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Shock waves are examples of the far-from-equilibrium behavior of matter; they are ubiquitous in nature,
yet the underlying microscopic mechanisms behind their formation are not well understood. Here, we study
the dynamics of dispersive quantum shock waves in a one-dimensional Bose gas, and show that the
oscillatory train forming from a local density bump expanding into a uniform background is a result of
quantum mechanical self-interference. The amplitude of oscillations, i.e., the interference contrast,
decreases with the increase of both the temperature of the gas and the interaction strength due to the
reduced phase coherence length. Furthermore, we show that vacuum and thermal fluctuations can
significantly wash out the interference contrast, seen in the mean-field approaches, due to shot-to-shot
fluctuations in the position of interference fringes around the mean.
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Introduction.—The study of dispersive shock waves in
superfluids, such as dilute gas Bose-Einstein condensates
(BECs), has been attracting a growing attention in recent
years (see, e.g., Refs. [1–10]). This is partly due to the
fact that shock waves represent examples of far-from-
equilibrium phenomena, for which a fundamental under-
standing of the laws of emergence from the underlying
many-body interactions is generally lacking. Ultracold
atomic gases offer a promising platform for addressing
this open question due to the high level of experimental
control over the system parameters and the dynamics. Other
physical systems in which dispersive shock waves form,
and which may benefit from such an understanding, include
rarefield plasma [11,12], intense electron beams [13], liquid
helium [14], and exciton polaritons [15].
Dispersive (or nondissipative) shock waves in fluid

dynamics are identified by density ripples or oscillatory
wave trains whose front propagates faster than the local
speed of sound in the medium; a typical scenario for their
formation is the expansion of a local density bump into a
nonzero background. Dissipative shock waves, on the other
hand, are characterised by a smooth but steep (nearly
discontinuous) change in the density [1,16,17]. In either
case, the effects of dispersion or dissipation prevent the
unphysical hydrodynamic gradient catastrophe by means of
energy transfer from large to small lengthscales, or through
the release of the excess energy via damping.
While dissipative shock waves involve irreversible proc-

esses that can be well described within classical hydro-
dynamics, dispersive shock waves in BECs require
quantum or superfluid hydrodynamics for their description.
The latter can be derived from the mean-field description of
weakly interacting BECs via the Gross-Pitaevskii equation

(GPE) [18,19]. The effect of dispersion is represented here
by the so-called quantum pressure term, hence the use of an
alternative term for dispersive shock waves—quantum
shock waves [2]. We point out, however, that essentially
the same phenomenon can be observed in classical
nonlinear optics [20,21], wherein the electromagnetic
dispersive shock waves are generated in a medium with
a Kerr-like nonlinearity and are described by the nonlinear
Schrödinger equation (NLSE). The presence of nonlinear
interaction [22], in both the GPE and NLSE, has been
exploited in, and is required for, the interpretation of
dispersive shock waves as a train of gray solitons [6,23].
However, as we show below, qualitatively similar density
modulations can form in a noninteracting case which does
not support solitons. These incongruencies imply that the
understanding of dispersive shock waves requires reassess-
ment, including clarification of the role of actual quantum
and thermal fluctuations which require beyond-mean-field
descriptions.
In this Letter, we study dispersive shock waves in a one-

dimensional (1D) Bose gas, described by the Lieb-Liniger
model [24], and show that the microscopic mechanism
behind the formation of the oscillatory wave train is
quantum mechanical interference: the wave packet that
makes up a local density bump self-interferes with its own
background upon expanding into it. This is in contrast to a
Gaussian wave packet expanding into free space, which
maintains its shape. Our results span the entire range of
interaction strengths, from the noninteracting (ideal) Bose
gas regime, through the weakly interacting or Gross-
Pitaevskii regime, to the regime of infinitely strong inter-
actions corresponding to the Tonks-Girardeau (TG) gas of
hard-core bosons [25,26]. In all regimes, the interference
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contrast decreases with the reduction of the local phase
coherence length. Moreover, in the weakly interacting
regime, where the interference contrast is typically high,
we show that thermal and quantum fluctuations can
dramatically reduce the contrast due to shot-to-shot fluc-
tuations in the position of interference fringes.
Ideal Bose gas.—We begin our analysis with the simplest

case of an ideal Bose gas. For analytical insight, we consider
the initial wave function Ψðx; 0Þ ¼ ψbgð1þ βe−x

2=2σ2Þ,
prepared prior to time t ¼ 0 as the ground state of a suitably
chosen dimple potential, which subsequently evolves in a
uniform potential of length L with periodic boundary
conditions. The Gaussian bump has a width σ and amplitude
β above a (real) constant background ψbg which fixes the
normalization of the wave function to unity in the single-
particle case, or to the total number of particles N in the
system [27]. The dimensionless density ρ̄bg ¼ ρbgL ¼
jψbgj2L ¼ Nbg gives the number of particles in the
background, with N ¼ Nbgf1þ ð ffiffiffi

π
p

βσ=LÞ½βerfðL=2σÞþ
2

ffiffiffi

2
p

erfðL=2 ffiffiffi

2
p

σÞ�g. The wave function Ψðx; 0Þ evolves
according to the time-dependent Schrödinger equation,
whose solution can be written as

Ψðx; tÞ ¼ ψbg

�

1þ βσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ iℏt=m
p e−x

2=2ðσ2þiℏt=mÞ
�

: ð1Þ

The corresponding density profile ρðx; tÞ ¼ jΨðx; tÞj2 is
shown in Fig. 1(a) at different dimensionless times τ ¼ t=t0
(and before significant reflections off the boundary), where
t0 ¼ mL2=ℏ is the timescale, and m is the mass of the
particles. As we see, ρðx; tÞ displays all the known hall-
marks of dispersive shock waves from the GPE (see below).
In particular, the shock wave oscillations are chirped, with
high-frequency and small-amplitude components located
at the shock front. The wave function (1) can be rewritten
as Ψðx; tÞ ¼ ψbg½1þ Bðx; tÞeiφðx;tÞ�, so that the density
ρðx; tÞ ¼ jΨðx; tÞj2 acquires a textbook form of quantum
mechanical interference, ρðx; tÞ ¼ ψ2

bg½1þ Bðx; tÞ2þ
2Bðx; tÞ cosφðx; tÞ�, with the amplitude Bðx; tÞ≡ fðβσÞ=
ð½σ4 þ ℏ2t2=m2�1=4Þge−x2σ2=2½σ4þℏ2t2=m2� and phase φðx; tÞ≡
fðℏtx2Þ=ð2m½σ4 þ ℏ2t2=m2�Þg − 1

2
atanðℏ2t2=m2σ4Þ. This

means that the period of oscillations in the bulk of the
shock train is ∼2σ (with σ being the only relevant length
scale in the problem), whereas the amplitude scales
as ∝ βσ=

ffiffi

t
p

.
Weakly interacting Bose gas in the GPE regime.—We

now move to consider repulsive pairwise delta-function
interactions of strength g, and find ourselves in the realm of
the Lieb-Liniger model [24,31,32]. For a uniform system,
the relevant dimensionless interaction parameter is
γ ¼ mg=ℏ2ρ, where ρ is the 1D density. For a nonuniform
gas with a local density bump, one can introduce a local
interaction parameter γðxÞ ¼ mg=ℏ2ρðxÞ and use, e.g., the

background value γbg ¼ mg=ℏ2ρbg as the global interaction
parameter to characterise the initial state (in addition to
specifying the height and width of the bump). The weakly
interacting regime of the Lieb-Liniger gas corresponds to
γbg ≪ 1 [hence γðxÞ ≪ 1 at any other x within the bump],
and the zero-temperature (T ¼ 0) dynamics of the system
can be approximated by the GPE for the complex mean-
field amplitude Ψðx; tÞ:

iℏ∂tΨðx; tÞ ¼
�

−
ℏ2

2m
∂xx þ gjΨðx; tÞj2

�

Ψðx; tÞ: ð2Þ

Dispersive shock waves forming under the GPE are
shown in Figs. 1(b) and 1(c), and are qualitatively similar to
those in the ideal Bose gas. The interfering nature of the
density ripples in this regime, where we no longer have an
explicit analytic solution, can be revealed [32] via a wavelet
transform known from signal processing theory [33–36].
The only difference that arises here is that the interaction
term in the GPE sets up a new lengthscale in the problem—
the healing length lh ¼ ℏ= ffiffiffiffiffiffiffiffiffiffiffiffimgρbg

p of the background. The
healing length decreases with increasing interactions, and
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FIG. 1. Dispersive shock waves in an ideal and weakly
interacting 1D Bose gas at T ¼ 0. In (a), we show the single-
particle probability densities ρðx; tÞ ¼ jΨðx; tÞj2 for the ideal gas
at different dimensionless times τ, for β ¼ 1 and σ=L ¼ 0.02.
Due to the reflectional symmetry about the origin, we only show
the densities for x > 0. In (b) and (c), we show the density
profiles in the weakly interacting regime at two instances of time,
with the GPE simulations represented by solid (grey and blue)
lines. We also show the results of stochastic phase-space
simulations [28] using the truncated Wigner (W) and positive-
P (þP) approaches, which incorporate the effects of vacuum
fluctuations (see text). The shape of ρðx; 0Þ (not shown) in (b) and
(c) is the same as in (a), except that it is now normalized
to N: (b) N ¼ 50, γbg ¼ 0.1; (c) N ¼ 2000, γbg ¼ 0.01 [30]. The
dimensionless healing length lh=L ¼ 1= ffiffiffiffiffiffi

