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Abstract. We present a quantum analysis of four-wave mixing in a non-resonant non- 
linear medium inside a cavity which is driven by two driving fields. I n  this process a non- 
linear medium couples two pump modes with a signal mode of the frequency equal to the 
half-sum of the lwo pump field frequencies. Three types of stable steady-state solutions at 
the deterministic problem, describing three regimes of oscillation, are found: one below 
threshold and two different above-threshold regimes. The spectra of fluctuations of the 
quadrature-phase amplitudes for all three modes are calculated. It is found that in the 
above-threshold regime each of three modes may display a squeezed noise reduction. 
Below threshold a squeezing is realized for the central mode. 

1. Introduction 

One of the important schemes to generate a squeezed light, realized experimentally, is 
based on the process of non-degenerate four-wave mixing (FWM) in a cavity (see [l] 
and references therein). In this process an intense pump field with frequency 0 (for 
certainty) interacts via a non-linear medium with two weak modes of radiated field 
with frequencies w1 and w2 such as 2 0  = wi + w2. 

A quantum theory of non-degenerate FWM, based on a resonant interaction of a 
two-level atomic system with three modes of a radiation field in a cavity, within the 
undepleted pump approximation in the below-threshold regime has been developed in 
[2,3]. The spectrum of two-mode squeezing in the cavity output field for this system 
has been calculated in [Z]. In [4,5] the squeezing spectrum is calculated for the case of 
a phenomenological description of a non-linear medium in the non-resonant case. A 
q"intum !henry cf san-dege2erz!e NJL" in 8" z!omic system in !he ~bove-!hresho!d 
regime has been considered in [6] with the use of the method of linearization of the 
stochastic equations of motion. However, the steady-state solutions for each of the 
phases of generated modes with frequencies o1 and w2 do not exist in this case. 
Therefore, the calculation of the spectrum of the two-mode quadrature-amplitude 
fluctuations with the use of linearization about these phases is impossible above 
threshold. 

In [7,8] another possibility of squeezed-state generation in intracavity FWM in a 
resonant atomic system driven by a bichromatic (two-component) pump field is 
proposed. In this process two pump fields with equal amplitudes and frequencies wI 
and w2, equally detuned from the atomic transition frequency wo, excite a cavity- 
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resonant mode with frequency wo in a squeezed state. This process has a series of 
peculiarities. As opposed to the standard scheme of non-degenerate FWM with a single 
pump, one-mode squeezed light is obtained in this case. However, the calculations 
show [7,8] that in this process the coefficient of parametric coupling between the 
conjugate modes is equal to  zero and the squeezing is determined only by the 
spontaneous noise correlators. The vanishing of the coupling coefficient is specific for 
the configuration of a two-component pump field with equal amplitudes and symme- 
trical detunings and is related to the mutual cancellation of prnbabl!i!ics nf mu!tipho. 
ton processes of radiation and absorption in the two-level atomic medium. There is 
also an absorption of the coo mode by the atomic medium. Both these phenomena 
degrade the squeezing which reaches 35% in this process. In addition, the results of 
[7,8] are obtained within the range of a classical pump field and they correspond to 
the undepleted pump approximation (i.e. to the below-threshold regime). 

In the present paper the possibility of one-mode squeezed light generation in the 
process of FWM in a cavity influenced by two pump fields with equal amplitudes and 
different frequencies and phases in the below- and above-threshold regimes is studied, 
As a result of this process two photons of pump fields with frequencies w1 and w2 
transform to two photons of a signal field with frequency wu= :(wl + w 2 ) .  We consider 
the case when the frequencies of the three cavity modes wo, w,  and w2 are non- 
resonant with respect to any atomic transitions in the non-linear medium. In this case 
the spontaneous atomic transitions may be ignored and the medium may be described 
phenomenologically by the third-order susceptibility d3). The pump modes q, o2 and 
the signal mode wo are described in a quantum way and the pump depletion is taken 
into account. 

It is worth noting that, as opposed to the standard scheme of non-degenerate FWM 

with a single pump [2 ,4,6] ,  for the present problem three types of stable steady-state 
solutions may be found for the intensities and phases of all three modes, which 
correspond to the three regimes of oscillation: one below-threshold and two above- 
threshold regimes. This fact makes it possible to use the method of linearization for 
both below- and above-threshold regimes and, in particular, to obtain an analytical 
expression for the fluctuation spectra of quadrature-phase amplitudes for all three 
modes in all generation regimes. The calculations show that above threshold, side by 
side with the squeezing of the mode, there is  so I squeezing of quadrature-phase 
fluctuations for each of the pump modes. 

