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Three-dimensional quantum solitons with parametric coupling

K. V. Kheruntsyan and P. D. Drummond
Department of Physics, University of Queensland, St. Lucia, Queensland 4072, Australia

~Received 5 January 1998!

We consider the quantum field theory of two bosonic fields interacting via both parametric~cubic! and
quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process
of second-harmonic generation~via x (2) nonlinearity! modified by thex (3) nonlinearity. The quantum solitons
or energy eigenstates~bound-state solutions! are obtained exactly in the simplest case of two-particle binding,
in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension.
The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in
two and three dimensions—even though the corresponding classical theory is nonsingular. To estimate the
physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the
nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of
these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically
observable values.@S1050-2947~98!05109-9#

PACS number~s!: 42.50.2p, 03.65.Ge, 11.10.St, 42.65.Tg
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I. INTRODUCTION

Quantum solitons were defined in Lee’s early work
nonlinear quantum field theory as the bound states of a q
tum field @1#. Thus they are generalizations of the nonline
solitonic solutions of classical wave theory, to include qua
tum fields. In this sense, there are a wide variety of quan
fields capable of being analyzed. Since quantum field the
is generic to many areas of physics, we can expect th
entities to be universally significant, in all areas where th
are nonlinear interactions involving quantum fields.

It is possible to treat ordinary nonrelativistic quantum m
chanics as a quantum field, so this definition includes
ordinary two-particle bound states of quantum mechanic
an exactly soluble case. Other exactly soluble cases inc
the many-body bound states of bosons interacting viad-
function interactions in one space dimension. This mo
~often called the nonlinear Schro¨dinger model! was solved
by Lieb and Liniger, McGuire, and Yang@2#. Recently it was
predicted that this soluble model could lead to experim
tally observable quantum effects including quantum sque
ing in optical fiber solitons@3,4#. This prediction is now
verified experimentally@5#.

Other examples of exactly soluble models like the Hu
bard model @6# are generally restricted to one spa
dimension—except for Laughlin’s highly innovative theo
of an idealized model of two-dimensional electron gas in
external magnetic field@7#. This was able to explain the phe
nomenon of the fractional quantum Hall effect@8#.

Each of these soluble cases has led to substantial
provements in our understanding of quantum theory,
gether with new and interesting physical consequen
However, there are few exact solutions in two or three sp
dimensions, except for physically inaccessible models
the quantum Davey-Stewartson model@9#. This is especially
true if we look for nonlinear quantum field theories whic
include the most fundamental property that distinguis
quantum mechanics from quantum field theory—that is,
ability to create and destroy particles.
PRA 581050-2947/98/58~3!/2488~12!/$15.00
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The most elementary interaction of this type is the cu
coupling between two creation operators and an annihila
operator~and vice versa, on grounds of Hermiticity!. Cubic
couplings are, of course, basic to QED and QCD, where t
involve both fermionic and bosonic fields. These theories
not appear to have exactly known solutions in fou
dimensional space-time, and are usually treated by var
approximations. The most prominent of these is the Feynm
diagram method or perturbation theory, which is genera
conjectured to be nonconvergent.

It would be useful to have a cubic interaction theo
which was exactly soluble, to give some guide as to
possible variety of behavior in this class of widely us
quantum field theories. In particular, one would like to i
vestigate whether the resulting quantum solitons have
differences resulting from dimensionality, or from the pre
ence of interactions that change particle number. Surp
ingly, the simplest cubic interaction involving two boso
fields—the parametric interaction of the formC†F2—has
not been analyzed for bound states in higher dimensio
even though the corresponding classical parametric the
has stable higher-dimensional soliton solutions@10#.

In this paper we consider this problem of bound states
parametric quantum field theory, and find some exac
soluble cases with unusual and previously unexpected p
erties. The model is a traveling-wave analog of the quant
theory used to describe squeezed states in quantum o
@11,12#, and more recently molecular dissociation in ato
optics @13#. The problem is all the more interesting becau
technical advances in nonlinear optics and laser physics
now reaching the point that this type of bound state co
become experimentally accessible in the relatively near
ture. In addition, we mention that the model may be appl
to the physics of ultracold atoms and Bose-Einstein cond
sates, as describing nontrivial excitations in hybrid atom
molecular systems@14#. This application, however, will be
explored in a greater detail elsewhere.

Our results have a number of unexpected features.
most surprising is that while the simplest parametric the
2488 © 1998 The American Physical Society
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has bound states in one space dimension, it is unstable~like
the nonlinear Schro¨dinger model with an attractive
d-function potential! in higher dimensions. However, unlik
the nonlinear Schro¨dinger model, this instability shows n
trace at the classical level@10#. We note that in the case o
the nonlinear Schro¨dinger model, the higher-dimensional in
stability has a classical analog; the self-focusing singular
For a stable parametric quantum field theory the Hamilton
must therefore be modified.

We next investigate the effects of modifying the nonline
interaction by adding quartic terms to the Hamiltonian. Qu
tic coupling corresponds to a nonlinear refractive index
the corresponding optical medium, resulting in self- a
cross-phase modulation terms. It is also found as a sh
range interatomic potential in atom-atom interactions. Wit
positive quartic interaction, a rigorous lower bound to t
energy does exist, and we demonstrate the existence of e
two-particle bound-state solutions in higher dimensio
These new types of quantum solitons have a unique cha
ter: the solution has a finite binding energy, but the cor
sponding two-particle wave function has a zero radius. T
point-like structure of these bound states can be terme
‘‘quantum singularity.’’ No analogous behavior exists in th
corresponding classical theory, which is known@10,15# to
possess stable, finite-size classical soliton solutions.

The reason for this unexpected behavior is that the fun
mental structure of the new solution is inherently nonclas
cal, being a quantum superposition of two states, with on
them having a single~C-type! boson and the other havin
two ~F-type! bosons present. This is a bosonic analog of
quark model of mesons, with theF-type bosons behaving a
‘‘quarks,’’ and theC-type boson taking the role of ‘‘gluon.’’
However, unlike the usual meson, the system has a fi
probability of having no ‘‘quark’’ present at all.