γbg
p Nbg is lh=L ≃ 0.072

in (b), and lh=L ≃ 0.0057 in (c), which can be compared to
σ=L ¼ 0.02.
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as soon as it becomes the shortest lengthscale in the
problem (hence determining the effective UV momentum
cutoff) it overtakes the role of σ in determining the
characteristic period of interference oscillations. An exam-
ple of this scenario is shown in Fig. 1(c): here, the initial
density profile is in the Thomas-Fermi regime (where the
mean-field interaction energy per particle is much larger
than the kinetic energy) with lh < σ, and the characteristic
period of oscillations is ∼2lh. The trailing interference
fringe of the shock wave train propagates approximately at
the speed of sound cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gρbg=m
p

at the background
density ρbg, obtained from the Bogolibov spectrum of ele-
mentary excitations [24].
The GPE can be equivalently formulated in terms of

superfluid hydrodynamics via Madelung’s transformation to
the density and phase variables, Ψðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðx; tÞp

eiϕðx;tÞ,
and the velocity field vðx; tÞ ¼ ðℏ=mÞ∂xϕðx; tÞ, which
yields

∂tρ ¼ −∂xðρvÞ; ð3Þ

∂tv ¼ −∂x

�

1

2
v2 þ gρ

m
−

ℏ2

2m2

1
ffiffiffi

ρ
p ∂xx

ffiffiffi

ρ
p �

: ð4Þ

The last (dispersive) term in Eq. (4) is referred to as the
quantum pressure term; it is this term that governs the
formation of the oscillatory wave train in the hydrodynamic
approach.
The same quantum pressure term arises in the hydro-

dynamiclike formulation of the single-particle Schrödinger
equation after applying Madelung’s transformation to the
quantum mechanical wave function. This means that in the
ideal Bose gas case, with g ¼ 0 in the above hydrodynamic
equations, it is again the quantum pressure term that is
responsible for producing dispersive shock wave oscilla-
tions in Fig. 1(a). We note then, that the interaction g is not
necessary for the formation of the oscillatory shock wave

train, and as such these oscillations cannot generally be
interpreted as a train of gray solitons [6,23] that do require
the interactions to balance the wave dispersion.
Strongly interacting and Tonks-Girardeau regimes.—

We now extend our analysis to increasingly stronger
interaction strengths, from γbg ∼ 1 to the TG limit of
γbg → ∞ [24–26]. The shock wave dynamics in this regime
are shown in Fig. 2 and are simulated using infinite matrix
product states (iMPS) [32], starting from the ground state of
a dimple potential VðxÞ. The key observation here is that
the amplitude of shock wave oscillations (i.e., the inter-
ference contrast) goes down with increasing γbg due to the
reduction of the local phase coherence length of the gas.
The phase coherence length of a 1D Bose gas crosses over
from essentially the size of the system in the GPE regime
down to the mean interparticle separation 1=ρbg in the limit
of γbg ≫ 1 [72]. Furthermore, for γbg ≫ 1, the initial
ground state density profile exhibits small-amplitude
Friedel oscillations [73], with a characteristic period equal
to the mean interparticle separation 1=ρbg. This means that
discerning between the deformations of these preexisting
oscillations and shock wave interference fringes, which
form dynamically, becomes ambitious especially when the
width σ is on the same order of magnitude as 1=ρbg.
These observations become more evident in the TG limit

of γbg → ∞, where the mean interparticle separation in the
background becomes the shortest length scale in the
problem, related to the Fermi wavelength λF ¼ 2π=kF
(with kF ¼ πρbg being the Fermi wave vector at the
background density) via 1=ρbg ¼ λF=2. Examples of evolv-
ing density profiles in the TG limit, obtained using exact
diagonalization of a free fermion Hamiltonian and iMPS
simulations [32], are shown in Figs. 2(d) and 2(e) for a
relatively wide and a very narrow density bump. As we see
in Fig. 2(d), dispersive shock wave oscillations in the TG
gas do not form [74] when the width of the bump σ is larger
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FIG. 2. Shock waves in a 1D Bose gas at T ¼ 0 for intermediate and strong interactions. In all panels, the iMPS simulation results are
shown as full lines; in (d) and (e), the iMPS results are compared with exact diagonalization results (dotted lines), and show excellent
agreement. In (a)–(c), the trapping potential is chosen as V̄ðξÞ ¼ −V̄bg½1þ β expð−ξ2=2σ̄2Þ�2, with σ̄ ¼ 0.02 in all cases, and:
(a) β ¼ 0.98, V̄bg ¼ 1849 (resulting in Nbg ≃ 43.2); (b) β ¼ 0.7, V̄bg ¼ 18705 (Nbg ≃ 43.6); (c) β ¼ 0.38, V̄bg ¼ 92450 (Nbg ≃ 43).
Here, V̄ðξÞ≡ VðxÞ=E0, with E0 ¼ ℏ2=mL2 being the energy scale. In (d), the trapping potential is chosen according to Eq. (S33) of
[32], with Nbg ¼ 44.03, β ¼ 1, and σ̄ ¼ 0.02; in the Thomas-Fermi approximation, this would produce exactly the same initial density
profile as in Fig. 1(a), which, however, would not display the Friedel oscillations seen here. In (e), the trapping potential has the same
shape as the one used for producing the ideal Bose gas initial density profile of Fig. 1(a), except normalized to N ¼ 4.
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than the phase coherence length 1=ρbg. The small density
ripples seen in this case are simply evolving deformations
of the initial Friedel oscillations [75]. When, however,
σ < 1=ρbg, as in Fig. 2(e), we do observe small-scale
dispersive shock waves, confined initially within a single
Friedel-oscillation period of 1=ρbg ¼ λF=2. The character-
istic period of interference fringes in this case is determined
by σ as it is now the shortest length scale in the problem.
The effects of thermal and vacuum fluctuations.—In

order to understand the effect of thermal fluctuations on
dispersive shock waves, we consider the finite temperature
quasicondensate regime of the 1D Bose gas [37,44,69,
76–78]. This regime still corresponds to weak interactions,
γbg ≪ 1, but we focus on temperatures of the initial thermal
state lying within γbg ≲ T̄ ≲ ffiffiffiffiffiffi

γbg
p [69,77], where T̄ ¼

T=Td is the dimensionless temperature, Td ¼ ℏ2ρ2bg=2mkB
is the temperature of quantum degeneracy of the gas at
density ρbg, and kB is the Boltzmann constant [79]. In this
range of temperatures, which are most readily accessible in
ultracold atom experiments [78,80,81], the density-density
correlations of the gas are dominated by thermal rather than
vacuum fluctuations [69,77]. Accordingly, the shock
wave dynamics can be simulated using c-field techniques

]45–47 ], which involve preparation of the initial thermal
equilibrium state using the stochastic projected Gross-
Pitaevskii equation (SPGPE) and subsequent real-time
evolution according to the GPE.
Examples of SPGPE simulations are shown in Fig. 3 for

the same parameters as in Fig. 1(c), but for two nonzero
temperatures. As expected, the interference contrast is
significantly reduced (compared to GPE results) due to
thermal fluctuations and the resulting loss of phase coher-
ence. Indeed, in the quasicondensate regime with density
ρbg, the thermal phase coherence length is given by
lT ¼ ℏ2ρbg=mkBT. From this estimate one can expect that
the self-interfering shock wave train would lose its contrast
when lT becomes on the order of or smaller than the width
of the bump σ, with oscillations eventually disappearing at
sufficiently high temperatures. This is indeed what we see
in Fig. 3. However, the interference contrast in the example
of Fig. 3(a) is essentially lost at temperatures for which lT is
still larger than σ; this can be explained by the shot-to-shot
fluctuations in the position of interference fringes due to the
same thermal fluctuations. Indeed, as can be seen from
samples of individual stochastic SPGPE trajectories (shown
as thin lines), even though these individual trajectories
show high-contrast interference fringes (albeit with sto-
chastic noise also present), the overall ensemble average
over thousands of SPGPE realizations shows much lower
interference contrast. This observation is consistent with
the interpretation of the individual SPGPE trajectories
representing individual experimental runs [47], whereas
the mean density corresponds to the ensemble average over
many runs.