The paper is constructed in the following manner: in section 2 the stochastic 
equations of motion describing the cavity-modes dynamics are written and their 
steady-state solutions are obtained. In section 3 the results on squeezing of the wo 
mode in the below-threshold regime are given. Section 4 is devoted to the lineariza- 
tion of the equations of motion in the above-threshold regimes and, finally, in section 
5 the squeezing spectra for the mu, wI and w2 modes are calculated and analysed. 
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2. Equations of motion and steady states 

We consider the following model of parametric four-wave mixing oscillation. A 
non-linear medium placed inside a suitably tuned ring cavity couples two pump modes 
of frequencies w 1  and w2 with a signal mode of frequency U,). such that w1 + w2 = 200 
( k ,  + k2= 2ko).  The pump modes are driven by two external driving fields. All three 



Squeezing in 4-wave mixing with non-degenerate pumps 291 

cavity modes are damped via cavity losses. This system may be described by the 
following Hamiltonian 

4 2 

H = 2 H~ H, = 2 hwjaTaj H2=tihx(a,a2a~2-a;a:a~) 
k=l j = O  

where a;, a, are the boson creation and annihilation operators of the cavity modes w, 
( j=O,  1,2) ,  respectively. H I  is the free part of the Hamiltonian and H2 describes the 
effective interaction with the coupling constant 3 x  proportional to the third-order 
susceptibility. The pumping of modes ol, w2 is described by H,, where E,, E2 are 
proportional to the amplitudes of two coherent phase-locked driving fields of frequen- 
cies w ,  and oz. For simplicity we consider all cavity detunings to be zero. ff4 accounts 
for the decay of the cavity modes, where r,, r,+ are reservoir operators which will give 
rise to the cavity damping constants yo, y , ,  y2 for the cavity modes mu, o,, w2,  
respectively, and we assume that all the damping constants are small compared with 
the cavity mode frequencies and the mode spacings. 

We follow the standard procedure (see, e.g., [9, lo]) to obtain an interaction 
picture equation of motion for the reduced density operator of three modes. This 
equation is 

where the bath has been assumed to be at zero temperature and we have transformed 
to the rotating frames 

( j = O ,  1,2) .  (3) uj(t)- a,e-'"i' a; 

Then we may transform this operator master equation into a c-number 
Fdkker-Planck equation using the positivep-representation [lo, 11) with independent 
complex field variables a,?, ai which correspond to the slowly varying operators a,!, U,. 

The Fokker-Planck equation derived is equivalent to the following set of stochastic 
differential equations 

ao(t) = - yoau+ xala2aOt + Ro(t) 

it2(t)= - y 2 a 2 - + x a ~ a : + E 2 + R 2 ( t )  
a,( r )= - y , a , - ~ % a & x l + E , + R , ( I )  (4) 

and the corresponding 'complex conjugate' equations, obtained by exchanging 
a , u a f ,  Rj+R,? and terms El.2 with their complex conjugates. R f ,  Rj are the 
Gaussian noise terms with zero means and the following correlations 

(R,,(f)R,,(t'))=xa,a,s(t- t ' )  (Rb(t)Rb(t ' ) )  = xa:a ; s ( t  - f') . (5 )  

( R l ( t ) R 2 ( f ' ) ) =  -+xa?$(t- 1 ' )  (RT(l)RT(I'))  = -+x~R'd(t- t ' ) .  (6)  
All the other correlators are zero 
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Below we will consider the case of equal amplitudes and arbitrary phases of the 
driving fields 

(k= 1,2) (7) IEiI=IEzI=E Ek = Ee@h 

and the case of equal damping constants yI = y 2 - y  for the pump modes wI and oz. 
The set of equations (4) will be solved by linearization about the steady-state 

solutions ay= lay(exp(iY9) ((a:)* = (ay)') of the deterministic problem obtained by 
setting ai= Ri=O. For validity of this method it is necessary that the steady state be 
stable with respect to small fluctuations. The analysis of the steady-state solutions 
along with the stability conditions (see below) results in three possible regimes of 
oscillation, 

