ,l 2#,

Ai
~2!5Aiexp@ iL 1~ki

~1!2ki
~0!!1 i l 2~ki

~0!2ki
~2!!#, ~A5!

l P@ l 2 ,l 21L2#

Ai
~0!5Aiexp@ iL 1~ki

~1!2ki
~0!!1 iL 2~ki

~2!2ki
~0!!#,

l P@ l 21L2 ,L#.

Then substituting Eq.~A5! into Eqs.~A3! and taking integral
over the cavity length, we obtain using the boundary con
tions ~A4!
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~L2L12L21n1
~1!2L11n1

~2!2L2!
]A1

]t
52c~12R1expiF1!A11cA1

dr

12pv1x1
~2!~v15v22v1!A2A1* @exp~ iD21

~1!L1!21#/D21
~1!

12pv1x2
~2!~v15v22v1!A2A1* exp~ iD21

~1!L1!@exp~ iD21
~2!L2!21#/D21

~2! ,

~L2L12L21n2
~1!2L11n2

~2!2L2!
]A2

]t
52c~12R2expiF2!A2

12pv2x1
~2!~v25v11v1!A1

2@12exp~2 iD21
~1!L1!#/D21

~1!

12pv2x1
~2!~v25v32v2!A3A2* @exp~ iD32

~1!L1!21#/D32
~1!

12pv2x2
~2!~v25v11v1!A1

2exp~2 iD21
~1!L1!@12exp~2 iD21

~2!L2!#/D21
~2!

12pv2x2
~2!~v25v32v2!A3A2* exp~ iD32

~1!L1!@exp~ iD32
~2!L2!21#/D32

~2! , ~A6!

~L2L12L21n3
~1!2L11n3

~2!2L2!
]A3

]t
52c~12R3expiF3!A3

12pv3x1
~2!~v35v21v2!A2

2@12exp~2 iD32
~1!L1!#/D32

~1!

12pv3x2
~2!~v35v21v2!A2

2exp~2 iD32
~1!L1!@12exp~2 iD32

~2!L2!#/D32
~2! ,
v

e

where we assumeni
( j )'1 in the terms with]/] l and we use

the definitionF i[ki
(0)(L2L12L2)1ki

(1)L11ki
(2)L2 .

We suppose the validity of conditions

F i52pNi , ~A7!

whereNi are some integer numbers, which define the wa
vectors and assume that the phase-matching conditions
the modesv,2v are satisfied in the first crystal and for th
modes 2v,4v in the second crystal. These conditions are
uc
e
for

2k1
~1!5k2

~1! ~D21
~1!50!,

2k2
~2!5k3

~2! ~D32
~2!50!. ~A8!

In addition, we use also the equalities

D32
~1!L152pN1 , D21

~2!L252pN2 , ~A9!

which are a consequence of Eqs.~A7! and ~A8!. On the
whole we obtain
~L2L12L21n1
~1!2L11n1

~2!2L2!
]A1

]t
52c~12R1!A11cA1

dr12p iv1x1
~2!~v15v22v1!A2A1* L1 ,

~L2L12L21n2
~1!2L11n2

~2!2L2!
]A2

]t
52c~12R2!A212p iv2x1

~2!~v25v11v1!A1
2L1

12p iv2x2
~2!~v25v32v2!A3A2* L2 , ~A10!

~L2L12L21n3
~1!2L11n3

~2!2L2!
]A3

]t
52c~12R3!A312p iv3x2

~2!~v35v21v2!A2
2L2 .
We express then the amplitudesAi in the form @28#

Ai5 iA\v i

2«0
ui~r!a i , ~A11!

whereui(r) ( i 51,2,3) define the beams cross-section str
ture and satisfy the normalization conditions
-

@L2L12L21ni
~1!2L11ni

~2!2L2#E
S
ui~r!ui* ~r!d2r51,

i 51,2,3. ~A12!

Substituting Eq.~A11! into Eqs.~A10! and taking into ac-
count the condition of normalization~A12! and the relations
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x j
~2!~v15v22v1!52x j

~2!~v25v11v1!,

x j
~2!~v25v32v2!52x j

~2!~v35v21v2!

~see@29#!, we integrate over the cross section and then ob
Eq. ~3! in a semiclassical approximation

]a1

]t
52g1a11E1ka1* a2 ,

]a2

]t
52g2a22

k

2
a1

21xa2* a3 , ~A13!
v

p

n

J

e

c-

,

n

I.
eg
in

]a3

]t
52g3a32

x

2
a2

2 ,

where the coefficients are given by Eq.~5!.
Let us now derive the interaction Hamiltonian~1!. The

Hamiltonian is defined as@29#

H5:E d3r S B2

2m0
1

«0E2

2
1

4p

3
x~2!E3D :, ~A14!

where :: denotes normal ordering. Using Eqs.~A7!–~A9! and
~A12!, it is easily proved that expression~A14! leads to the
Hamiltonian~1! without the part of the reservoir.
-
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