Finally, we consider the effect of quantum fluctuations
on the shock wave interference contrast in the weakly
interacting regime at T ¼ 0. These are treated using two
stochastic phase-space methods, the truncated Wigner and
positive-P approaches [48], and the iMPS method. The
stochastic simulation results are shown in Figs. 1(b) and
1(c), and are directly comparable to those based on the
mean-field GPE. For the parameters of Fig. 1(b) (very weak
interactions), the truncated Wigner and positive-P results
agree with each other (in addition to being in excellent
agreement with iMPS results [32]) within the respective
error bars, and are close to the GPE results. In this regime,
the quantum fluctuations have a negligible effect on the
mean density and the interference contrast. For the param-
eters of Fig. 1(c), on the other hand, the interactions are
stronger (with the period of shock wave oscillations
determined by lh rather than σ) and the quantum fluctua-
tions have a more profound effect: the interference contrast
is visibly reduced compared to the GPE prediction [82].
This is similar to the effect of thermal fluctuations
discussed above, and can be attributed to shot-to-shot
fluctuations in the position of interference fringes around
the mean.
Conclusions.—We have shown that the mechanism of

formation of dispersive shock wave trains in a 1D Bose gas
is quantum interference: the local perturbation self-
interferes with its own background upon expanding into
it. The interference contrast in this picture goes down with
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FIG. 3. Shock waves in a finite-temperature quasicondensate
from SPGPE simulations (thick red lines). Shown are the
final-time (τ ¼ 0.0007) density distributions for x > 0 and two
different initial dimensionless temperatures: (a) T̄ ¼ 0.01, and
(b) T̄ ¼ 0.1 [79]. Other parameters are as in Fig. 1 (c); the GPE
results are shown here again as blue lines for comparison.
The dimensionless thermal phase coherence length here can
be expressed as lT=L ¼ 2=ðT̄ NbgÞ, giving: (a) lT=L ≃ 0.1,
(b) lT=L ≃ 0.01. The SPGPE mean densities are the averages
over 100 000 stochastic trajectories, whereas the thin lines show
two sample trajectories.

PHYSICAL REVIEW LETTERS 125, 180401 (2020)

180401-4



the reduction of the phase coherence length of the gas, and
the picture holds true for all interaction strengths. We have
also shown that thermal and quantum fluctuations can
reduce the interference contrast further due to shot-to-shot
fluctuations in the position of interference fringes around
the mean. In the TG limit of infinitely strong interactions,
where the phase coherence length is the same as the mean
interparticle separation, the shock wave oscillations are
absent for a sufficiently wide density bump (wider than the
mean interparticle separation). Apart from explaining the
origin of density ripples in dispersive quantum shock
waves, our results may serve as a test bed for new
theoretical and computational techniques for many-body
dynamics, such as the generalized hydrodynamics [83–86],
and may shed new light on the understanding of dispersive
shock waves in a variety of other contexts, such as in
electronic systems described by the Calogero-Sutherland
model and Korteweg–de Vries equations [1,8,87], or
superfluids with higher-order dispersion [88].
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I. LIEB-LINIGER MODEL

The Lieb-Liniger Hamiltonian [S1] used to describe a
trapped one-dimensional (1D) Bose gas ofN particles of mass
m, with repulsive pairwise contact interaction between the
particles, is given in second quantized form by

Ĥ=

ˆ
dxΨ̂†

(
− ~2

2m

∂2

∂x2
+ V (x)

)
Ψ̂ +

g

2

ˆ
dxΨ̂†Ψ̂†Ψ̂Ψ̂,

(S1)

where Ψ̂†(x) and Ψ̂(x) are the bosonic field creation and an-
nihilation operators. The external trapping potential and the
interparticle interaction strength are denoted by V (x) and g,
respectively. For harmonic transverse confinement with fre-
quency ω⊥, which must be much stronger than the longitu-
dinal confinements V (x) in order to enable the reduction of
a realistic three-dimensional (3D) system to an effective 1D
model with frozen transverse degrees of freedom, the interac-
tion strength can be approximated by g ' 2~ω⊥a away from
confinement induced resonances [S2]. Here, a is the 3D s-
wave scattering length which is positive for repulsive inter-
actions. In this Letter, we have considered evolution of the
1D Bose gas in a periodic box of length L with uniform po-
tential V (x) = 0. We write the external potential explicitly
in Eq. (S1) so as to later consider the trap V (x) which is re-
quired to prepare the desired initial density distributions as the
ground state, before evolution in the uniform potential takes
place after a sudden trap quench at time t = 0 to V (x) = 0.

At zero temperature (T = 0), the ground-state properties
of a uniform Lieb-Liniger gas in the thermodynamic limit can
be completely characterized by just a single dimensionless in-
teraction parameter γ = mg/~2ρ [S1, S3], where ρ is the 1D
(linear) density. For describing a nonuniform system, with the
1D density profile ρ(x), one can instead use a local dimen-
sionless interaction parameter γ(x) = mg/~2ρ(x) [S4]. In
the main text, the value of γ(x) at the background density ρbg

is denoted via γbg.
At non-zero temperatures, a further dimensionless temper-

ature parameter is required for characterising the Lieb-Liniger
gas. This can be chosen to be defined relative to a character-
istic temperature scale in the system (such as the temperature
of quantum degeneracy Td = ~2ρ2/2mkB for a uniform sys-
tem), or in terms of kBT relative to a characteristic energy
scale in the problem (such as Eb = mg2/2~2, which is equiv-
alent to the binding energy of a two-particle bound state that
exists in the attractive counterpart of the model, with g < 0)
[S4, S5]. The numerical study carried out in this work though
will always be for a finite-size system of length L and hence

there is an additional energy scale ~2/mL2 at our disposal,
which we will use as necessary.

II. MEAN-FIELD GPE AND SUPERFLUID
HYDRODYNAMICS

In the weakly interacting limit, γbg � 1, we employ the
mean-field approximation and set Ψ̂(x, t) → 〈Ψ̂(x, t)〉 =
Ψ(x, t), where Ψ(x, t) is to be understood as the order pa-
rameter or the mean field amplitude of the system in the spon-
taneously broken symmetry approach. Making such an ap-
proximation in the Heisenberg equation of motion for the
Bose annihilation operator results in the well-known mean-
field Gross-Pitaevski equation (GPE), describing the zero-
temperature dynamics of the gas:

i~
∂Ψ(x, t)

∂t
=

(
− ~2

2m

∂2

∂x2
+ V (x) + g|Ψ(x, t)|2

)
Ψ(x, t).

(S2)
Here, V (x) is the trapping potential which we set to zero dur-
ing the evolution, but we include it here to indicate its rele-
vance for the preparation of a desired initial density profile as
the ground state of that potential.

In dimensionless units, the GPE takes the form

i
∂Ψ̄(ξ, τ)

∂τ
=

(
−1

2

∂2

∂ξ2
+ V̄ (ξ) + ḡ|Ψ̄(ξ, τ)|2

)
Ψ̄(ξ, τ),

(S3)
where we have used the dimensionless quantities ξ=x/L, τ=

t/t0, Ψ̄ = Ψ
√
L, V̄ = V/E0, and ḡ = g/E0L= gmL2/~2 =

γbgNbg, with the spatial size of the system L being used as
the length scale, t0 =mL2/~ the timescale, and E0 =~/t0 =
~2/mL2 the energy scale.