(i) In the region below the generation threshold e < 1 ,  

E =  EIE, E, = y(yoIx)"2 (8) 

al=O lay1 = lay1 = E/y  v: = $1 rU;=$J*. (9) 

where E, is the threshold value of E ,  the stable steady-state solution of set (4) is 

In the above-threshold region ( ~ > 1 )  the two types of steady-state solutions must 

(ii) for the first, the intensities (in photon number units) of the pump modes are 
be differentiated. 

equal layl'= la:l2 and the steady-state solutions have the following form 

lay1 = lall =(yd.)"' (11) 

i.y&= GI + $J*. ( 12) 
.*." . ._," . 
w=@l wi=@2 

This solution is stable for the region 1 < ~ < 2 .  
(iii) For the second solution lay1 # lap1 and we have 

la!l = (2yIx)"' (13) 
lati =+(yoIx)I 'z[~ + ( ~ ~ - 4 ) ~ ' ~ l  lall = + ( y o I ~ ) L ' z [ ~ - ( ~ 2 - 4 ) 1 1 2 ]  (14a) 

la:[ = + ( y d x ) " ' [ ~ -  (c2-4)"'] lafl = ~ ( y o I x ) " 2 [ s t ( E 2 - 4 ) 1 1 z ] ( 1 4 b )  

or 

Y: = $1 Y;=$2 2 Y l =  $I + $2 (15) 

Note that for aii the stationary ampiitudes Ia71, lail above threshoia the foiiowing 
and in this case the set is stable at &>2. 

relation is met 

_. 

lay1 la;1= E:/yz (E' 1) (16) 
i.e. the product of intensities of pump fields inside the cavity saturates. For compari- 
son, below threshold we have layllaPl= E'Iy'. 

, nt: "eprlluellct: ", ,,IC >,ca"y-xzi,c "dlUGiJ U L  1.15 l l l l C i l l J l l l C U  U. UUCC lllUUCJ LllJIUC 

the cavity on the ratio E =  EIE, is plotted in figure 1. Beginning at the threshold value 
E, the photon number in the mode oo increases linearly with a corresponding increase 
of E ,  and the pump-mode photon number is constant in this case. The values E = 1,2 
are instability points, since all the steady states are unstable at these points. It can be 

mL^ _I ̂ _._ > ---- -.?.L- ".-..A.. -....~.. "I . .^^^E*L^:  ....... ":*:"" ,.F.L-oa -...A..- :-":A- 
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Figure I. The dependence of the scaled steady-state intensities on the parameter L = EIE,. 
The broken line (and the right-hand scale) represents the signal mode intensity 
xla$ ' / (Zy) .  The full lines represent the pump mode intensities x ~ a ~ , J 1 / y 0 .  In accordance 
with the bistable behaviour of the pump intensities in the region a > 2 ,  the upper curve 
mag correspond to la:!'> then the lower curve corresponds to !ai!'. and vice versa. 

easily verified that, at E = 2, the mean photon number in units of cavity lifetime in the 
mode wo reaches the sum of the corresponding mean photon number of the two pump 
modes 

y-l"&12=y)"4!2+y!aPI2 ( E ' 2 ) .  (17) 

In  the region & > 2  the steady-state amplitudes of the modes w , ,  w2 have a bistable 
behaviour, according to (14a, b). In this region the creation of photons of the wo mode 
is cancelled by the cavity losses as well as by the reverse process of absorption of 
photon pairs with frequency oo and radiation of photons with frequencies w, and w2, 
and the intensity of the w o  mode remains unchanged. The pump modes w, ,  w2 have an 
asymmetric behaviour, and for each pair of solutions ( l k ,  b) the following condition 
is met 

lay1 + lay1 =Ely  ( E > 2 ) .  (18) 

th;ee modes ts:c C"! t3  he defined and the sn!L%ions (ii) BXd (ii.) are s:ab!e. This fBC! 

In the steady-state solutions derived attention must also be paid to the -phase 
relations. So, (12) and (15) imply that above threshold the steady-state phases of all 

distinguishes the p r e s s  under consideration from the process of non-degenerate 
FWM with a single pump field, where only the steady-state phase of the pump mode 
and the sum of phases of generated signal and idler modes are defined above threshold 
[4,6]. Each of the signal and idler mode phases are undefined, therefore the 
corresponding steady states are unstable and the linearization about these phases is 
inapp!icah!e above threshold. 