An alternative way of modifying the Hamiltonian~for
higher-dimensional solitons! is to impose a momentum cu
off on the nonlinear couplings. In this case exact two-parti
bound states are shown to acquire finite radii in higher
mensions. Moreover, finite-size multidimensional bou
states occur even without the stabilizing quartic term, tha
in the simplest version of the theory—pure parametric int
action.

We also investigate the three-particle problem in o
space dimension. While no exact solution is found in t
case, the existence of a three-particle bound state o
‘‘bosonic hadron’’ is shown using a variational approach.

In summary, the quantum bound states have a strong
pendence on dimensionality, giving rise to the appearanc
quantum singularities with zero radius~unless there is a cut
off!, and a finite binding energy, in more than one spa
dimensions. With a cutoff included, the corresponding bou
states have finite radii and binding energies, even without
stabilizing quartic term. Compared to other models of tw
photon bound states in nonlinear optics@16#, the parametric
system has the advantage of higher binding energy
greater stability.

The paper is organized as follows. In Sec. II, we consi
the Hamiltonian and discuss its general symmetry proper
and possible eigenstates. In Sec. III, we show that there
exact solutions for the two-particle problem, which have
character of a superposition of either one particle of hig
.
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energy, or two particles of lower energy. The three-parti
problem is considered in Sec. IV. There is no exact solut
here, but the binding energy in the one-dimensional case
be estimated variationally. In Sec. V, we analyze the cuto
dependent Hamiltonian which corresponds to a restric
range of relative momenta of the interacting fields, a
present exact finite-size solutions. In Sec. VI, we pres
numerical estimates for the binding energies and radii of
solutions in the case of nonlinear optical parametric inter
tion, and show that effects treated here could result in
servable binding energies and radii. Finally, we provide c
cluding remarks in Sec. VII.

II. HAMILTONIAN

The quantum effective Hamiltonian we consider has
following forms @3,12#:

H5H01H int , ~1!

H05\E d~D !xF \

2m
u“Fu21

\

2M
u“Cu21rC†CG ,

~2!

H int5\E d~D !xFxD

2
~F2C†1F†2C!1

kD

2
F†2F2

1hDuCu2uFu21
sD

2
C†2C2G . ~3!

HereF andC are two complex Bose fields which we ter
subharmonic and second-harmonic fields, respectively
analogy with the nonlinear optical process of frequency c
version. Their commutation relations are given by

@F~x!,F†~x8!#5@C~x!,C†~x8!#5d~x2x8!,
~4!

@F~x!,C†~x8!#5@F~x!,C~x8!#50.

In addition,m andM are corresponding effective masses, a
r is the phase mismatch, whilexD andkD , hD , sD are the
coupling constants responsible for the parametric interac
~three-wave mixing or frequency conversion! and higher-
order ~quartic! interactions, respectively, inD (D51,2,3)
spatial dimensions.

To construct the general candidate for the eigenstate
our Hamiltonian we note that the parametric interaction h
transforms pairs of subharmonic quanta into single seco
harmonic quanta, and vice versa. That is, the Hamilton
does not conserve corresponding particle numbers. Howe
it does conserve a generalized particle number, or Man
Rowe invariant, equal to

N5NF12NC5E d~D !x@ uFu212uCu2#. ~5!

In addition, since the Hamiltonian is translation invaria
it must have a momentum conservation law forP, where

P52
i\

2 E d~D !x@F†~¹F!1C†~¹C!#1H.c. ~6!
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We therefore search for states that are eigenstates ofH, P,
andN. These must have the form of a superposition stat

uw~N!&5 (
j 50

[N/2] E ¯E d~D !x1¯d~D !xN2 j

3gN2 j
~N! ~x1 , . . . ,xN2 j ! expS i (

l 51

N2 j K–xl

N2 j D
3)

l 51

j

C†~xl ! )
l 5 j 11

N2 j

F†~xl !u0&, ~7!

whereK5P/\ is the total center-of-mass wave-vector,@N/2#
is the integer part ofN/2, j denotes the number ofC field
operators present in each term, and the functiongN2 j

(N) only
depends on the relative coordinates. We note, however,
unlessM52m, the Hamiltonian is not Galilean invarian
~under velocity boosts the Hamiltonian changes its form!,
and it is certainly not Lorenz invariant. In the case of no
linear optical interactions~see Sec. VI!, this is related to the
fact that the group velocity for the two optical fields in th
nonlinear medium will usually only match at one preferr
pair of frequencies, called the group-velocity matching f
quencies.

For simplicity, we focus on the nontrivial cases of tw
and three-particle (N52 andN53) bound-state solutions in
this paper, which we term bosonic ‘‘mesons’’ and boso
‘‘hadrons,’’ in analogy to the well-known quark model.
should be pointed out that in these particular cases the q
tic self-interaction term (;sD) for theC field in Eq.~3! has
no effect on the solutions, since the two- and three-part
eigenstates have no more than one second-harmonic qu
Therefore this term can simply be omitted through the res
the paper. As to the quartic cross-interaction term (;hD), it
may only affect the three-particle results given in Sec.
and therefore will be omitted elsewhere. We also note tha
the classical level, the interplay between cubic and qua
interactions in nonlinear optical solitons was studied in R
@15#. To provide closer comparison between quantum a
classical results, we would need to proceed with general m
tiparticle quantum solutions, which, however, are not stud
here.

III. TWO-PARTICLE EIGENSTATES: BOSONIC MESONS

We first consider the two-particle problem. In this case
may rewrite the two-particle eigenstate candidate in the
lowing explicit and symmetric form:

uw~2!&5F E d~D !xeiK–xC†~x!1E E d~D !x1d~D !x2

3g~x12x2!eiK•~x11x2!/2F†~x1!F†~x2!G u0&, ~8!

whereg(x12x2)[g2
(2)(x1 ,x2) is the two-particle wave func

tion, andg1
(2)(x1)51.

To prove a lower bound on the Hamiltonian energ
we apply Eq. ~3! to the ansatz uw (2)& and use the
symmetry property of the two-particle wave functio
g(x)5g(2x). Then neglecting the positive term
at

-

-
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e
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,

;(2\2/m)*d(D)xu¹g(x)u2, appearing by integration by
parts, we reduce the calculations to a chain of algebraic
equalities, and finally obtain that ifkD.0 and

\~xD!2.2DkD , ~9!

where D[2\2K2/(4m)1\2K2/(2M )1\r and K5uK u,
then the lower boundEl can be defined by

El5
\2K2

2M
1\r2

\~xD!2

2kD
<

^w~2!uHuw~2!&

^w~2!uw~2!&
. ~10!