If one considers the ideal (noninteracting) gas case, where
there are no interactions, i.e., ḡ = 0, then Eq. (S3) reduces
to the dimensionless Schrödinger equation, where Ψ̄(ξ, τ) is
to be understood as the single-particle quantum mechanical
wavefunction.

Converting to density and phase variables via Madelung’s
transformation, Ψ(x, t)=

√
ρ(x, t)eiφ(x,t), Eq. (S3) results in

the dimensionless superfluid hydrodynamic equations,

∂ρ̄

∂τ
= − ∂

∂ξ
(ρ̄v̄), (S4)

∂v̄

∂τ
= − ∂

∂ξ

(
1

2
v̄2 + V̄ (ξ) + ḡρ̄− 1

2

1√
ρ̄

∂2√ρ̄
∂ξ2

)
, (S5)

where ρ̄ = ρL is the dimensionless density and v̄ = vt0/L =
vmL/~ = ∂φ/∂ξ is the dimensionless velocity field.

uqkkheru
Pencil
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We now consider the trapping potential that is required in
order to prepare an initial wavefunction comprised of a Gaus-
sian bump on a constant background,

Ψ̄(ξ, 0) = Ψ̄bg

(
1 + βe−ξ

2/2σ̄2
)

(S6)

where σ̄ = σ/L is the rms width of the Gaussian component.
This results in an initial density profile given by

ρ̄(ξ, 0) = Nbg

(
1 + βe−ξ

2/2σ̄2
)2

, (S7)

with Nbg = N
(
1 +
√
πβσ̄[β erf( 1

2σ̄ ) + 2
√

2 erf( 1
2
√

2σ̄
)]
)−1

,
which can be obtained by requiring that the density nor-
malises to the total number of particles in the system N =´ L/2
−L/2 ρ(x)dx =

´ 0.5

−0.5
ρ̄(ξ)dξ.

In order to find a trap potential V̄ (ξ) which produces this
density profile as its ground state we consider the stationary
states of the GPE and hence require i∂Ψ̄(ξ,τ)

∂τ = ĒΨ̄(ξ, τ),
where Ē is the dimensionless eigenenergy of the desired
ground state. Rearranging Eq. (S3) for the trapping potential
yields

V̄ (ξ) = Ē +
1

2Ψ̄(ξ, 0)

∂2Ψ̄(ξ, 0)

∂ξ2
− ḡ|Ψ̄(ξ, 0)|2. (S8)

Since Ē is a constant and only provides an energy shift to the
trap, it can be set to Ē = 0. Substituting the desired initial
density profile into Eq. (S8) gives the required trapping po-
tential in the weakly interacting regime;

V̄ (ξ) =
β

2σ̄4

(
ξ2 − σ̄2

) [
e
ξ2

2σ̄2 + β

]−1

− ḡρ̄(ξ, 0). (S9)

We note that this solution also includes the trap required in the
ideal gas regime, which can be found by simply setting ḡ = 0.

Examples of the trap potentials V̄ (ξ) generating the ground
state density profiles in Fig. 1 of the main text are shown here
in Fig. S1.

III. FINITE-TEMPERATURE QUASICONDENSATE
REGIME

For studying the dynamics of a 1D quasicondensate, we use
a classical or c-field technique [S6–S8], which is a proven ap-
proach for characterising the equilibrium and nonequilibrium
properties of weakly interacting Bose gases at finite temper-
atures, particularly in 1D [S6, S8–S10]. The essence of the
method is to treat the highly occupied modes of the quantum
Bose field Ψ̂(x, t) as a classical field Ψc(x, t), which satis-
fies the following simple growth stochastic projected Gross-
Pitaevskii equation (SPGPE) for finding initial thermal equi-
librium configuration:

dΨc( x , t) = Pc
{
− i
~
LcΨc(x, t) dt

+
Γ

kBT
(µ− Lc)Ψc(x, t) dt+ dWΓ(x, t)

}
.(S10)
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FIG. S1. External trapping potentials used to prepare the initial
ground state density profiles in Fig. 1 of the main text. Panels (a),
(b) and (c) here correspond, respectively, to the traps used in Figs.
1 (a), (b) and (c) of the main text.

Here, Pc is the projection operator which sets up the high-
energy cutoff for the classical field region, Lc is a shortcut for
the Gross-Pitaevskii operator

Lc = − ~2

2m

∂2

∂x2
+ V (x) + g|Ψc(x, t)|2, (S11)

µ is the chemical potential, and T is the temperature of the
reservoir of low-occupancy modes (treated as static) to which
the c-field is coupled. In addition, Γ is the growth rate,
whereas the last term dWΓ(x, t) is the associated complex
white noise, with the following nonzero correlation:

〈dW ∗Γ(x, t)dWΓ(x′, t)〉stoch = 2Γδ(x− x′)dt. (S12)

Here and hereafter, 〈...〉stoch refers to stochastic averaging
over a sufficiently large number of stochastic trajectories.

Integrating each stochastic realisation of the SPGPE, initi-
ated from a random initial noise, for a sufficiently long time
(ergodicity assumed), is equivalent to sampling configurations
from a canonically distributed Gibbs ensemble. Expectation
values of physical observables then correspond to ensemble
averages over a large number of stochastic realisations of the
SPGPE.

The numerical value of the growth rate Γ in Eq. (S10) has
no consequence for the equilibrium configurations, and hence
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can be chosen for numerical convenience. Furthermore, while
the inclusion of an energy cutoff is crucial in higher dimen-
sions in order to prevent a divergence of the atomic density,
its role is less crucial in 1D as the classical field predictions
for the atomic density do not diverge, even in absence of an
energy cutoff, and are quantitatively correct for degenerate
gases. For this reason, our simulations were performed with-
out explicitly imposing the projection operator Pc, in which
case the cutoff merely determined the size of the computa-
tional basis used for the numerical calculations, and the re-
sults did not strongly depend on the cutoff once it was chosen
sufficiently large.

Using the dimensionless variables introduced earlier, in ad-
dition to defining a dimensionless growth rate Γ̄ = Γt0, di-
mensionless temperature T̄ = kBT/E0, and the dimension-
less c-field Ψ̄c(ξ, τ) = Ψc(x, t)

√
L, the SPGPE can be rewrit-

ten in the following dimensionless form:

dΨ̄c(ξ, τ) = Pc
{
−iL̄cΨ̄c(ξ, τ) dτ

+
Γ̄

T̄
(µ̄− L̄c)Ψ̄c(ξ, τ) dτ + dW̄Γ̄(ξ, τ)

}
,(S13)

where

L̄c = −1

2

∂2

∂ξ2
+ V̄ (ξ) + ḡ|Ψ̄c(ξ, τ)|2, (S14)

and

〈dW̄ ∗Γ̄(ξ, τ)dW̄Γ̄(ξ′, τ)〉stoch = 2Γ̄δ(ξ − ξ′)dτ. (S15)

The dimensionless temperature parameter T introduced in the
main text (which characterises the temperature of the gas rel-
ative to the temperature of quantum degeneracy) and the di-
mensionless temperature T̄ introduced here are related by:
T = 2T̄ /ρ̄2

bg = 2T̄ /N2
bg.

Once the SPGPE is evolved to its final thermal equilibrium
configuration in a given trapping potential (which we chose to
be the same as in Eqs. (S8) and (S9), with Ψ̄c(ξ, 0) taking the
role of Ψ̄(ξ, 0) as to provide the same initial density profiles
as in the respective T = 0 examples), we then simulate the
actual shock wave dynamics by evolving each stochastic re-
alization of the c-field in real time according to the standard
GPE, in other words, by omitting the growth and noise terms
in Eq. (S13) and setting V̄ (ξ) = 0.

Examples of density profiles from SPGPE simulations for
the parameters of Fig. 1 (b) of the main text are shown here in
Fig. S2 for three different temperatures. As we see, the inter-
ference contrast reduces with increasing temperature which is
due to the reduction of the thermal phase coherence length lT
in the system.

IV. TRUNCATED WIGNER AND POSITIVE-P METHODS

In order to explore the effects of quantum fluctuations on
dispersive shock waves, we turn to stochastic phase-space ap-
proaches, namely the truncated Wigner and positive-P meth-
ods [S8, S11–S15]. In these approaches, quantum fluctuations
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FIG. S2. Shock waves in the finite temperature quasicondensate
regime from SPGPE simulations. Shown are the final-time (τ =
0.003, with other parameters as in Fig. 1 (b) of the main text) density
distributions for x > 0 and two different initial dimensionless tem-
peratures T =T/Td as shown, where Td=~2ρ2/2mkB is evaluated
at the background density ρbg. The zero-temperature GPE result is
shown here again (blue line) for comparison. The thermal phase co-
herence lengths in the background, for T = 0.1 and T = 0.32, are
lT /L ' 0.45 and lT /L ' 0.15, respectively, which can be com-
pared with the width of the initial bump σ/L = 0.02.

are represented in phase space via stochastic distributions of c-
field trajectories, and by taking ensemble averages over many
trajectories, physical observables such as the real space den-
sity can be computed.