3. Below threshold results 

Let us now turn to the linearization of equations of motion (4) in the below-threshold 
regime - (i). Introducing small fluctuations 

Aai(r) =a j [ f )  - ay Aa:(r)=at(t)-apf (19) 

Aa,(t) = -ydak(t) Aa;( f )  = - y A a l ( t )  (k= l ,2 ) .  (20) 

about the steady states (9). we obtain for the pump modes in the linear approximation 
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For the signal wn mode Aao(t)  = ao(t), A a z ( t )  =a:([)  and we obtain 

where the drift matrix A is 

c-xaya:,  and the non-zero noise correlators are 

(R:(t)R:(t')) =cd(t- t') ( R c ( t ) R p ( t ' ) )  = c*d(t-t'). (23) 

The linearized equations (and hence the steady-state solutions) are stable provided 
the real parts of the eigenvalues of the drift matrix A are positive. Finding these 
eigenvalues may convince one that the steady-state solutions (9) are stable when E < 1. 

We see, that below threshold the pump modes fluctuations A a l ,  Aa2 are not 
coupled with the w,-mode fluctuations. The equations of motion for the wn mode 
correspond to the undepleted pump approximation and they turn out to coincide with 

metric oscillation and degenerate FWM below threshold [12,13]. By analogy with these 
papers the final results will be written below. 

For the mean photon number per unit time close to the frequency coo at the output 
of the single-ported cavity we obtain (see also (42)) 

the we!! known equations of motion; describing the processes of degenerate para- 

n~=2yo(a~( t )ao( t ) )=&2/(1  - P ) .  (24) 

The spectrum of fluctuations of the quadrature-phase amplitude for the cavity 
output field centered on the frequency wn is given by 

SF'(& t )= 1+2yo dre-'"'(:Xo(19,,t+r),Xn(~o, t ) : )  (25) 1:. 
where the following notation is used (:A, B:)=(:AB:)-(A)(B), :: denotes normal 
ordering, and 

Xo(G0, t )  = a,(t)e-"*+ a:(t)'*o (26) 

is the quadrature-phase amplitude operator of the mode wn mode. 

equal to 
The minimal value of quantity S?'((6,, w ) .  which is realized at 2fi0 = GI + G2 + n, is 

Equation (27) describes the squeezing spectrum of the wo mode (O<S;;kin<l) with 
thk maximal effect (100% squeezing) achieved in the limit E-,& It must be 
remembered, however, that the linearization procedure and the validity of results 
(24). (27) will break down in the critical region near E = & ,  where fluctuations 
become large. 
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4. Analysis and linearization of equations of motion above threshold 

To analyse the set of equations (4) above threshold it is convenient to transform it 
(following [14]) to the new variables 

Using these variables the set of equations of motion takes the following form 

&(t) = - 2yoflo+ 2 2 f l 0 6  COS Y + Fn(t) 

&(f) = - 2 p 1 -  X ~ O -  COS Y + 2 6 E  COS(@I -"I) + FI(t) (29) 

i i 2 ( r )  = - 2yn2 - % n o G z  cos Y + 2-E cos(@, - Y2) + F2(r) 

%,(r) = XG sin Y +fo(t) 

Y l ( t ) = & n n m s i n Y  +(E/fi)sin(@,-Y,)+f,(t) (30) 

$ z ( r ) = + m o G & s i n ~  + ( ~ / ~ ) s i n ( @ ~ - ~ ~ ) + f , ( r )  

where Y =Yl+Y2-2Yo,  and the noise terms are 

The steady-state solutions expressed in new variables are 

(32) (ii) l<e<2 :  n+-(&-l) I - n 2 - ~ d x  

(iii) &>2:n:=2y/x (33) 

2Y ,,o- n-  
X 

Yo 
2 " - - [ E ' -  2-~(&~-4)~ ' ' ]  (34a) nz - 2x yo [E - 2 + ~ ( & ~ - 4 ) l ' ~ ]  2x 

or 

Yn 
2x 2% 

no-- I - " [E' - 2 - c ( t 2  - 4)Il2] n:=- [ E ' -  2 + ~ ( ~ ~ - 4 ) ~ ' ~ ] .  (346) 

