
s 02139

PHYSICAL REVIEW A, VOLUME 63, 053602
Theory of a mode-locked atom laser with toroidal geometry
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We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton
in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with
angular momentum per particle equal to\/2. It emerges naturally when the condensate is stirred at the soliton
velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom
laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the
soliton.
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I. INTRODUCTION

The discovery of Bose-Einstein condensation~BEC! in
ultracold alkali-metal vapors@1# in a magnetic trap, at tem
peratures of 1026 K or lower, has raised the possibility of
coherent atom laser. Recent experimental@2# and theoretical
@3# developments show that this is indeed practical. M
atom lasers to date, however, produce output pulses tha
not obviously phase coherent. It would be desirable to ha
mode-locked laser, in which the pulses are in phase w
each other, for this will enable a wide range of interferen
experiments and phase-sensitive measurements. In add
mode-locked lasers can have an enhanced intensity stab
relative to their nonmode-locked cousins. A possible te
nique for mode locking was demonstrated by Anderson
Kasevich @4#, using accelerated motion in an atom-wa
Bragg grating formed with an optical standing wave. Ho
ever, this method was limited to very low densities in ord
to avoid atom-atom interactions.

Another way to make a mode-locked atom laser is to c
ate a periodic field circulating around a ring-shaped cond
sate, and out couple it with a synchronized period. To
this, we must choose a periodic field that can be easily
ated and that has sufficient stability to enable a steady-s
out-coupling process. In this regard, we suggest a dark s
ton in a condensate of atoms with repulsive interactions. T
is a kink configuration, which stands apart from a continu
of possible excitations, owing to two distinctive features:~a!
It has a characteristic propagating velocityv; ~b! the angular
momentum per particle, normal to the plane of the ring
\/2. Soliton techniques, which are often used in opti
mode-locked lasers, have the intrinsic advantage that
are not limited to low densities, since the soliton formati
itself is a nonlinear process.

The dark soliton can be created by stirring the conden
at the characteristic velocityv; but it has to be cleaned u
because the stirring also creates other excitations suc
phonons. The cleansing can be achieved by applying a s
boscopic loss mechanism, which also serves as out cou
for the atom laser. The soliton persists because of topolog
stability associated with the half-integer angular momentu
In the following, we first describe the soliton as a solution
the nonlinear Schro¨dinger equation~NLSE!, and then dem-
1050-2947/2001/63~5!/053602~9!/$20.00 63 0536
t
re
a

th
e
on,
ty,
-
d

-
r

-
n-
o
e-
te
li-
is

s
l
ey

te

as
o-
ler
al
.

f

onstrate mode locking via numerical simulations.

II. NONLINEAR SCHRÖ DINGER EQUATION ON A RING

Consider a condensate contained in a ring of radiusR. Let
the cross-sectional radius ber 0, and let the cross-sectiona
area be denoted byA5pr 0

2. We chooseR@r 0, so that the
transverse excitations are far more energetic than those a
the ring. For the low excitation modes, therefore, we m
regard the condensate as a one-dimensional system, an
note byu the angle around the ring. The condensate wa
function C(u,t) satisfies the NLSE

i\
]C

]t
52

\2

2mR2

]2C

]u2
1V~u!C1

4p\2a

m
uCu2C,

~2.1!

wherem is the atomic mass,a the s-wave scattering length
andV is an external potential due to trap nonuniformity. T
total number of atomsN enters through the normalization

ARE
2p

p

duuCu25N, ~2.2!

which is a constant of the motion ifV is independent of time.
Continuity requires the boundary condition

C~u1p,t !5C~u2p,t !. ~2.3!

The NLSE on a line is well known in nonlinear optic
where it describes the envelope of an electromagnetic w
propagating along an optical fiber@5#. Let us recount what is
generally known in the one-dimensional case. For attrac
interactions witha,0, the nonlinear term in the equatio
presents an attractive potential proportional touCu2 . In three
spatial dimensions in free space this would lead to ‘‘se
focusing’’—the development of spots of infinite intensity
finite time@6#. In one dimension, however, the kinetic ener
counterbalances the attraction leading to the formation o
stable bright soliton. The situation is the same when we j
the ends of the line to form a ring.