The truncated Wigner approach is an approximate phase-
space method where the third- and higher-order derivative
terms in the evolution equation for the Wigner quasiprobabil-
ity distribution function are ignored (truncated). Such trunca-
tion renders the evolution equation as a true Fokker-Planck
equation which can equivalently be formulated in terms of
stochastic differential equations for complex c-fields. For the
Lieb-Liniger Hamiltonian considered here, with s-wave scat-
tering interactions, these differential equations have the same
form as the standard time-dependent GPE. However, the quan-
tum effects are incorporated via noise added to the initial state
of the system, which is then sampled stochastically, with each
realization evolving according to the GPE. In this work, we
consider zero-temperature initial ground states with vacuum
excitations in the Bogoliubov theory. In this case, each real-
ization of the stochastic Wigner field ψW (x, 0) is initialized
as [S8]

ψW (x, 0) = Ψ0(x, 0) +

MB∑
j=1

[
ηjuj(x) + η∗j v

∗
j (x)

]
, (S16)

where ηj is a complex Gaussian noise term of zero mean
(〈ηj〉stoch = 0) and with correlations 〈η∗j ηk〉stoch = 1

2δjk,
and index j = 1, 2, ...MB enumerates the Bogoliubov exci-
tations with uj(x) and vj(x) being the respective amplitudes.
We note that the noise correlations are the zero-temperature
limit of a more general expression 〈η∗j ηk〉stoch = (n̄j+ 1

2 )δjk,

where n̄j =
[
eεj/kBT − 1

]−1
are the Bose occupation num-

bers (that vanish at T = 0) of Bogoliubov modes with en-
ergies εj at temperature T [S8, S12]. In addition, Ψ0(x, 0)
represents the condensate mode wavefunction found as the
ground state of the time-independent GPE. In dimensionless

uqkkheru
Pencil

uqkkheru
Pencil
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form, it is determined from Eq. (S6), but renormalized to N0

such that the total number of particles N = N0 + Nnc is the
same as in the pure mean field approach of Sec. II, to which
the truncated Wigner results are compared in the main text.
Here, N0 =

´
dx |Ψ0(x, 0)|2 is number of particles in the

condensate mode, whereas Nnc =
´ L/2
−L/2 dx

∑MB

j=1 |vj(x)|2
is the expectation value of the population in the Bogoliubov
modes (total number of non-condensate particles) at zero tem-
perature.

The truncated Wigner approximation is valid when the total
number of particles in the system N greatly exceeds the num-
ber of relevant Bogoliubov modes MB . All simulation results
reported in this work using the truncated Wigner approach
were carried out with the ratio N/MB ≈ 5, although varia-
tions around this value between N/MB ≈ 2 and N/MB ≈ 10
produced essentially the same results; the maximum differ-
ence between the densities corresponding to N/MB ≈ 2 and
N/MB ≈ 10 was 6.4% for Fig. 1(b) [3.6% for Fig. 1(c)],
and was located at the fringe minimum closest to the ori-
gin. We also recall that in the Wigner formalism, stochastic
averages correspond to expectation values of symmetrically
ordered operator products. Hence, the real space density is
calculated as an average over many stochastic Wigner trajec-
tories using ρ(x, t) = 〈ψ∗W (x, t)ψW (x, t)〉stoch − 1

2δc(x, x),

where 1
2

´ L/2
−L/2 δc(x, x) dx = 1

2MB represents the half quan-
tum per Bogoliubov mode vacuum noise that is included in
the Wigner formalism. On a computational grid of spac-
ing ∆x = L/M , where M is the number of grid points,
the projected delta function δc(x, x) is given by δc(x, x) =
MB/(M∆x) [S8]. In dimensionless form, the real-space
density ρ̄(ξ, τ) = ρ(x, t)L calculated from an average over
Wigner trajectories can therefore be rewritten as ρ̄(ξ, τ) =

〈ψ̄∗W (ξ, τ)ψ̄W (ξ, τ)〉stoch − 1
2MB , where ψ̄W = ψW

√
L.

Unlike the truncated Wigner approach, the positive-P ap-
proach is exact (contingent on a vanishing ‘boundary term’ in
the corresponding Fokker-Planck equation [S11, S16]) in the
sense that no higher than second-order derivative terms arise
in the corresponding Fokker-Planck equation for the Hamil-
tonian with s-wave scattering interactions; accordingly, no
truncation is required in order to formulate the dynamics of
the corresponding complex c-fields as stochastic differential
equations. However, this method can become numerically un-
stable after relatively short times, when it develops large sam-
pling errors due to the ‘boundary term problem’ [S17]. In the
positive-P approach, the dynamics of two independent com-
plex c-fields ψ(x, t) and ψ̃(x, t), which correspond, respec-
tively, to the field operators Ψ̂(x, t) and Ψ̂†(x, t), are simu-
lated according to the following stochastic differential equa-
tions:

∂ψ

∂t
=
i

~

(
~2

2m

∂2

∂x2
− V (x)− gψ̃ψ

)
ψ +

√
−i g

~
ψ2ζ1(x, t),

(S17)

∂ψ̃

∂t
= − i

~

(
~2

2m

∂2

∂x2
− V (x)− gψ̃ψ

)
ψ̃ +

√
i
g

~
ψ̃2ζ2(x, t).

(S18)

Here ζj(x, t) (j = 1, 2) are real, delta-correlated Gaus-
sian noise terms that are generated dynamically and repre-
sent the vacuum fluctuations, with 〈ζj(x, t)〉stoch = 0 and
〈ζj(x, t)ζk(x′, t)〉stoch = δjkδ(x − x′). In this formulation,
physical observables described by normally-ordered operator
products can be computed from stochastic averages over di-
rect products of c-fields, e.g., ρ(x, t) = 〈Ψ̂†(x, t)Ψ̂(x, t)〉 =

〈ψ̃(x, t)ψ(x, t)〉stoch. In our simulations we have assumed
that the gas is initially in a coherent state, and hence the ini-
tial conditions are taken to be ψ(x, 0) = ψ̃(x, 0) = Ψ(x, 0),
where Ψ(x, 0) is the desired initial wavefunction, given in di-
mensionless form by Eq. (S6) and normalised to the total par-
ticle number N .

V. WAVELET TRANSFORM

Unlike the Fourier transform that decomposes a signal us-
ing sine and cosine as basis functions, which are localized in
Fourier space and delocalised in real space, the wavelet trans-
form [S18] uses basis functions, called wavelets or merit func-
tions, that are localized in both the real and Fourier spaces.
The wavelet transform was originally developed in signal
processing to obtain a representation of the signal in both
time and frequency, as it is done e.g., in the analysis of the
gravitational-wave signal from a binary black hole merger
[S19]. However, it has also been recently used to analyze in-
terference phenomena between different wave packets [S18]
or self-interference of a single wave packet [S20, S21] in the
context of condensed matter physics, where the wavefunction,
i.e., the signal, is now represented in both position and mo-
mentum.

For a 1D wave packet, described by a dimensionless com-
plex valued wavefunction Ψ̄(ξ, τ) [or alternatively the mean-
field amplitude in the GPE, or the c-field amplitude Ψ̄c(ξ, τ)
in the SPGPE approach] in position space at time τ , the di-
mensionless instantaneous wavelet transform W(ξ, q; τ) is de-
fined via

W(ξ, q; τ) =
1√
|q|

ˆ +0.5

−0.5

Ψ̄(ξ′, τ)G∗
(ξ′ − ξ

q

)
dξ′, (S19)

Here, G is the wavelet, which we will choose to be the Gabor
wavelet [S18]

G(z) = 4
√
π exp(iωGz) exp

(
−z2/22

)
, (S20)

i.e., a simple Gaussian envelope that has an internal phase ωG
and that is square-integrable.