For both cases (ii) and (iii) the steady-state phases are equal to 

W=@1 % = @ 2  2Y;=@1+@2. (35) 

An,(t) = n,(t) - AYl@) = 'PI(!) - '4': (36) 

Introducing small fluctuations 

about the steady states, we obtain the following sets of linearized equations in the 
matrix form 

Ari(t) = -AAn + F(t) (37) 

AY(t)= -AA" +f( t )  (38) 
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where An = (Ano, Anl, An2)T, AY = (AYo, AYl, F= (F:, e, e)T, f= 
(f:,fy,f;)' and the drift matrices are 
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In these equations the noise terms FP(t),fP(t) are obtained from (31) by substitution of 
the corresponding steady-state solutions (ii) or (iii). The non-zero correlations of 
these noises are 

(F:(t)F:(t')) = 2yOn8(t -  t ' )  (F!(t)Fi(t '))= -yo@(t- t ' )  (40) 

( fy ( t ) f ! ( t ' ) )=-  d ( t - t ' ) .  (41) 
Yo x2n: 

 YO (f:(t)f:(t'))= -zW-t') 

The linearization procedure is valid if the steady-state solutions are stable, i.e. if 
the real parts of all the eigenvalues of the matrices -A, -A are negative. Using the 
Hunvitz criteria it may be obtained that, as mentioned earlier, the steady-state 
solutions (ii) and (iii) are stable in the regions 1 < ~ < 2  and ~ 2 2 ,  respectively. The 
values E = 1 , 2  are instability points. 

The mean photon number per unit time for the cavity-output field close to the 
frequency oi is (see, e.g., [13])  

where n? is the corresponding input photon number ( j = O ,  1 , 2 ;  y l = y 2 = y )  and the 
cavity is assumed to be with a single output port. Taking into account that for the 
spontaneously generated oo mode r$ =0, and for the pump modes 

np"'(t) = 2yi(af(t)aj(t))  + n;" (42) 

n; = n? = E'I2y 

n%'= 2y0n: 

(43) 

(44) 

we obtainj in accordance with the linear approximation, that 
no"f - 2 ~ n y , ~ +  E2/2y. 

The presence of fluctuations comes out in the output spectral intensities of the 
fields with the carrier frequencies wi in the form of weak and broad band parts as 
compared with the high-intensity and narrow coherent components proportional to 
npS(w-wi). 

The temporal solutions of equations (37), (38) are convenient for analysis of 
different two- and equal-time correlation functions of amplitudes (intensities) and 
phases of the fields and, in particular, for analysis of noise in the quadrature-phase 
amplitudes of three modes in the cavity. However, to calculate the spectral correla- 
tions and, in particular, the fluctuation spectra of the quadrature-phase amplitudes for 
the cavity-output fields it is more convenient to pass into frequency space. 

introducing the Fourier-iransiormed frequency coi-ilpoiieiiij of fruciuaiioiij 
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we obtain instead of (37) and (38) the following sets of algebraic equations for 
fluctuations An(o), AY(w) 

(A + ioI)An(w) = F(o) (46) 

(A +iwI)AY(o)=f(w) (47) 

where I is the identity matrix. The non-zero correlations of the Fourier components of 
the noise terms are 

(F:(w)G(w’))= - 2 ( F ~ ( w ) F ~ ( w ’ ) ) = 2 y , n ~ ( w + w ’ )  (48) 

Solving the sets of equations (46) and (47) and using the correlators (48) and (49) 
one can obtain all kinds of second-order expectation values for the fluctuations 
Ani(w), AY,(@). In the present paper we restrict ourselves to consideration of such 
solutions of these sets, which determine the squeezing spectra of quadrature-phase 
amplitude fluctuations for each of three cavity-output fields. 