For repulsive interactions witha.0, we can make a dark
soliton in a linear condensate by requiringC to approach
©2001 The American Physical Society02-1
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61 at opposite ends of the line. By continuity, the config
ration must have a kink, i.e., a zero of the wave function. T
slope at the kink determines its propagation velocityv,
which will be finite and nonzero. Gray solitons also exist,
which the wave function has a minimum, but never vanish
These have been analyzed theoretically@7#, and created ex-
perimentally@8,9#. They propagate with a speed proportion
to the wave intensity at the minimum, and hence come to
in the dark-soliton limit.

These belong to a different class from the kink soliton
are considering on a ring, where periodicity demands that
ends match. Therefore, the phase of the wave function m
change bynp upon one complete revolution, wheren is an
odd integer. This makes the angular momentum per par
normal to the ringn\/2, for the same mathematical reas
that an electron has spin 1/2. The lowest-energy dark sol
hasn51.

It is convenient to use dimensionless variables to red
the NLSE to the form

i
]c

]t
52

]2c

]u2
1Vc1aucu2c, ~2.4!

where

c[CA2pAR/N,

t[~\/2mR2!t,
~2.5!

V[~2mR2/\2!V,

a[4NRa/A.

In our work, we consider a ring-shaped condensate witV
50.

The boundary condition is

c~u1p,t!5c~u2p,t!, ~2.6!

and the normalization condition is

E
2p

p

duc* c52p. ~2.7!

The dimensionless energy per particlee and angular mo-
mentum per particlej normal to the ring are given by

e5
1

2pE2p

p

duF]c*

]u

]c

]u
1Vc* c1

a

2
~c* ct !2G ,

j 5
1

4p i E2p

p

duS c*
]c

]u
2c

]c*

]u D . ~2.8!

We shall first discuss the uniform vortex solutions, a
then derive the soliton solutions. We analyze the mathem
cal properties of the solitons, and then discuss their use i
atom laser, which necessitates adding gain and loss term
the equation of motion. The feasibility of a mode-lock
atom laser will be demonstrated through numerical simu
tions.
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III. UNIFORM SOLUTIONS

We first examine uniform solutions. For a uniform sta
in the case of repulsive interaction (a.0) and zero externa
potential, we must clearly have~by the normalization condi-
tion!

c* c51. ~3.1!

The lowest-energy solution is just the uniform condensa
which evolves in time according to

c0~u,t!5e2 iv0t, ~3.2!

where the dimensionless frequency is given byv05a. The
corresponding dimensionless energy ise05a/2.

Next, consider solutions whose phase changes line
around the circumference of the torus. We can call these
uniform vortex states. They correspond to the entire cond
sate having an angular momentuml, giving rise to the con-
densate wave function

c l~u,t!5e2 iv lt1 i l u, ~3.3!

wherel must be an integer, in order to satisfy the bounda
condition. The equation of motion gives

v l5a1 l 2. ~3.4!

The dimensionless energy and dimensionless momen
per particle of the uniform vortex state are

e5a/21 l 2,
~3.5!

j 5 l ~ l 51,2,3, . . . !.

These are the simplest vortices, since they describe a
culation around the circumference of the ring. They have
phase singularity, since the center of the ring is not acc
sible to the BEC. The circulation is quantized; for these
lutions to occur, each particle must have an integer ang
momentum, so the whole system has an angular momen
of Nl\ in physical units. Another way to think about this
that each particle is in the same quantum state, with inte
angular momentum quantum number.

A. Phonons

We can obtain the phonon spectrum of small fluctuatio
around either the ground state or the uniform vortex, as
lows. Perturb the vortex state by writing

c~u,t!5c l~u,t!@11dc~u,t!# ~3.6!

and obtain the linearized equation

i
]

]t
dc52

]2

]u2
dc1a@dc1dc* #

22i l
]

]u
dc1~ l 22 l !dc. ~3.7!
2-2
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This can be solved by putting

dc5Ue2 il1V* eil,
~3.8!

l5dvt2nu.

We then obtain the phonon dispersion law, which is sim
to that of Bogoliubov@10#

dv5n~2l 1An212a!, ~3.9!

wheren is an integer, in order to satisfy the periodic boun
ary condition. Note that unlike an infinite uniform BEC th
phonon spectrum is discrete. In other words, there is no c
tinuum of phonons at low frequency. This is a generic pro
erty of finite trap geometries.