A. Variational analysis

To evaluate an upper bound to the lowest-energy eig
value of our Hamiltonian, we use a variational approach.
the one-dimensional case (D51) we choose, following the
structure of the known exact solution for the pure parame
interaction@17#, a trial functiong(r ) in the form

g~r !5g0exp~2ur u/R!, ~11!

wherer 5x12x2 , andR can be regarded as a characteris
size parameter. Calculating the variational energyẼ
5^w (2)uHuw (2)&/^w (2)uw (2)& gives

Ẽ5
\2K2

4m
1

1

112g0
2R

F2\2

m

g0
2

R
12\k1g0

212\x1g01DG .
~12!

We then minimizeẼ with respect to the parametersg0

and R. As a result we obtain that the variational energyẼ,
subject to localized bound state formation (R.0), is mini-
mized at

g052
x1

2 Fk11
2\

mRG21

, ~13!

and at the optimumR value determined from

FDk12
\~x1!2

2 GR31
2\D

m
R21

\2k1

m
R1

2\3

m2
50.

~14!

Analysis of this cubic equation shows that there alwa
exists one positive solution forR if condition ~9! is met. The
final result for the minimal value ofẼ, which corresponds to
the exact eigenvalueE in this one-dimensional case, is

E5
\2K2

4m
2

\2

mR2
. ~15!

Thus a finite-size two-particle quantum soliton or a boso
meson is shown to exist in our model in one dimension.

In the cases of two and three dimensions (D
52 and 3), we use the trial function

g~r !5g0exp@2~ ur u/R!s#, ~16!

where r5x12x2 and s>0. Calculating the variational en
ergy Ẽ we obtain
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Ẽ5F11222D/2p~D21!GS D

s Dg0
2RDG21

3F\2K2

2M
1\r12\xDg012\kDg0

2

1p~D21!GS D

s D \2K2

2D/sm
g0

2RD1p~D21!

3~D1s22!GS 11
D22

s D \2

2~D22!/2m
g0

2RD22G ,

~17!

where D52 and 3, andG(z) is the gamma function
Analysis of this expression shows thatẼ, as a function of
parametersR, s, and g0 , approaches its minimal value i
the limits Rs→0 and s→0, and at

g052xD /~2kD!. ~18!

Again, condition~9! is assumed to be fulfilled to provid
localized bound states (R.0). The final result forẼmin takes
the form of the expression forEl @see Eq.~10!#. This implies
that the value ofẼmin evaluated by variational calculus rep
resents the exact lowest-energy eigenvalue

E5
\2K2

2M
1\r2

\~xD!2

2kD
. ~19!

Returning to the form of the trial functiong(r ) at the
optimum values of parametersR,s andg0 , we conclude that

g~r !5g0 if r50,

g~r !50 if rÞ0, ~20!

i.e., the two-particle solutions in two and three dimensio
have a singular pointlike structure, with a finite energy.

B. Exact solutions

To understand in more detail how these singular soluti
appear in our model, we now analyze our eigenvalue pr
lem Huw (2)&5Euw (2)& directly. Applying our Hamiltonian to
the ansatzuw (2)&, one can obtain that the eigenvalue proble
is equivalent to the following simultaneous equations:

1

m
¹2g~r !2m2g~r !5qd~r !, ~21!

E5
\2K2

2M
1\r1\xDg~0!5

\2K2

4m
2\2m2, ~22!

wherer5x12x2 ,K5uK u, and we have defined

m25
K2

4m
2

E

\2
~23!

and
s

s
b-

q5
1

\FxD

2
1kDg~0!G . ~24!

Here \2m2 can be interpreted as the binding energy of t
solution with momentumK , and mAm is an inverse scale
length; the solution is bound~against two particle decay! if m
is real and positive.

Equations~21! and ~22! can be easily analyzed using th
Fourier transform method. In this approach we seek fo
solution to Eq.~21! in the form

g~r !5
1

~2p!DE d~D !k G~k!exp~ ik–r !, ~25!

wherer 5ur u.
Expanding thed function into a Fourier integral, we the

find

g~r !52
q

~2p!DE d~D !k
exp~ ik–r !

m21k2/m
, ~26!

wherek5uku.
In the one-dimensional case (D51) the integration gives

g~r !52
q

2pE2`

1`

dk
exp~ ikr !

m21k2/m
52

qAm

2m
exp~2mAmur u!.

~27!

Using this result atr 50 and the definition ofq, we solve
for g(0) and find

g~0!52
x1

2 Fk11
2\m

Am
G21

. ~28!

Correspondingly, the energy eigenvalue then becomes

E5
\2K2

2M
1\r2

\~x1!2

2 Fk11
2\m

Am
G21

5
\2K2

4m
2\2m2.

~29!

Herem must be positive for a localized bound state. We n
that if we introduce the characteristic size parame
R51/(mAm), this equation with respect toR can be rewrit-
ten in the form of the cubic equation~14!. Hence, if condi-
tion ~9! is met, there always exists one positive solution
m. This proves the existence of a one-dimensional boso
meson of a finite size.

The two- and three-dimensional results are qualitativ
different. In these cases we obtain, from Eq.~26!,

g~0!52
q

2pD21E0

`

dk
kD21

m21k2/m
, ~D52,3!, ~30!

where we have transformed to polar~for D52) and spheri-
cal ~for D53) coordinates. Using the definition ofq we next
solve forg(0), andobtain
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g~0!52
xD

2 FkD1
\

f D~m!G
21

, ~31!

where we have defined

f D~m!5
1

2pD21E0

`

dk
kD21

m21k2/m
. ~32!

This integral diverges forD52 and 3. Hence we find tha
g(0)52xD /(2kD), and the energyE is given by Eq.~19!.
With this result forg(0) it follows also thatq50, and hence
@see Eq.~26!# g(r )50 if rÞ0. That is, the exact solution
coincides with the variational result and confirms that
bound states in two and three dimensions have sing
~zero-radius! structure.