The scalogram or the map |W(ξ, q; τ)|2 in the (ξ, q)-space
at a given time τ gives the instantaneous cross-correlation
between the wavefunction and the Gabor wavelet G and al-
lows one to independently follow the propagation of different
modes that compose the wave packet. Such a representation
of a wavepacket is particularly useful for analysing chirped
interfering signals, in which the interference at any position x
is revealed by the presence of two separate momentum com-
ponents along k.
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FIG. S3. Wavelet transform scalogram |W(x, k; t)|2 corresponding
to the final-time (τmax = 0.0007) GPE density profile of Fig. 1 (c)
of the main text. As the wavelet transform is not well-defined at
k = 0, we perform it using a small momentum shift k0 in order to
detect the background density component lying around zero momen-
tum. The integration is done with k0L = 26 and ωG = 7. The
green dashed lines trail the displacements d(k) derived from the Bo-
goliubov dispersion relation (see text), whereas the purple vertical
dashed lines show the location of a test point (at time τmax, start-
ing from the origin) moving at the speed of sound at the background
density, cs=

√
gρbg/m.

It is important to note that the wavelet transform obeys an
uncertainty principle between its resolution in position (∆ξ)
and momentum (∆q), so that the product ∆ξ∆q cannot be ar-
bitrarily small. In the context of a quantum mechanical wave-
function as the signal, this product can be chosen to corre-
spond to the Heisenberg uncertainty relation. The resolution
in a given range (ξ, q) can then be numerically adapted to bet-
ter visualize the region of interest, by using the wavelet fre-
quency ωG or the signal sample rate.

An example of a scalogram, representing the shock wave
train of Fig. 1 (c) of the main text at time τ=0.0007, is shown
in Fig. S3 where we see two momentum branches (for both
x>0 and x<0), or two distinct momentum components along
k for any given x away from the central region near x=0. The
zero-momentum branch is identified with the uniform, delo-
calized background of the wave-packet, whereas the nonzero
momentum branch corresponds to the local density bump,
which interferes with the background as it expands into it.
The nonzero branch trails a displacement d(k)=vg(k)t of the
wave-vector k, corresponding to the group velocity vg(k) =

1
~∂EB(k)/∂k, where EB(k) =

√
~2k2

2m

(~2k2

2m + 2gρbg

)
is the

well-known dispersion relation for the Bogoliubov excita-
tions. In dimensionless form, the displacement of Bogoliubov
excitations takes the form d̄(q) = v̄g(q)τ , where q = kL is
the dimensionless wave-number, v̄g(q) = ∂ĒB(q)/∂q, and

ĒB(q) =
√

q2

2

(
q2

2 + 2ḡρ̄bg

)
=
√

q2

2

(
q2

2 + 2γbgN2
bg

)
, with

ĒB ≡ EB/E0.
For comparison with the interacting case, in Fig. S4 we also

show a wavelet transform scalogram for an ideal (noninter-

FIG. S4. Wavelet transform scalogram |W(x, k; t)|2 corresponding
to the single-particle wavefunction as in Fig. 1 (a) of the main text,
except for σ/L = 0.002 and evaluated at time τmax = 0.0003.
The green dashed lines trail the displacements d(k) derived from the
free particle dispersion relation (see text). The background mode is
obtained using the same method as in Fig. S3. The integration is
done with k0L = 25 and ωG = 6.

acting) Bose gas at zero temperature, which itself is equiva-
lent to the solution of the single-particle Schrödinger equa-
tion, Eq. (1) of the main text. As previously, we see two
momentum branches at any given x away from the origin,
which are the ‘smoking gun’ of interference occurring in the
evolving density profile; the near horizontal branch around
k0 corresponds to the nonzero background, whereas the up-
per branches corresponds to the localized density bump. The
displacement d(k) = vg(k)t (shown by the dashed green
line) corresponds to a test point moving at the group veloc-
ity vg(k) = 1

~∂E(k)/∂k = ~k/m, where E(k) = ~2k2/2m
is the free particle parabolic dispersion. In dimensionless
form, these convert to d̄(q) = v̄g(q)τ , where q= kL, v̄g(q) =
∂Ē(q)/∂q=q, and Ē(q)=q2/2.

The same method can be applied to the shock waves ob-
tained from the SPGPE simulations for finite temperature qua-
sicondensates. The wavelet energy density |W(ξ, q; τ)|2 is
computed from the SPGPE complex c-field, for each indi-
vidual stochastic trajectory, and then averaged. The scalo-
grams corresponding to the cases in Fig. 3 of the main text,
for temperatures T = 0.01 and T = 0.1, are shown here in
Fig. S5 (a) and (b), respectively. At low temperature [T =
0.01, Fig. S5 (a)], there is background noise due to the ther-
mal fluctuations, and the two distinct momentum branches—
the signature of shock wave self-interference—are losing their
visibility on the wavelet scalogram. At higher temperature
[T =0.1, Fig. S5 (b)], the two momentum branches that were
once distinct can now barely be distinguished from the back-
ground noise. In this temperature regime, thermal fluctuations
have lead to a significant loss of mean-field coherence, result-
ing in an almost complete loss of contrast of the interference
fringes.

Similarly to the SPGPE case, the wavelet transform analy-
sis can be applied to the stochastic field ψW (x, t) in the trun-
cated Wigner approach, wherein the wavelet energy density
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FIG. S5. Wavelet transform scalograms |W(x, k; t)|2 corresponding
to the SPGPE simulation results of Fig. 3 (a) and (b) of the main text.
The integration is done with k0L = 26 and ωG = 7.

|W(ξ, q; τ)|2 is again computed for each individual stochas-
tic trajectory and then averaged over many stochastic realisa-
tions. We recall that the stochastic nature of the field ψW (x, t)
now represents zero-temperature quantum fluctuations, rather
than thermal fluctuations in the SPGPE approach. The result-
ing scalogram, for the parameter values of Fig. 1(c) of the
main text at time τmax = 0.0007, is shown here in Fig. S6 and
can be directly compared to the scalogram of Fig. S3 from
the mean-field GPE. As we see from this comparison, the two
momentum branches are clearly identifiable in the truncated
Winger wavelet transform, implying that the interfering na-
ture of the shock wave oscillations is present even at the level
of individual stochastic Wigner trajectories. This is despite the
fact that the noisy nature of the signal due to quantum fluctu-
ation may mask—to the naked eye—the interference oscilla-
tions in the individual trajectories. However, after averaging
over many stochastic trajectories the two momentum branches
in the scalogram become clearly identifiable.

VI. MATRIX PRODUCT STATE METHODS

The Lieb-Liniger model Eq. (S1) can be treated with ma-
trix product state (MPS) numerical methods [S22–S24], via

FIG. S6. Wavelet transform scalogram |W(x, k; t)|2 corresponding
to the truncated Wigner simulation results of Fig. 1 (c) of the main
text at τmax = 0.0007. The integration is done with k0L = 26 and
ωG = 7.

real-space discretization controlled by the lattice spacing
∆x [S25]. The simplest discretization procedure [S25–S27]
amounts to replacing the field operator Ψ̂(xj) by b̂j/

√
∆x,

where b̂j is the bosonic creation operator on site j (j =
1, 2, ...M , for M = L/∆x lattice sites) and xj = j∆x.
This discretization procedure leads to the Hamiltonian for the
Bose-Hubbard model,

Ĥ=−J
∑
j

(
b̂†j b̂j+1 + h.c.

)
+
U

2

∑
j

b̂† 2
j b̂2j+

∑
j

V (xj)b̂
†
j b̂j ,

(S21)
where J = ~2/(2m∆x2) and U = g/∆x. The validity of the
discrete Bose-Hubbard model as an approximate description
of the Lieb-Liniger model in the continuum limit ∆x → 0
has been discussed previously [S27–S29] and requires small
average lattice occupancy, 〈b̂†j b̂j〉 � 1, for ground state cal-
culations, and hence ∆x� 1/ρ(xj), where ρ(xj) is the local
1D density. For dynamical simulations, the lattice spacing has
to also satisfy the condition 〈b̂†j b̂j〉 � 1/γ(xj) [S28], which
can become more important in the strongly interacting regime
of γ(xj)� 1.