IV. SOLITONS IN A RING

The one-dimensional NLSE is known to be classica
integrable and to have periodic soliton solutions that co
spond to localized disturbances traveling around the circ
ference of the torus. For configurations that move around
ring, we denote the angle in the comoving frame by

ū5u2vt, ~4.1!

and seek solutions of the form

c~u,t!5 f ~ ū !eih( ū,t). ~4.2!

Here v is an arbitrary real parameter corresponding to
soliton velocity in our dimensionless variables. In genera
continuous set of velocities is possible. Complex valuesf
correspond to gray solitons having noninteger velociti
Real values off correspond to dark and bright solitons ha
ing integer values ofv. The definition off as having no time
dependence in the moving frame is a strong restriction
will allow soliton solutions that are shape-invariant, but e
cludes time-varying multiple-soliton solutions.

The resulting equations of motion are

v
] f

]ū
52

] f

]ū

]h

]ū
1 f

]2h

]ū2
,

~4.3!

F ]h

]t
2v

]h

]ū
G f 5F ]2f

]ū2
2 f S ]h

]ū
D 2G2a f u f u2.

Assume the form

h~ū,t!5 l ū2vt, ~4.4!

wherev is the angular frequency of the condensate phas
observed in the rotating frame. The first equation of mot
requires

v52l . ~4.5!

The equation forf ( ū) then reads
05360
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f 95
]2f

]ū2
5a f u f u22b f , ~4.6!

where we have introduced a new parameterb equivalent to a
dimensionless chemical potential defined as

b[v1 l 2. ~4.7!

The dimensionless classical field energy is given by

e5
1

2pE2p

p

duF u f 8u21 l 2u f u21
a

2
u f u4G

5b1 l 22
a

4pE2p

p

duu f u4. ~4.8!

Here the second expression was obtained by using
properties of the equation of motion and the normalizat
condition, together with the usual result that

f * f 95au f u42bu f u25
]

]u
~ f * f 8!2U] f

]uU
2

. ~4.9!

We can also add these two expressions for the energ
obtain a third expression in which the quartic term does
appear,

e5
b

2
1 l 21

1

4pE2p

p

duU] f

]uU
2

. ~4.10!

From its equation of motion, the quantityf 5 f x1 i f y is the
complex coordinate of a Newtonian particle of unit ma
moving in a two-dimensional potentialV( f ) given by

V~ f !52
a

4
~ f x

21 f y
2!21

b

2
~ f x

21 f y
2!52

a

4
u f u41

b

2
u f u2.

~4.11!

The conserved ‘‘energy’’ for this equivalent Newtonian m
tion is

E5u f 8u2/21V~ f !. ~4.12!

A. Real solutions

In the case of a real envelope function, which we mos
treat here, the boundary condition demands

f ~ ū1p!5~21!2l f ~ ū2p!,
~4.13!

h~u1p,t!5h~u2p,t!12p l ,

where l 50,6 1
2 ,61,6 3

2 ,62, . . . in order to satisfy the
boundary condition. The angular momentum is

j 5 l 50,6
1

2
,61,6

3

2
,62, . . . , ~4.14!

The solution can be obtained exactly via the energy in
gral
2-3
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E d f

A2@E2V~ f !#
5E dū. ~4.15!

For repulsive interactiona.0, there exist bounded mo
tions between turning points6 f 1. This means thatf has a
zero and corresponds to a kink or dark soliton. For attrac
interactiona,0, the bounded motion occurs betweenf 2 and
f 1 with f 2. f 1.0 and gives a bright soliton.

It is also possible to have a stationary solution, wh
corresponds to the previous uniform solutions. These m
have f 51 due to our normalization condition, which mea
thatb5a, and hence thatv5a2 l 2 in the co-moving frame.
Transforming back to the laboratory frame gives the res
that v l5a1 l 2, as obtained previously.