Thus the results of this section show that our mo
Hamiltonian provides quantum solitons or two-partic
eigenstates in one and more spatial dimensions. They
superpositions of a second harmonic and two subharm
quanta. We may regard them as the bosonic analog of t
quark states in the well-known quark model of mesons:
sub-harmonic quanta behave like~bosonic! quarks, while the
second-harmonic quanta take a role of gluons.

An important difference between the one dimensional a
multidimensional solutions is in their structure and dep
dence on the additional quartic interaction. In one dimens
the bound state has a finite characteristic size, and is a
able even without a quartic term in the Hamiltonian. In tw
and three dimensions the bound states have a singular p
like structure. The corresponding binding energy is finite
and only if kD.0. If, however,kD50 we obtain@see Eq.
~19!# an energy collapse:E→2`. Thus, while the addi-
tional quartic interaction prevents an energy collapse
makes the multidimensional quantum solitons available
this simple model, it does not prevent singularities in spa
unless a momentum cutoff is introduced into the Ham
tonian ~see Sec. V!.

IV. THREE-PARTICLE PROBLEM: BOSONIC HADRONS

Now let us turn to the three-particle (N53) problem,
assuming thathD>0. In this case a lower bound to ou
Hamiltonian energy can be proved by considering the
duced Hamiltonian
c-
w

f
en

.

e
ar

l

re
ic
o-
e

d
-
n
il-

nt-
f

d
n
e,
-

-

HR5H2\E d~D !xF \

2m
u¹Fu21

\

2M
u“Cu2G

2\hDE d~D !xuCu2uFu2

5\E d~D !xFrC†C1
xD

2
~F2C†1F†2C!

1
kD

2
F†2F2G<H. ~33!

This can be easily applied to the ansatzuw (3)& @Eq. ~7!#,
and if kD.0 and\r2\(xD)2/(2kD),0 the lower bound
can be defined by

El
~3!5\r2

\~xD!2

2kD
<

^w~3!uHuw~3!&

^w~3!uw~3!&
, ~34!

where we label the energies by upper indices to different
the two- and three-particle results.

Now we compareEl
(3) with the lowest possible energ

eigenvalue of the two-particle problem in two and three
mensions@Eq. ~19!#. The latter is realized atK50, and we
see thatEl

(3)5E(2)(K50). This implies that the extra sub
harmonic quantum does not contribute to three-particle bi
ing and remains free. Hence our model does not prov
three-particle bound states in two and three dimensions. T
conclusion may be modified if there is a cutoff in the relati
momenta of interacting fields, but we do not treat this ca
here.

The situation is different, however, in the on
dimensional case. In this caseEl

(3),E(2)(K50), and hence
one may expect that the true lowest eigenvalueE(3) will
satisfy El

(3)<E(3),E(2)(K50). This will imply the exis-
tence of a three-particle eigenstate or a bosonic hadron in
dimension. Alternatively, a one-dimensional hadron can
proved to exist by variational calculus. In this approach
evaluate a variational energyẼ(3) such that its minimal value
Ẽmin

(3) — an upper bound to the lowest energy eigenvalueE(3)

— will satisfy E(3)<Ẽmin
(3) ,E(2)(K50). To check the inequal-

ity Ẽmin
(3) ,E(2)(K50), we choose trial functionsg2

(3)(x1 ,x2)
andg3

(3)(x1 ,x2 ,x3) in the eigenstateuw (3)& in the following
forms:
g2
~3!~x1 ,x2!5exp~2ux12x2u/ l 1!, ~35!

g3
~3!~x1 ,x2 ,x3!5g0exp~2ux12x2u/ l 22ux22x3u/ l 32ux12x3u/ l 3!. ~36!
y for
ar-
en
the
f
d

It is important to notice that this choice of the trial fun
tions for the three-particle eigenstate incorporates the t
particle bound-state problem~with K50) as a limiting case
of l 3 / l 2→` and l 3 / l 1→2. In other words, the structure o
the three-particle trial functions allows for the situation wh
the two particles form a bound state while the extra~third!
subharmonic quantum remains free, at a large distance
o-

In

this case the resulting energy must be equal to the energ
the two-particle bound state. If, however, the extra subh
monic quantum participates in three-particle binding, th
the resulting energy must be lower. Correspondingly,
variational energyẼ(3) should be minimized at values o
parametersl 1 ,l 2 , andl 3 different from the above mentione
limits.
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Calculating the variational energy Ẽ(3)

5^w (3)uHuw (3)&/^w (3)uw (3)&, with use of the trial functions
~35! and ~36!, we obtain

Ẽ~3!5
1

N ~E11E21E31E4!, ~37!

E15
\2~m1M !

2mMl1
1\r l 1 , ~38!

E25
\2g0

2

m F l 3

l 2
1

4l 2~23l 2
2130l 2l 3111l 3

2!

9l 2
3115l 2

2l 317l 2l 3
21 l 3

3 G , ~39!

E354\x1g0F l 1l 3

2l 11 l 3
1

2l 1l 2l 3

l 1l 21 l 1l 31 l 2l 3
G , ~40!

E452\k1g0
2l 3F 9l 21 l 3

2~ l 21 l 3!
1

8l 2

3l 21 l 3
G1\h1 , ~41!

N5 l 112g0
2

l 2l 3
2~2l 21 l 3!

~ l 21 l 3! F 1

2~ l 21 l 3!
1

8l 2

~3l 21 l 3!2G .

~42!

It is easy to check that if we take the limitsl 3 / l 2→` and
l 3 / l 1→2 and then optimizeẼ(3) with respect to the remain
ing two free parametersl 2 andg0 , we will reproduce~with
l 2 being replaced byR) the variational results obtained fo
the two-particle problem,@Eqs.~12! and ~15!# for K50.

In the general case of treatingl 1 ,l 2 ,l 3, and g0 as free
variational parameters we minimizeẼ(3) numerically. In the
case of zero quartic couplings (k150, h150) we find that
Ẽ(3) is minimized at some finite values ofl 1,2,3 andg0 , and
that the above-mentioned limit of two bound particles plu
third free particle (l 3 / l 2→` and l 3 / l 1→2) is not the opti-
mum. Correspondingly, theẼmin

(3) value turns out to be les
than the two-particle energy eigenvalueE(2)(K50), imply-
ing three-particle binding.