5. Squeezing spectra above threshold 

The spectrum of quadrature-phase amplitude fluctuations for the cavity-output field 
around the frequency w, is defined by 

S,?”‘(Oj, 0) = 1 +Zy, (50) 

~,(8,, t )  = n,(t)e-”i + a,?(t)”i ( i = O ,  1,2) (51) 

dre-iwr(:Xi(8i, t +  r), Xj(Oi, I ) : )  1:: 
where 

is the quadrature-phase amplitude operator of the wj mode in the cavity. 
Using the correspondence between the time-ordered, normally ordered operator 

averages and c-number averages 1131, it can be easily verified that the minimal value 
of Sp.t(8,, w )  is realized at O,=Y?+h and in lowest order in small fluctuations is 
equal to 

Sr;,n(w) = 1 + 8yp7 dr  e-i”’r(AY,(t+ r)AV,(t)). (52) 1:: 
This expression may be written in terms of Fourier components as follows 

The term unity in (53) gives the vacuum level of fluctuations, and the squeezing is 
realizable if yhin(w) < 1. VA.(w)=O implies a perfect (100%) squeezing. 
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Thus, to calculate the output squeezing spectra (53) for the oj modes it is sufficient 
to calculate the averages ( A Y j ( o ) A V j ( o ' ) ) ,  i.e. we can restrict ourselves with the 
solutions of the set of equations (47).  These solutions are 

On the basis of results (54) and (55) and with use of correlators (49) we obtain the 
following second-order expectation values 

where the following notations are introduced for convenience 

r = y J y  qn = xn:/2y 41.2 = n k d 2 n h  (59) 
and 

+ ( ~ / ~ n ) ~ [ q i q 2 - 2 r ( q i + q 2 ) - 4 r -  1 + r ' ( ~ ~ ~ o ) * ] ' .  (60) 

Note, the quantity d ( w )  is always non-zero. 
Substituting the expressions (57), (58) into (53) we obtain the following results for 
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( k =  1,2) modes, respectively 
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the squeezing spectra of the wo and 

The results (61) and (62) are represented in general form and they describe the 
squeezing spectra in both above-threshold regimes (ii) and (iii). For each of these 
regimes the values of np are different and the quantities qk are respectively equal to 

(ii) 1 < &<2: qo= q, = q2 = & - 1 (63) 
L 

(iii) &>2: qo= l  q1.*=- ( 6 4 4  

I for solutions (34a), or 

for solutions (346). Thus, the choice of the solutions (34a) or (346) results merely in 
the interchange of the index (k= 1 or 2) in expression (62). 

The results (61) and (62) are obtained within the ranges of the linearization 
method and are valid if the conditions of fluctuation smallness are met 

((Arz,)*)"'<n~ I ((AT, )')I * 1. (65) 
It is evident from physical considerations that these conditions are obviously met 
for intensive fields nPP.1. In the region l < e < 2  these conditions are reduced to: 
(y lx )  ( & - l ) P l ,  y o / x P l ;  and in the well above-threshold region (EPZ) they are 
y l x ~ l ,  y o / x ~ 2 % l  (see also figure 1). 

The analysis of expressions (61) and (62), represented in graphical form in figures 
2-6, shows that in the above-threshold regime there is significant squeezing both for 
the signal wo mode (100% squeezing as a possible limit) and for each of the pump 
modes w1 and w2 (50% squeezing). This fact is an interesting peculiarity of the 
considered process of FWM with two pump fields. It will be recalled that in the usual 
non-degenerate FWM with a single pump only two-mode squeezed states for the 
combined field at corresponding frequencies of the side-band modes are formed. 

0 1  , . 
-8  - 4  0 4 8 - 4  - 2  1 

W l K o  W h o  

Flgurc2. The squeezing spectrum S&(m) of the signal field plotted aginst m / y ,  for 
different values of parameters r and E :  ( a )  r = Z ,  c = l . l  (curve I), c = 4  (Curve 2); 
(b)r=lO,e=l .S(curve  I ) ,  ~ = 2 . 1  (curveZ),e=4(CUrve3). 
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1 2 3 4 
E 

Figure 3. The values of the squeezing spectra Sp."j. at w = 0 for the signal (curve 1) and 
pump (curve 2) fields as a function of E .  These values do not depend an r and for the two 
pump fields they are same in the whale region of E .  

The squeezing spectrum (61) for the signal field around the frequency wo is plotted 
in figure 2 for different values of parameters E and r. For E = 1 and small r the spectrum 
is single peaked. The value at w = 0 depends on E only, and a large squeezing in the 
region of zero frequency occurs near threshold (see curve 1 in figure 3 ) .  With 
increasing E the spectrum becomes double peaked, and large squeezing is reached at 
the side-band frequencies and for large values of the parameter r = y / y o .  The value of 
S;;,Jw) at the point of minimum mop, as a function of E is plotted in figure 4 .  It may he 
seen from figures 2 and 4 that a level of fluctuation suppression close to perfect 
(100%) squeezing may be reached for values of r a  10. 