B. Complex solutions

A gray soliton is possible only iff is complex. This case
can be treated either by solving the full two-dimension
Newtonian motion problem or else by reducing the probl
further on taking into account the rotational symmetry in t
resulting two-dimensional effective potential. This leads
an effective ‘‘internal’’ angular momentumL that is also
conserved~like E). To take this into account, we may red
fine the phaseh so that it includes the phase term previous
included inf due to the internal motion. Assume the form

h~ū,t!5 l 0ū2vt1LE f 22~ ū !dū, ~4.16!

then the equation forf can be reduced to a real equation

f 95a f 32b f 1L2/ f 3, ~4.17!

where nowv52l 0 and b5v1 l 0
2. However, the terml 0 is

no longer necessarily the orbital angular momentum of
background condensate, since there is additional angular
mentum carried in the extra phase term. This extra term g
erates a centrifugal barrier term in the equation of mot
proportional toL2 that corresponds to the effective potent

Ve f f~ f !52
a

4
f 41

b

2
f 21

L2

2 f 2
. ~4.18!

In the caseLÞ0, the centrifugal barrier means thatf can-
not change sign, so that

f ~ ū1p!5 f ~ ū2p!,
~4.19!

h~u1p,t!5h~u2p,t!12p l ,

wherel 50,61,62,••• in order to satisfy the boundary con
dition. It is no longer necessary forl 0 to have integer or
half-integer values, since part of the total phase shift n
comes from the ‘‘internal’’ phase shift. As before, the so
tion can be obtained via the energy integral. For repuls
interactiona.0, there exist bounded motions between tu
ing points f 1 , f 2. This means thatf has no zero and corre
sponds to a gray soliton.
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C. Gray solitons and phonons

The gray solitons reduce to the previously obtained p
non solutions in the limit of small amplitude motion for th
repulsive case ofa.0. In order to see this, consider th
low-amplitude solutions of the Newton equations near
minimum in the effective potential. At this minimum poin
where f 5 f 0,

L25 f 0
4~b2a f 0

2!. ~4.20!

Expanding around the minimum atf 5 f 0 gives an approxi-
mate equation for small amplitude motion

f 952~ f 2 f 0!V9~ f 0!, ~4.21!

where the second derivative of the potential is

V9~ f 0!526a f 0
214b.0. ~4.22!

A resulting solution forf that satisfies the boundary cond
tions in the limit of small oscillations with amplitudeA has
f 051, and

f 511A cos~nū !1O~A2!. ~4.23!

The periodicity requirement onf means thatn is an integer
with

n25V9~ f 0!54b26a f 0
2 , ~4.24!

and the phase solution is

h~ū,t!5 l 0ū2vt1LE 1

@11A cos~nū !#2
dū ~4.25!

.~ l 01L !ū2vt2
2LA

n
sin~nū !. ~4.26!

The periodicity requirement on the phase-termh means
that l 5 l 01L is an integer, as expected. In this limit we al
recover the relationship that the total angular momentum
j 5 l , although this is not generally true for gray solitons. W
can also calculate from the conditions on the minimum t
L56Ab2a, where the properties of the potential minimu
mean thatb5(n216a)/4. In order to compare this with the
usual linearized solution, we choose the negative root forL ,
and note that the additional oscillation frequency due to
gray soliton is identical to the linearized solution of the orig
nal equations,

dv52nl052n~ l 1Ab2a!5n~2l 1An212a!.
~4.27!

This result demonstrates that a low-amplitude multip
oscillation gray soliton solution is identical to a Bogoliubo
phonon, which has a discrete spectrum in the toroidal en
ronment. If we choose the case thatl 50—a nonrotating
background—then the phonon group velocity in the lon
wavelength limit is equal to the critical velocity, since
2-4
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vc5 lim
n→0

ddv

dn
5A2a. ~4.28!

Shorter-wavelength phonons travel at velocitiesv.vc .
These correspond to the low-amplitude limit of multipl
soliton solutions with more kinks. As the amplitude i
creases, these solutions become nonlinear and turn
single- and multiple-kink solitons, which we treat in grea
detail in the following section.

V. KINK SOLITONS

From now on we consider the repulsive casea.0. This
means that the scattering length is positive and the inter
ticle interaction is repulsive. The Newtonian motion in t
potentialV( f ) is bounded only if the energy is less than
barrier height so thatE,E0, where

E0[V~ f 0!5
b2

4a
~5.1!

corresponds to the top of the barrier, and we have introdu
a constantf 0 defined as

f 0
2[b/a. ~5.2!

The turning points are the roots of

E2V~ f !50, ~5.3!

which yields the possible solutionsf 1 , f 2, with

f 1
25 f 0

22B0 ,
~5.4!

f 2
25 f 0

21B0 ,

where

B05
b

a
A12

E

E0
. ~5.5!