In MPS methods, one needs to consider carefully the
boundary conditions. Here, we used the infinite matrix prod-
uct state (iMPS) method [S30], with a unit cell of M sites,
since this avoids large Friedel oscillations arising from vanish-
ing boundary conditions (also known as open boundary con-
ditions in the MPS community), and avoids the prohibitive in-
crease in entanglement that comes with actual periodic bound-
ary conditions (PBC) [S24]. This corresponds to an infinite
periodic array of density bumps, spaced M sites apart and
produces a similar effect to periodic boundaries. As such, the
iMPS method is directly comparable to exact diagonalization
and other methods used in the main text with PBC, but dif-
fers in some respects; most notably the correlation functions
always decay at long distance beyond the unit cell, whereas
for PBC they are strictly periodic. Infinite boundary condi-
tions (IBC) [S31] would also be a candidate method for these
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FIG. S7. Same as in Fig. 1(b) of the main text, except that we added
the iMPS results as black dotted lines on top of all curves for com-
parison; we have also added the GPE (full red line) and iMPS (black
dotted line) densities at τ = 0 for completeness.

calculations, however, here we wanted to compare with other
methods, specifically to reproduce background Friedel oscil-
lations characteristic of finite-size systems or periodic poten-
tials; with IBC, such oscillations would be absent for a single
bump in an infinite (length-wise) background as the Friedel
oscillation amplitude decays with increasing system size.

For obtaining the t = 0 initial state, we use the infinite den-
sity matrix renormalization group (iDMRG) algorithm, with
M = 1000 sites per unit cell, keeping typically 10−200 basis
states with an energy variance σ2

E/J
2 of 10−8−10−4 per site.

For the time evolution, we use the infinite time-evolving block
decimation (iTEBD) algorithm [S32], which is essentially
equivalent to the Lie-Suzuki-Trotter form of adaptive time-
dependent density matrix renormalization group (tDMRG)
[S33, S34]. For most calculations presented here, we used the
optimized 4th-order decomposition from Barthel and Zhang
[S35], with time step 0.2 (measured in dimensionless units of
time Jt/~), and using a cutoff density matrix eigenvalue of
10−10, corresponding to a cutoff singular value of 10−5. We
note that a cutoff value for the eigenvalues is more robust than
fixing the truncation error (sum of discarded eigenvalues).

Errors in the TEBD algorithm arise from two sources, (1)
the so-called Trotter error, arising from a finite time-step, and
(2) truncation errors arising from the projection of the SVD to
a finite bond-dimension. Thus the optimal time-step is an op-
timization between the truncation error and the Trotter error.
To quantify the non-unitary errors arising from truncations,
the most reliable method to determine the error is to perform
the backwards evolution from the final time-evolved state, and
verify that there is a high fidelity F with the initial t = 0
state. For example, in the calculation of Fig. S7, the distance
d ≡ 1− |F | with the t = 0 state after backwards evolution is
∼ 10−6 per site.

In Fig. S7 we show the iMPS results for the shock wave dy-
namics for the parameters of Fig. 1 (b) of the main text. As we
see, all methods incorporating quantum fluctuation (positive-
P , truncated Wigner, and iMPS), are in excellent agreement
with each other, while also showing small departures from the
mean-field GPE predictions, which are the largest near the lo-
cal minima and maxima of the final-time (τ = 0.003) density
distribution (see main text for further details).

VII. EXACT DIAGONALIZATION IN THE
TONKS-GIRARDEAU REGIME

In the Tonks-Girardeau (TG) regime of infinitely strong in-
teractions (g → ∞), the Bose gas can be treated via a Bose-
Fermi mapping [S36, S37] which reduces the dynamics of the
many-body problem to the dynamics of single-particle states.
In particular, the N -body wavefunction of the TG gas, Ψ, can
be obtained via

Ψ(x1, . . . , xN ; t) = A(x1, . . . , xN )Ψ(F )(x1, . . . , xN ; t),
(S22)

where Ψ(F ) represents the free fermionN -body wavefunction
for the same dynamical scenario, and the unit antisymmetric
function is given by A(x1, . . . , xN ) =

∏
1≤j<i≤N sgn(xi −

xj) which ensures the correct symmetrisation of the bosonic
wavefunction. Here, the sign function is given by,

sgn(x) =

 −1 if x < 0,
0 if x = 0,
1 if x > 0.

(S23)

The N -body fermionic wavefunction itself can be con-
structed using the Slater determinant

Ψ(F )(x1, . . . , xN ; t) =
N

det
i,j=1

[φi(xj , t)], (S24)

where the single-particle wavefunctions φi(x, t) evolve ac-
cording to the Schrödinger equation from their initial states
φi(x, 0), which are eigenstates of the initial trapping potential
V (x, 0) with eigenenergiesEi such that the total energy of the
N -body wavefunction is ETG =

∑N
i=1Ei.

In general, the dynamical properties of the TG gas can be
determined through the reduced one-body density matrix,

ρ(x, y; t) =

ˆ
dx2 . . . dxN

×Ψ(x, x2, . . . , xN ; t)Ψ∗(y, x2, . . . , xN ; t).
(S25)

In this Letter however, we are interested primarily with the
evolution of the real-space density of the gas ρ(x, t) =
ρ(x, x; t). This can be found via

ρ(x, t) = ρ(x, x; t)

=

ˆ
dx2 . . . dxN |Ψ(x, x2, . . . , xN ; t)|2

=

ˆ
dx2 . . . dxN

×A2(x, x2, . . . , xN ; t)
∣∣∣Ψ(F )(x, x2, . . . , xN ; t)

∣∣∣2
=

ˆ
dx2 . . . dxN

∣∣∣Ψ(F )(x, x2, . . . , xN ; t)
∣∣∣2 (S26)

where A2(x, x2, . . . , xN ; t) can be dropped since it will sim-
ply multiply the fermionic wavefunction by +1. For the case
where it would return 0, this corresponds to particles sharing
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the same physical location and is hence already taken into ac-
count by construction of the fermionic many-body wavefunc-
tion which respects the Pauli exclusion principle.

Equation (S26) is exactly the real-space density
ρ(F )(x, x; t) of the equivalent free fermion problem,
and, upon substituting the Slater determinant (S24) into (S26)
one can write the density of the bosonic TG gas in terms of
the single-particle wavefunctions φi(x, t) as

ρ(x, t) = ρ(F )(x, x; t) =

N∑
i=1

|φi(x, t)|2 , (S27)

where the cross terms which would appear from squaring
the determinant vanish provided that the single-particle wave-
functions are orthonormal. Equation (S27) provides a simple
way to compute the dynamics of the real-space density of the
TG gas in terms of the single-particle wavefunctions of the
noninteracting fermion problem.

After preparation of the initial many-body state, the dy-
namics of the single-particle wavefunctions themselves can
be constructed using the expansion [S38]

φi(x, t) =
∑
n

c(i)n ψn(x)e−iEnt/~, (S28)

where ψn(x) (n = 0,±1,±2, . . .) are the stationary eigen-
functions of the trapping potential under which the dynamics
are occurring, with the En being their respective eigenener-
gies. The c(i)n are the expansion coefficients for the ith single-
particle wavefunction φi(x, t). Since we have considered dy-
namics in a periodic box of length L with uniform potential
V (x) = 0, the eigenfunctions to be used here are plane waves,

ψn(x) =
1√
L
eiknx, (S29)

with eigenenergies given by

En =
~2k2

n

2m
=

2π2~2n2

mL2
. (S30)

Here kn = 2πn/L are the available wave numbers with n =
0,±1,±2, . . . being the allowed quantum numbers.

The only remaining unknown quantities from Eq. (S28) are
the expansion coefficients c(i)n which can be determined via
the overlap integrals between the plane wave basis set ψn(x)
and the initial single-particle wavefunctions φi(x, 0),

c(i)n =

ˆ
dx ψ∗n(x)φi(x, 0). (S31)

The initial single-particle wavefunctions φi(x, 0) that we
use here are eigenstates of the initial trapping potential V (x).
Hence, in order to construct them, we would first like to de-
termine the trap that will produce the desired initial density
profile, given by Eq. (S7), as its ground state. Ideally, we
would like this trap to be experimentally realistic and smooth.
In the TG regime however, a smooth density profile (free of

Friedel oscillations), like that of Eq. (S7), can only be re-
alised in a smooth trapping potential in the thermodynamic
limit. For finite number of particles N , on the other hand,
that same smooth potential will necessarily produce small-
amplitude Friedel oscillations; modulations on top of the oth-
erwise smooth thermodynamic limit density profile. For the
sake of simplicity and definiteness, we go ahead and deter-
mine a realistically smooth trapping potential that corresponds
to the desired initial density profile of Eq. (S7) in the thermo-
dynamic limit, with the recognition that this trap will produce
Friedel oscillations in our exact numerical examples (which
are always for finite N ). The task of finding such a trapping
potential can be accomplished within the local density approx-
imation [S4], using the local chemical potential µ(x), wherein
the respective density profile in the thermodynamic limit is re-
ferred to as the Thomas-Fermi profile.