Inclusion of the quartic couplings, which are assumed
be positive here, will obviously increase theẼmin

(3) value ~de-
crease its absolute value or the binding energy!. The results
of our numerical analysis for the casesh152k1 andr50 are
represented in Fig. 1, where we plotẼmin

(3) versusk1 For
comparison, the curve forE(2)(K50) is also plotted. The
results are given for the choice of the relevant parameter
applied to the case of optical interactions in a nonlinear m
terial ~see Sec. VI!, wherex1 andk1 are proportional to the
second- and third-order nonlinear susceptibilities (x (2) and
x (3)), respectively. With a characteristic value ofx157.39
3107Am/s, M /m52, and \/m50.1 m2/s, our analysis
shows thatẼmin

(3) ,E(2) over a wide range ofk1 values, and
correspondingly the optimum values ofl 1 ,l 2 ,l 3 , andg0 are
different from the limit of forming a two-particle soliton plu
a free third particle. Approaching this limit ofẼmin

(3)→E(2)

occurs through developing a~second! local minimum ~at
l 2 / l 3→0 andl 3 / l 1→2), which becomes the absolute min
mum at large values ofk1 (k1;43104 m/s in the case of
Fig. 1!. We note, however, that realistic values of cubic no
a

o

as
-

-

linearities, such as for silica optical fibers, can only givek1
;102621025m/s. With these realistic values ofk1 , the
Ẽmin

(3) value and optimum characteristic size parameters

Ẽmin
(3) .22.431025 eV, l 1.4.2 mm, l 2.1.8 mm, and l 3

.9.4 mm. For comparison, the exact energy eigenva
E(2) and the effective radiusR in the two-particle problem in
one dimension, with the same values of parameters,
E(2).21.7531025 eV andR.1.94 mm.

Thus the results of this section prove the existence o
three-particle bound state or a bosonic hadron solution in
model in one dimension, provided that the quartic couplin
are not extremely strong. An obvious difference of this thre
particle soliton, compared to other known solutions@such as
in the ordinary nonlinear Schro¨dinger model~NLS! @2# or a
perturbed NLS model@18##, is in its structure which repre
sents a superposition or entangled state, involving two
ferent interacting fields.

As applied to the nonlinear optical case, there is also
advantage of higher binding energies and accessible rad
the parametric quantum solitons. This is due to the stron
x (2) nonlinear effects in parametric media, compared tox (3)

effects in nonlinear optical fibers. For example, in the or
nary nonlinear Schro¨dinger model the three-particle bound
state solution@2#, available with an attractived-function in-
teraction~corresponding to a self-focusing nonlinear optic
material, with k1,0 in our notations!, has the following
energy eigenvalue~in the case of zero momentum! and char-
acteristic radius:

ENLS
~N53!52m~k1!2

N~N221!

24 U
N53

52m~k1!2, ~43!

RNLS;
2\

muk1u
. ~44!

With the choice of\/m50.1 m2/s and a silica fiber char
acteristic value ofk1;531026 m/s, this results inENLS

(3)

.21.6310225 eV and RNLS;40 km. Comparison of
these values with the earlier estimates for the optical pa

FIG. 1. Three-particle variational energyẼmin
(3) ~broken line! vs

k1 (h152k1), for r50, M /m52, x157.393107Am/s, and\/m
50.1 m2/s. The full line represents the corresponding result for
two-particle energy eigenvalueE(2).
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metric interaction clearly illustrates the advantages of
parametric quantum solitons to be accessible.

V. CUTOFF DEPENDENT RESULTS

Now let us turn to the analysis of the singular behavior
the two-particle quantum solitons in two and three spa
dimensions. We note that these singularities represe
rather unusual situation, since the classical counterpart o
theory has well-behaved and widely used multidimensio
nonlinear-optical soliton solutions. Since we expect
quantum theory to be correct, this leads to the ‘‘paradox’’
how a singular quantum field theory can describe real ph
cal processes. We note that a related paradox is known in
theory of a Bose gas with a repulsived-function interaction
@19#, which is commonly used to model Bose-Einstein co
densation. In the atomic interaction case, either a momen
cutoff or other regularization procedures@20# are needed to
provide a physical interpretation for the three-dimensio
d-function interaction potential.

Provided the cutoff is chosen correctly, it should not
necessary to renormalize the values of the observed no
ear parameters, if optically measured nonlinearities are
volved. This is because nonlinear optical parameters are
erationally measurable under different conditions to th
it
s.

f-

e

ns
e

f
l
a

he
l

e
f
i-
he

-
m

l

in-
n-
p-
e

encountered in measuring atomic cross sections. It is o
cally possible to measure the nonlinearities in strong coh
ent fields, and also to operate under different types of ve
ity and phase-matching conditions to those assumed her

To resolve the paradox in the optical parametric inter
tion case, we note that the origins of the theory involve
rotating-wave and paraxial approximations, and neglect
higher-order dispersion. Therefore, in higher dimensions
should include, for example, nonparaxial diffraction if th
characteristic size of the solutions becomes less than the
carrier wavelengths. Alternatively, we may modify our inte
action Hamiltonian in a way that will not result in singula
structures, consistent with the paraxial approximation.

A possible way is to incorporate the fact that parame
couplings of the type found in Eq.~3! are usually restricted
to a finite range of relative momenta or wave numbers.
represent this we can introduce a cutoff atuku5kmax in the
relative momenta of the interacting fields. We choosekmax
;2p/l1, wherel1 is the carrier wavelength of the subha
monic field F. The interaction part of the Hamiltonian~3!
can then be expressed in terms ofa(k) andb(k), the Fourier
component ofF and C, so that its cutoff dependence
implemented through the limits of the corresponding in
grals:
H int5
~2p!D\

2 E d~D !K H xDE
uku50

kmax
d~D !k@a†~k1!a†~k2!b~K !1H.c.#

1kDE E
uk1,2u50

kmax
d~D !k1d~D !k2a†~k11!a†~k12!a~k21!a~k22!J . ~45!
er

ive
Herek( i )6[K /26k( i ) , the commutation relations fora(k)
and b(k) are given by @a(k),a†(k8)#5@b(k),b†(k8)#
5d(k2k8)/(2p)D, and other quartic terms have been om
ted since they have no effect on the two-particle solution

We can now analyze the eigenvalue problemHuw (2)&
5Euw (2)& directly, in Fourier space, by introducing a cutof
dependent Fourier transform ofg(r ), so that

g~r !5
1

~2p!DEuku50

kmax
d~D !kG~k!exp~ ik–r !, ~46!