The turning points of interest for dark solitons are actually
f 56 f 1.

The boundary condition requires that, whenū increases
by 2p ~from 2p to p), f ( ū) changes sign ifl is half-
integer, and remains the same ifl is integer. In the simples
case,f goes from2 f 1 to f 1 for half-integerl. For the dark
soliton ~with half-integerl ), noting that the integrals are a
even inf, we have from Eq.~4.12!

E
2p

p

dū5E
2 f 1

f 1 d f

A2@E2V~ f !#

52A2

aE0

f 1 d f

A~ f 1
22 f 2!~ f 2

22 f 2!
. ~5.6!

This condition gives a relation betweenE and v. The nor-
malization condition then determinesv.

Let us define
05360
to
r

r-

ed

t

G~ f !5E
0

f dx

A~ f 1
22x2!~ f 2

22x2!
. ~5.7!

Then the boundary condition can be stated in the form

G~ f 1!5pAa

2
. ~5.8!

The solutionf ( ū) is then given by the implicit equation

ū5A2

a
G~ f !. ~5.9!

The integral we have forG( f ) can be expressed in terms o
the Jacobi-elliptic function

sn21~x/b!5aE
0

x dt

A~a22t2!~b22t2!
. ~5.10!

The explicit solution is therefore

f ~ ū !5 f 2snS f 1Aa

2
ū D . ~5.11!

The width of the soliton is of the order of

Du5
1

f 1
A2

a
. ~5.12!

Sincea}N we have, for largeN:

Du}1/AN, ~5.13!

i.e., the soliton becomes narrower as the number of parti
increases.

VI. LIMITING tanh SOLITON

While the elliptic-function solution is the correct solutio
to the dark soliton problem, it tends to lack intuition. It
simpler to consider the limiting case of a soliton that is n
row compared to the torus circumference, where an appr
mate tanh solution is obtained.

Consider the limiting caseE→E0, in which B0→0 and

f 15Af 0
22B0. f 0S 12

B0

2 f 0
2D ,

~6.1!

f 25Af 0
21B0. f 0S 11

B0

2 f 0
2D .

Setting B050 in the above expressions, we can make
approximation that

G~ f !.E
0

f dx

f 0
22x2

5
1

2 f 0
A2

a
lnU f 01 f

f 02 fU5 1

f 0
tanh21S f

f 0
D .

~6.2!
2-5
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This leads to the explicit solution

f ~ ū !.Ab

a
tanhSAb

2
ū D , ~6.3!

which is easily verified to be an exact solution of the origin
Newtonian effective particle equation, apart from the disc
tinuous derivative occurring atū56p. The boundary con-
dition G( f 1)5pAa/2 requires

2b2

Aa~E02E!
5 exp~2pAb/2!. ~6.4!

The normalization condition*2p
p du f 252p gives

b

aE2p

p

du tanh2~Ab/2u!52p. ~6.5!

The last two equations determineE and b, and therefore
give the relation betweenE andv.

Consider now the largeN limit. Since tanh2 x,1, we have
the following inequality,

E
2p

p

du tanh2~Ab/2u!,2p. ~6.6!

The normalization requiresb.a, or b.4NRa/A. There-
fore, b→` asN→`. In this limit the dark soliton become
infinitely narrow, and we can carry out the normalizati
integral to obtain

15
b

2paE2p

p

du tanh2~Ab/2u!.
b

a S 12
1

pAb/2
D .

~6.7!

This leads to the limiting result that

b.aS 11
1

p
A2

a D . ~6.8!

A. Limiting gray soliton

We can also obtain the corresponding gray-soliton re
through direct substitution into the complex Newton’s equ
tions, of an ansatz of form

f ~ ū !.aeik ū@A12b21 ib tanh~bcū !#. ~6.9!

This leads to the result that for a limiting gray soliton wi
amplitudea, the quantitiesk and c are determined by the
following equations:

c5aAa

2
,

~6.10!
k5cA12b2.