The squeezing spectra for the pump fields described by (62) are represented in 
figure 5. Within the range l < e < 2 ,  where the intensities of the two pump fields are 
equal to each other, the squeezing spectra for both pump fields coincide and have a 
single peaked form. The dependence of S$hin(0) on E is represented in figure 3 (curve 
2 ) .  A large value of squeezing (50% squeezing in the limiting case) is reached near 
~ = 2  and in the region of zero frequency. In the region ~ > 2  the intensities of two 
pump fields are not equal and the corresponding squeezing spectra, in accordance 
with (&I), become different. A significant squeezing over the whole range & > 2  occurs 
only for that pump mode, the intensity of which decreases with the corresponding 
increase of E (see curves 2-4 in figure 5(a)). The spectrum value at w = O  (figure 2 ,  
curve 2)  increases with increasing E and tends to the level of vacuum fluctuations at 
E B ~ ,  However, for this pump field there is always a region of moderate values of r 
(see figure 6 which represents the value of the squeezing spectrum for the low- 
intensity pump field at the point of minimum wOp, as a function of parameter r ) ,  when 
the squeezing spectrum has a double-peaked structure and squeezing is maximal at the 

E 

Figure 4. The value of S;"& at the frequency mom, when the squeezing of the signal field is 
maximal, as a function of E for r = 2  (curve l), r = 4  (curve 2) and r =  10 (curve 3). 
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Figure 5. The squeezing spectra S:y!,,,n(o) of the pump fields plotted against wly .  (a )  For 
both pump fields: curve 2, ~ = 2 . 1 ,  r=2; curve 3, e = 4 ,  7=2; curve 4. ~ = 6 ,  r = l ,  
correspond to the low-intensity pump field (k= 2). and curve 1, E = 1.5, r = 2 ,  is related 10 
the regime (ii) with equal pump intensities. ( b )  Corresponds to the high-intensity pump 
field(k=l forcertainty):e=2.1,r=2(curve 1),r=lO(curve2).  

side-band frequencies. The largest effect tends to 50% for such values of r and large E .  
As far as the pump mode of increasing intensity is concerned in the region ~ > 2 ,  the 
corresponding squeezing spectrum (figure 5(b)) is always single peaked. Accordingly 
the maximal squeezing and an optimal region of values of E for this pump field are 
determined by the spectrum value at the o = 0 point (figure 2, curve 2) .  

6. Summary 

In conclusion we enumerate the main characteristics of intracavity FWM under the 
influence of two external driving fields. An essential feature of this problem is that it 
permits an anaiyticai consideration within the framework of a weii deveioped method 
of linearization of stochastic equations of motion with allowance for pump depletion. 
As a result a quantum analysis of amplitude and phase fluctutations in both regimes of 
oscillation, below and above threshold, is carried out. It is shown that in such a 
process the one-mode squeezed states are obtainable in all generation regimes. Below 
threshold there is only the signal wo mode which is squeezed. The signal mode remains 
in squeezed state above threshold in the whole region of intensities of the incident 
driving fields n'" = E2/(2y) > ~ d ( Z x )  (E>  1) with the maximal efficiency (100% 
squeezing) realizable for large values of the ratio ydy.  Besides, in the above-threshold 
regime there is a squeezing of both pump fields, which may reach up to 50%. An 
optimal region for squeezing of the pump fields is yy0/(2x) < nl" < 2y0y/x (1 < E < 2 ) ,  

\ /  

0.5 
n 2 4 

r 
Figureb. The dependence of the spectrum value S;ym,n(mm,) for the low-intensity pump 
field on parameter r: c = 2 . 2  (curve 1). c = 3  (curve 2). ~ = 6  (curve 3). 
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where their intensities are equal. In the region n">2yoy/x (&>2)  a large squeezing is 
realized for that pump field, whose intensity decreases with increasing n'". The other 
peculiarity of this process, which deserves special consideration, is the bistable 
behaviour of the steady-state intensities of the pump modes beginning at the intensity 
of the driving fields equal to n'" = 2y0y/x ( E  = 2 ) .  

G Yu Kryuchkyan and K V Kheruntsyan 
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