This implies that, due to the cutoff in the nonlinearities, w
need only investigate eigenstates for whichG(k) vanishes if
uku.kmax. This leads the following simultaneous equatio
for an eigenstate:

S k2

m
1m2DG~k!52q, ~47!

E5
\2K2

2M
1\r1\xDg~0!5

\2K2

4m
2\2m2, ~48!
-

wherek5uku, and we have used the same notations form and
q as in Eqs.~23! and ~24!. The above equations are Fouri
transform equivalents of Eqs.~21! and~22!, except that now
they are valid foruku,kmax.

In order to evaluate the binding energy and the effect
radius, we must next solve forg(0). After a little algebra,
we find

g~0!52
xD

2 FkD1
\

f D~m,kmax!
G21

, ~49!

where the cutoff structure functions

f D~m,kmax!5
1

2[D/2]p [ ~D11!/2]E0

kmax
dk

kD21

m21k2/m

~D51,2,3!

~with @x/2# being the integer part ofx/2) are given by

f 1~m,kmax!5
Am

pm
tan21S kmax

mAm
D ,
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f 2~m,kmax!5
m

4p
lnS 11

kmax
2

m2m
D , ~50!

f 3~m,kmax!5
m

2p2Fkmax2mAmtan21S kmax

mAm
D G .

This result clearly shows the difference caused by
dimensionality of the space. In one dimension,f 1(m,kmax)
approaches a constant value ifkmax→`, while in two and
three dimensionsf D(m,kmax) has a logarithmic or linear di
vergence, respectively.

The effect of this divergence depends on whether or
the additional quartic interaction is present. If it is prese
~with kD.0), there are exact solutions without cutoff, a
g(0)52xD /(2kD), so that the energy eigenvalueE takes
the form of Eq.~19!, andg(r )50 if ur u.0. In other words,
the solutions in two and three dimensions have a finite
ergy ~unlike the energy divergence in the nonlinear Sch¨-
dinger model with an attractived-function potential! but zero
radius in the limit ofkmax→`. If, however, kD50 ~or is
negative, as in the case of attractive nonlinear Schro¨dinger
model!, we must impose a finite cutoff on the couplings
prevent an energy divergence. Simultaneously, a finite cu
prevents singularities in space.

With a finite cutoff, the general result for the energy e
genvalueE is given by

E5
\2K2

2M
1\r2

\~xD!2

2 FkD1
\

f D~m,kmax!
G21

5
\2K2

4m
2\2m2, ~51!

wherem must be positive for a localized bound state. Ana
sis of this equation with respect tom shows that under a
certain condition a positive solution form is always avail-
able. This condition, in the cases of one and two dimensio
can be written in the form of Eq.~9!, while in the three-
dimensional case it is modified to

\~x3!2.2DS k31
2p2\

mkmax
D . ~52!

In the simplest case ofkD50 andD50, and in the limit
kmax@mAm one can write simple approximate results for t
binding energiesED

b 5\2m2 in one, two, and three dimen
sions (D51,2,3):

E1
b5\2m2.

~x1!2Am

4m
, ~53!

E2
b5\2m2.

~x2!2m

4p
lnS kmax

mAm
D , ~54!

E3
b5\2m2.

~x3!2mkmax

4p2
. ~55!
e

t
t

-

ff

-

s,

The effective radii of the solitons are defined asRD

51/(mAm), since this define the characteristic distance o
which the two-particle wave function can decay.

VI. APPLICATION TO NONLINEAR OPTICAL
INTERACTION

As an application of our results~in the two-particle case!
to a realistic physical system, we consider the nonlinear
tical process of frequency conversion~second-harmonic gen
eration!. In this case the actual HamiltonianH0 is asymmet-
ric with respect to longitudinal and transverse coordinat
and is given by@10,11#

H05E d~D !xF S \2

2mi
u¹ iFu21

\2

2m'

u¹'Fu2D
1S \2

2M i
u¹ iCu21

\2

2M'

u¹'Cu2D1\rC†CG .
~56!

HereF andC represent two optical fields~subharmonic and
second harmonic! with carrier wave numbersk1 and k2
52k1 . The corresponding frequencies arev i5v(ki), i
51,2. The quantityr is now identified as a phase mismatc
term, given byr5v222v1 . We choose, for definiteness
the x axis in the direction of propagation, so that the coor
natex is defined here in a moving frame withx5xL2vt,
where xL is the laboratory frame coordinate andv
5]v i /]k is the group velocity which is assumed equal
both frequencies. The transverse coordinates arey and (y,z)
in two and three dimensions, respectively, so that¹ i is de-
fined as¹ i5]/]x, while ¹' is given by¹'5]/]y in two
dimensions, or has the vector components (]/]y,]/]z) in
three dimensions. The effective longitudinal massesmi
5\/v19 andM i5\/v29 are caused by the group-velocity di
persion, wherev i95]2v i /]k2 is the dispersion coefficient in
the ith frequency band. The lower-frequency dispersion
efficient v19 is assumed to have a positive value. The tra
verse massesm'5\v1 /v2 andM'5\v2 /v2 are caused by
diffraction, and the corresponding term inH0 is relevant only
in the case of two and three (D52,3) spatial dimensions
The coupling constantsxD and kD are proportional to the
second- and third-order nonlinear susceptibilities (x (2) and
x (3)) of the nonlinear medium, respectively.

As we can see this modification in the Hamiltonian do
not affect the one-dimensional results of the previous s
tions, with the effective massesm andM being interpreted as
the dispersive ones,m[mi and M[M i . However, it does
affect the two- and three-dimensional results, so that t
need to be slightly modified.

The modifications are not of qualitative character, and
final form of solutions obtained as in Sec. III B for the two
particle bound states can be reproduced by some forma
placements. In particular, the relationsK2/m andk2/m must
be replaced by

K2

m
→

K i
2

mi
1

K'
2

m'

,
k2

m
→

ki
2

mi
1

k'
2

m'

, ~57!
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and similarly for the case of massM instead ofm. Equations
~21! and ~22! are now rewritten in the following forms:

S 1

mi
¹ i

21
1

m'

¹'
2 Dg~r !2m2g~r !5qd~r !, ~58!