If b51, this corresponds to the dark-soliton result giv
above. In the limit of largea, we also must takea51 for
05360
l
-

lt
-

normalization. It is interesting to compare the result for
low-amplitude isolated gray soliton~i.e., b→0) with the re-
sult for a long-wavelength phonon. If we make the bac
ground stationary by settingl 52k52c, then the kink ve-
locity is v52c. But, in this limit c5Aa/2 so thatv5vc

5A2a. In other words, an isolated low-amplitude gray so
ton travels at the same velocity as a long-wavelength p
non.

As the amplitude of the kink increases, the velocity r
duces relative to the background condensate. However, a
same time it is necessary to introduce a finite backgro
velocity to satisfy the boundary conditions. The final resul
that one obtains a dark soliton moving at the backgrou
velocity, but with a condensate that must itself be circulat
in order to give a continuous phase.

B. Conserved quantities

We can now estimate values of the conserved quant
that characterize the dark soliton with periodic boundari
The energy can be calculated by using the approxima
that f (u).Ab/a tanh(Ab/2u). This substitution must be
carried out carefully, since the large size ofa means that any
small error inf can lead to a large error in the nonlinear ter
contributing to the energy. For this reason, we turn to
third expression for the energy calculated above, Eq.~4.10!,
which gives that, to leading order

e5
b

2
1 l 21

a

8pE2p

p

du sech4~Aa/2u!. ~6.11!

Next, we must use the approximate expression forb,
valid at largeN, obtained above. This combination gives
the final result that

e5
a

2
1

A8a

3p
1 l 21O~1!. ~6.12!

The energy and angular momentum for a single tanh s
ton and a vortex state are given below for comparison.

For narrow solitons

esoliton.
a

2
1

A8a

3p
1 l 21O~1!,

~6.13!

j soliton5 l S l 5
1

2
,
3

2
,
5

2
,••• D .

For vortices or uniformly rotating condensates with int
ger angular momentum

evortex5
a

2
1 l 2,

~6.14!
j vortex5 l ~ l 51,2,3,••• !.

The soliton spectrum begins ata/21A8a/3p1 1
4 , while

that for vortex states begins ata/2 11, i.e., the soliton spec
trum starts lower than the vortex spectrum ifA8a/3p, 3

4 , or
2-6
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a,6.2. Of course, this value is only approximate as it
derived using an approximate form of the soliton. In oth
words, the dark-soliton spectrum is expected to have a lo
energy than that for vortex states for weakly repulsive int
actions, because the lowest-soliton state hasj 51/2, whereas
the lowest-vortex state hasj 51. However, there is an add
tional energy due to the compression of the conden
caused by the increase in density in the ‘‘bright’’ region
the soliton, to allow the low density hole to form at the pha
singularity. This effect is larger than the increased kine
energy of the vortex ifa is large; although not ifa is small.
Both effects become vanishingly small relative to the b
energy of the condensate in the limit of largeN, as the sin-
gularity of the soliton core occupies a smaller and sma
region.

VII. GAIN-LOSS MECHANISM AND ATOM LASER
MODE LOCKING

We have described a periodic motion in the ring-shap
condensate corresponding in the repulsive case to a kink
ton. To make use of this configuration in an atom laser
have to consider a more realistic setting by adding gain
loss mechanisms and show that this configuration is rob
against perturbations. While creating a cw gain mechanis
still in the process of development, output coupling can
readily realized, for example, through a local Raman-tun
transition to a nontrapped state of the atoms. In this situa
it would be important to stabilize the relative phase of t
two Raman laser beams in order to maintain a stable con
sate phase in the output atom-laser pulse train.

In experimental situations, the condensate is in equi
rium with a thermal cloud of uncondensed atoms. The eq
librium number of condensate atoms, relative to that in
thermal cloud, depends on the temperature and it determ
the width of the soliton. A loss of particles from the conde
sate will tend to increase the width, but this will be counter
by a gain from the thermal cloud. The kink soliton can wit
stand this type of external perturbations, because of a to
logical stability, for it cannot be continuously deformed in
a uniform state. Thus, with appropriate gain and loss mec
nisms, we can create a self-maintained soliton and a ste
stream of coherent output pulses.