For a TG gas, the chemical potential is the same as that
of an ideal 1D gas of spinless fermions, and for a uniform
system at density ρ it is thus given by µ = ~2π2ρ2/2m.
For a trapped (nonuniform) system, one can introduce the
local chemical potential µ(x) = µ0 − V (x), where µ0 is
the global equilibrium chemical potential. In the local den-
sity approximation, µ(x) will simply be given by the same
expression as in the uniform case except that ρ is replaced
by ρ(x), i.e., µ(x) = ~2π2ρ(x)2/2m. Hence, in the ther-
modynamic limit of the TG gas, the trapping potential re-
quired to produce a desired density profile ρ(x) is given by
V (x) = µ0−~2π2ρ(x)2/2m. Since µ0 is a constant and only
provides a shift to the trap, it can be set to µ0 = 0 so long as
it is ensured that the resulting density profile is correctly nor-
malised to the total number of particles N . Using Eq. (S7) as
an approximate guide for the initial density profile, this pro-
cedure results in

V (x) = −~2π2ρ(x)2

2m
= −~2π2

2m
N2

bg

(
1 + βe−x

2/2σ2
)4

.

(S32)

For sufficiently large N , such a trapping potential will pro-
duce initial density profiles that are approximately the same
as in the ideal Bose gas and GPE regimes of the main text (or
equivalently, Eq. (S7) in dimensionless form). Hence, the re-
lationship between Nbg and N from the normalization condi-
tion for N � 1 is approximately the same as in the main text,
i.e., Nbg = N/

(
1 +

√
πβσ
L [β erf( L2σ ) + 2

√
2 erf( L

2
√

2σ
)]
)
.

In dimensionless form, the trapping potential of Eq. (S32)
can be written as

V̄ (ξ) = −π
2ρ̄(ξ)2

2
= −π

2

2
N2

bg

(
1 + βe−ξ

2/2σ̄2
)4

, (S33)

which can be compared to the trapping potential from Eq. (S9)
used for the weakly-interacting regime in Sec. II. The trapping
potential of Eq. (S33) used in the example of Fig. 2 (d) of the
main text is shown here in Fig. S8 (a), whereas the one used
in Fig. 2 (e) of the main text is shown here in Fig. S8 (b) and
is given by Eq. (S9) with ḡ = 0.

Returning now to the construction of the initial single-
particle eigenfunctions φi(x, 0), these can be determined
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FIG. S8. Trapping potentials used, respectively, to prepare the initial
ground state density profiles of Fig. 2 (d) and (e) of the main text.

through numerical diagonalization of the Hamiltonian

Ĥ = − ~2

2m

∂2

∂x2
+ V (x), (S34)

where V (x) is given by Eq. (S32). After evolving these
φi(x, 0) in time according to Eq. (S28), the time evolved den-
sity of the TG gas is then calculated using Eq. (S27). This
is what was done to evaluate the density profiles shown in
Figs. 2 (d) and (e) of the main text.

VIII. COMPARISON OF THE RESULTS IN THE
TONKS-GIRARDEAU REGIME WITH THE PREDICTIONS

OF THE MODIFIED GPE AND THE RESULTING
DISPERSIVE HYDRODYNAMICS

Using density functional arguments, Kolomeisky et al.
[S39] have previously proposed a long-wavelength mean-field
approach for the Tonks-Girardeau gas, which we refer to here
as the modified Gross-Pitaevskii equation. Unlike the GPE
which contains a quadratic interaction term, the modified GPE
instead includes a quartic interaction term and is given by

i~
∂Φ(x, t)

∂t
=

(
− ~2

2m

∂2

∂x2
+ V (x) +

π2~2

2m
|Φ(x, t)|4

)
Φ(x, t).

(S35)
Here, Φ is similar to the order parameter in the mean-field
GPE regime, though Kolomeisky et al. do not mention what
this represents physically, yet they assume that the mean den-
sity of the TG gas is given by ρ(x, t) = |Φ(x, t)|2.

As with the GPE, a Madelung transformation can be per-
formed on Eq. (S35) which results in a respective ‘dispersive’
hydrodynamic formulation. For ease of comparison with the

0 0.1 0.2 0.3 0.4 0.5

50

100

150

FIG. S9. Modified GPE prediction of dispersive shock waves in a
Tonks-Girardeau gas. This mean-field prediction can be compared
directly with the exact results of Fig. 2 (d) from the main text where
N = 50, β = 1 and σ/L = 0.02. The initial density profile used
here is the thermodynamic limit TG profile, i.e. the profile given
by Eq. (S7), which results from using the trapping potential given in
Eq. (S32).

GPE and superfluid hydrodynamics given in Sec. II, the di-
mensionless modified GPE can be rewritten as

i
∂Φ̄(ξ, τ)

∂τ
=

(
−1

2

∂2

∂ξ2
+ V̄ (ξ) +

π2

2
|Φ̄(ξ, τ)|4

)
Φ̄(ξ, τ),

(S36)
with the resulting ‘dispersive’ hydrodynamics given by

∂ρ̄

∂τ
= − ∂

∂ξ
(ρ̄v̄), (S37)

∂v̄

∂τ
= − ∂

∂ξ

(
1

2
v̄2 + V̄ (ξ) +

π2ρ̄2

2
− 1

2

1√
ρ̄

∂2√ρ̄
∂ξ2

)
.

(S38)

As with standard superfluid hydrodynamics, given by
Eq. (S5), the quantum pressure term appears again here as
the last term in Eq. (S38). The usual pressure term though is
represented by −∂ξ(π2ρ̄2/2); it corresponds to the equivalent
normal pressure term − 1

mρ∂xP , present in the classical hy-
drodynamic equation for the velocity field. It originates from
the thermodynamic equation of state for the pressure P of an
ideal 1D Fermi gas in a box potential (which is identical to that
of the TG gas) given by P = ~2π2ρ3/3m [S10, S40, S41].
For comparison, the same normal pressure term in superfluid
hydrodynamics, Eq. (S5), originates from the thermodynamic
pressure P = 1

2gρ
2 of a weakly interacting 1D Bose gas in

the mean-field regime.
Rather than postulating the modified GPE via density func-

tional arguments, other authors [S42] have first postulated
classical hydrodynamics for the TG gas and then added the
quantum pressure term, allowing them to convert back and
solve the modified GPE for computational simplicity. This is
done with the recognition that the quantum pressure term must
be small for the scenario under consideration, and that any
small scale features arising in the dynamics cannot be trusted.

As pointed out by Girardeau and Wright [S43], the mod-
ified GPE overestimates interference phenomena in the TG
gas, particularly in the scenario they considered—a split and
recombined TG gas. We find that the same is true for the sce-
nario we have considered; a density bump expanding into a
non-zero background. The prediction of the modified GPE is
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shown here in Fig. S9, which is directly comparable to the pre-
diction of the exact theory from Fig. 2 (d) of the main text. As
suspected, the modified GPE predicts large-amplitude inter-
ference fringes which are absent in the exact diagonalization
results. In the hydrodynamic formulation [S44], this high in-
terference contrast comes from the quantum pressure term in
Eq. (S38). Such a term can be viewed as an ad hoc addition
to classical (Euler) hydrodynamics as means of postulating a
certain type of dispersion relation, in this instance of the same
form as the one that occurs naturally from the single-particle
Schrödinger equation or the mean-field GPE in the weakly in-
teracting regime. For the TG gas, on the other hand, ad hoc
addition of such a term produces results that are in disagree-

ment with the ones based on exact diagonalization. We there-
fore conclude that the addition of the quantum pressure term
to the classical hydrodynamic equations for the TG gas is not
a justified procedure generally, and especially in dynamical
scenarios involving interference. This leaves an open ques-
tion as to whether there is an effective dispersive or ‘quantum’
hydrodynamic description of the TG gas, in which a certain
density derivative term can be added to the classical hydrody-
namic equations with the overall effect that, on the one hand,
it prevents the gradient catastrophe of classical hydrodynam-
ics, yet it does not produce the spurious interference fringes
of the modified GPE.
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