E5
\2

2 S K i
2

M i
1

K'
2

M'
D 1\r1\xDg~0!

5
\2

4 S K i
2

mi
1

K'
2

m'
D 2\2m2, ~59!

whereq is given by Eq.~24!, andm2 is now defined as

m2[
1

4S K i
2

mi
1

K'
2

m'
D 2

E

\2
, ~60!

so that, as in Sec. III B, we can again arrive at the sa
conclusions on the pointlike structure of the multidime
sional bound-state solutions without cutoffs.

The cutoff dependent results of Sec. V are modified in
following way. The form of Eq.~51! ~with the above-
mentioned replacements!, representing our main result, re
mains unchanged. That is, the energy eigenvalueE is given
by

E5
\2

2 S K i
2

M i
1

K'
2

M'
D 1\r2

\~xD!2

2 FkD1
\

f D~m,kmax!
G21

5
\2

4 S K i
2

mi
1

K'
2

m'
D 2\2m2. ~61!

The only relevant quantitative effect of adopting t
asymmetric form of the HamiltonianH0 is related to the
cutoff structure functionf D(m,kmax), D52 and 3. Now it
becomes dependent on the two massesmi and m' , and is
defined as

f D~m,kmax!5
1

~2p!DEuku50

kmax
d~D !k

1

m21ki
2/mi1k'

2 /m'

.

~62!

We see that the integrations here cannot be carried ou
easily as in the symmetric case of Sec. V in polar (D52) or
spherical (D53) coordinates. Instead, in the case of ar
trary values ofmi andm' , the integrals and resulting bind
ing energies can be evaluated numerically. If, howev
Am' /mi!1 and kmax/(mAmi)@1 we can obtain approxi
mate expressions for the cutoff structure functions:

f 2~m,kmax!.
Amim'

2p
lnS 2kmax

mAmi
D , ~63!

f 3~m,kmax!.
m'kmax

2p2 S 12 lnAm'

mi
D . ~64!

With these functions the condition of having a positi
solution for m @such thatkmax/(mAmi)@1] in Eq. ~61! re-
mains unchanged@i.e., in the form of Eq.~9!# in two dimen-
sions, while in three dimensions it becomes
e
-

e

as

-

r,

\~x3!2.2DS k31
2p2\

m'kmax~12 lnAm' /mi!
D , ~65!

where the above replacements@Eq. ~57!#, are included in the
definition of D.

We notice that the phase mismatchr has a strong effec
on the solutions, changing both the characteristic radius
the binding energy. In the three-dimensional case, if
quartic interaction termk3 is absent, then Eq.~65! implies
thatr cannot have a large positive value. On the other ha
if r is large and negative then the effective radius is v
small. Thus it is optimal to chooser<0, although in one and
two dimensions this does not appear essential ifkD50 @see
Eq. ~9!#.

In the caseskD50 andD50, Eqs.~61! and~63! and~64!
lead to the following simple results for the soliton bindin
energies in two and three dimensions:

E2
b5\2m2.

~x2!2Amim'

4p
lnS 2kmax

mAmi
D , ~66!

E3
b5\2m2.

~x3!2m'kmax

4p2 S 12 lnAm'

mi
D . ~67!

The binding energyE1
b5\2m2 and the correspondingm

value in the one-dimensional case is determined from
~29!, with m[mi . The effective radius in one dimension
defined asR151/(mAmi), while in two and three dimen-
sions we should introduce two characteristic size parame
@scaled as 1/(mAmi) and 1/(mAm')] corresponding to the
longitudinal and transverse directions. It is clear that on
the transverse~longitudinal! size is evaluated and the ratio o
the effective massesm' /mi is specified, then the longitudi
nal ~transverse! size can be obtained as well. In the ca
Am' /mi!1 considered here, the transverse size is lar
than the longitudinal one, and our numerical estimates in
and three dimensions will be given for the transverse ch
acteristic radii defined asR2,351/(mAm').

To give numerical estimates for the binding energiesED
b

5\2m2 and radii R1(2,3)51/(mAmi(')), we note that the
nonlinear couplingsxD andkD (D51,2,3) are defined here
as @11,17#

xD.
xB

~2!v1

n3 S \v2

2«0
D 1/2 1

d~32D !/2
, ~68!

kD.
3\xB

~3!v1
2v2

4«c2d32D
5

\n2v1
2v2

cd32D
, ~69!

wherexB
(2) and xB

(3) are the Bloembergen@21# second- and
third-order nonlinear susceptibilities~in S.I. units!, n is the
refractive index,n2 is the nonlinear refractive index, andd is
the effective modal~waveguide! diameter.

With the above definition forxD we may rewrite
the binding energies in one- and three-dimensional ca
in an explicit form, as expressed in terms of relevant ma
ial constants. In the one-dimensional case, the bind
energy E1

b is given by Eq. ~53!, with m[mi and m
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5@(x1)
2Ami/(4\2)#1/3 being the corresponding solutions.

addition, we substitute explicit expressions for the effect
massesmi , m' andv.c/n for the group velocity, and trans
form to the wavelengthsl1,252pc/v1,2. In the cutoff-
dependent three-dimensional case@Eq. ~67!#, we choose the
cutoff at kmax52p/l1, thus arriving at the following expres
sions:

E1
b.

4p2c2\5/3

~4«0d2!2/3~v19!1/3

@xB
~2!#4/3

n4l1
2

, ~70!

E3
b~kmax52p/l1!.

~2p!3c2\2

«0

@xB
~2!#2

n4l1
5 F12 lnA2pn2v19

cl1
G .

~71!

These results explicitly demonstrate the dependence
the binding energies on the nonlinearity, dispersion, refr
tive index, and subharmonic field wavelengthl1 . We also
recall that the most important requirements for quantum s
ton formation were a positive dispersion coefficientv19 at the
subharmonic wavelength, and group-velocity matchi
Clearly, the lower the dispersion the larger the effective m
mi , and hence higher the binding energy the smaller
soliton size. Large nonlinearities also enhance the bind
energy. In addition, we stress the strong dependence o
binding energy~especially in the higher-dimensional cas!
on the subharmonic wavelength. Other factors that may h
practical significance, but were omitted here for simplici
include higher-order linear dispersion, nonlinear dispers
tensorial~direction-dependent! properties of the medium, ab
sorption, and thermal phonon effects due to Raman sca
ing ~see, e.g., Ref.@22#!.

Ideally, the soliton binding energy should be greater th
any thermal phonon energies, and clearly the soliton rad
should be within available geometrical sizes of the nonlin
material. Another important parameter is the characteri
interaction ~formation! length, which scales a
;c/@(R1)2v19# in one dimension, and which should be le
than an absorption length.

With a value ofxB
(2);10211 m/V characteristic for con-

ventionalx (2) nonlinear crystals~such as LiNbO3) the bind-
ing energies, withl1;1 mm, are low compared to therma
phonon energies. In addition, it may be difficult in practice
satisfy the other above-mentioned requirements, such
positive dispersion at shorter wavelengths, together w
group-velocity matching. However, recent experiments
second harmonic generation~with l1;9 mm) demonstrate
that three to four orders of magnitude greater nonlineari
can be obtained in semiconductor devices, such as G
asymmetric quantum wells and related systems@23#. This
also has an advantage that the actual optical propertie
such devices can be fabricated over a rather wide rang
parameter values. Other promising devices, with fabrica
material properties, include Bragg-grating structures@24#.

In order to give numerical estimates we choose the
lowing values of parameters:xB

(2)51027 m/V, n53, v19
50.1 m2/s, and d55 mm, and take the subharmon
wavelength l152 mm. These give the ratiom' /mi
.9.431023, and the coupling constantx1.7.39
3107Am/s, while in higher dimensions the couplin
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constantsx2,3 can be evaluated using relation~68!, so that
xD5d(D21)/2x1(D52,3). As a result, the magnitudes of th
binding energyE1

b and the soliton radiusR1 in one space
dimension become E1

b.1.7531025 eV and R1

.1.94 mm. In Figs. 2 and 3 we plot the binding energi
E2,3

b and radiiR2,3 in two and three dimensions as a functio
of kmax, for different values of cubic nonlinearitieskD

;xB
(3) . These are chosen arbitrarily~much greater than real

istic values! in order to demonstrate explicitly the stabilizin
effect of the quartic interaction term. As we see, with
choice of the cutoff atkmax52p/l1 ~with l152 mm), the
resulting solutions have binding energies (E2

b.4.43
31026 eV andE3

b.2.2531026 eV for k2,350) and radii
(R2.39.7 mm, andR3.55.6 mm) comparable to the re
sults for a one-dimensional parametric waveguide. In fa
we find thatR1,R2,R3 and E1

b.E2
b.E3

b for the above
values of parameters. This indicates that we expect
higher dimensional solitons to be less strongly bound and
larger radius than their one-dimensional counterparts.

VII. SUMMARY

In summary, we have presented quantum soliton or bo
state solutions to the parametric quantum field theory. Ex

FIG. 2. Soliton binding energiesE2,3
b in two ~a! and three~b!

dimensions as a function of the cutoff momentumkmax for D50 and
m' /mi59.4231023. ~a! x251.653105 m/s andk250 ~1!, k2

52 m2/s (2), andk2520 m2/s ~3!. ~b! x35369.5 m3/2/s and
k350 ~1!, k35231025 m3/s ~2! andk35231024m3/s ~3!.
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two-particle solutions are obtained in one, two, and th
space dimensions, while three-particle binding in one sp
dimension is analyzed variationally. The results have the
markable character that the theory, while having a w
behaved~and widely used! classical counterpart, has qua
tum singularities in the eigenstates in more than one sp
dimensions, corresponding to zero-radius structures. The
son for this behavior is the inherently nonclassical struct
of the bound state, which is a quantum superposition st
To resolve this paradox, we impose an appropriate mom
tum cutoff on the nonlinear couplings, which results in
finite radius of the two-particle bound state, even in the s
plest case of pure parametric interaction~i.e., even without

FIG. 3. Soliton radiiR2,3 in two ~a! and three~b! dimensions as
a function of the cutoff momentumkmax for the same values o
parameters as in Fig. 2.
y

by
.

e
ce
e-
l-

ce
a-
e
e.
n-

-

the stabilizing quartic interaction!. While the cutoff-
dependent results require a knowledge of the precise me
nism that reduces the coupling at large relative moment
we can estimate~in the case of nonlinear optical parametr
interaction! that the nonlinear couplings should extend
higher than 2p/l1 .

A similar procedure was employed by Bethe, in using
estimated cutoff ofkmax5mec/\ in the first Lamb shift calcu-
lation @25#. Just as in the Lamb shift, this can be improved
more careful treatment of the theory at large relative m
menta. Such an improved treatment would especially be
propriate in the three-dimensional case, where we obta
linear divergence withkmax→`, in contrast to more accept
able logarithmic divergences usually encountered in qu
tum field theory and statistical physics.

With a finite cutoff ofkmax52p/l1, we have estimated the
binding energies and radii of the solutions in the case of
nonlinear optical process of second-harmonic generat
The estimated energies appear to be achievable—eithe
using cryogenic means, to reduce the energy of compe
thermal processes, or else by means of transient experim
on time and length scales shorter than those of thermal
man processes and absorption.

The physical interpretation of these bound states is
they are a superposition of a second-harmonic photon
two subharmonic photons, which can propagate without
ther down-conversion of the higher-frequency photon, or d
persive spreading of the subharmonic photons. In pract
terms, of course, most photon pairs created by dow
conversion are in unbound~continuum! states, which are no
treated in detail here. The possibility of creating bound sta
that are immune to further down-conversion does not se
to have been treated in earlier theories of this process
though earlier nondispersive theories predicted nonclass
spatial oscillations@26#. Most significantly, the solitons form
in physically testable regimes, with the required experim
tal environment being nearly accessible with currently av
able technology.

It is not impossible that this parametric quantum theo
as well as being theoretically interesting, could result in
first experimental test of multidimensional quantum solit
theory for Bose fields. Thus, complementary to high-ene
physics and particle accelerators, investigation of particle
quantum structures may become available in a larger var
of physical systems, including nonlinear optics and la
physics.
.
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