First, we create a dark soliton withl 51/2 from a uniform
static condensate, by momentarily stirring it at the solit
velocity v51. In practice, this can be produced by a blu
detuned laser beam. In the numerical simulation, we in
duce an external repulsive potentialV(u,t) to create a mov-
ing ‘‘hole’’ in the condensate atu5t2p. The time origin is
displaced byp, to wait for the hole to fully form. Next, we
have to clean up the configuration by adding gain and l
mechanisms, for the stirring creates other excitations suc
phonons, in addition to the dark soliton. The entire proced
is contained in the generalized equation of motion

i
]c

]t
52

]2c

]u2
1aucu2c1V~u,t!c1 i @g2g~u,t!#c,

~7.1!
05360
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where the stirring potential is given by

V~u,t!5V0 expF2S u2t1p

s1
D 2

2S t2p

s2
D 4G , ~7.2!

In the gain-loss mechanismg is a constant gain rate, repre
senting stimulated emission from noncondensed atoms
are continuously loaded into the trap. The loss funct
makes localized periodic hits at the center of the soliton

g~u,t!5g0 expF2S u

su
D 2

2S t1

st
D 2G , ~7.3!

wheret15mod2p(t)2p. This simulates a stroboscopic ou
put coupler. The strobe acts for the first time with the cen
at t53p, allowing time for the hole to form.

A. Numerical results

The feasibility of the scheme described above can
demonstrated by numerical simulations, as we now descr

FIG. 1. Density of the condensateucu2 as a function of the angle
around the ring and dimensionless time. Stirring an initially unifo
condensate at the soliton velocity creates a moving hole, wh
develops into a dark soliton after unwanted excitations are clean
by the loss mechanism. The soliton survives because of topolog
stability as a kink.

FIG. 2. Modulus and phase of the dark soliton as functions
the angle around the ring at a time when it has become fully st
lized. The phase jumps byp across the dip indicating that th
soliton is a kink.
2-7
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We set a57.363, which corresponds tob58.69 in Eq.
~6.7!. For the stirring potential we useV0512.3, s1
50.788, ands25p/2. We use a gain rate ofg50.01, and
set the loss parameters tog050.9, su51.1A2/b, and st

51.1A2/b.
Following are the results of numerical calculations, w

the initial conditionc51. Figure 1 showsucu as a function
of u andt. We see that a hole is formed and it develops in
a dark soliton through the action of the gain-loss mec
nisms. A more detailed view is shown in Fig. 2, which sho
ucu and the phase of a mode-locked soliton as a function ou
at a fixed time. The signature is that the phase jumps bp
across the soliton. The modulus does not precisely va
due to small admixtures of nonsoliton excitations. Figure
shows the dimensionless angular momentum per particj,
which rises from 0 to almost 1 as the condensate is be
stirred, but settles down to 1/2, characteristic of a kink, un
actions of the gain-loss mechanism. Figure 4 shows the t
number of atoms in the ring as a function of time. T
steady-state oscillations indicate an output train of pul
with a stabilized intensity. In addition, a calculation of th
condensate phase shows that the phase difference from
to pulse remains unchanged, i.e., that the atom laser pu
are coherent with each other. In this simulation, the stro
scope performs the dual task of cleaning up the soliton
acting as out coupler for the mode-locked laser. In gene
these tasks could be done by separate mechanisms.

Our numerical results are quite sensitive to the ex
strength of the inter-atomic repulsive potential. In actual
periments, however, one can adjust the potential either
taking advantage of the similar couplings that exist in tw
component Bose gases@11# or by using tuning technique
involving Feshbach resonances@12#, which have been re

FIG. 3. The dimensionless angular momentumj goes through
transients while the condensate is being stirred, but stabilizes
value around 1/2 characteristic of a kink under actions of the g
loss mechanism.
or
.

n,

05360
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cently demonstrated experimentally@13#.

VIII. SUMMARY

In summary, the soliton can form as a circulating, ki
klike solution, which has the unexpected property that it h
a fractional ~half-integer! angular momentum per particle
This is stable in a rotationally symmetric environment an
in fact, numerical simulations indicate that it is also re
tively stable with small~adiabatic! departures from rotationa
symmetry. However, as it has a higher energy than the n
rotating ground state, one might expect that in an envir
ment that does not conserve angular momentum, it is p
sible for a decay to occur to the nonrotating state. This wo
presumably occur via the creation of a gray soliton, wh
can have a lower angular momentum than the dark, tanh-
soliton.

By using gain and an appropriately synchronized perio
output coupler it may be feasible to stabilize the dark soli
to create an atom laser with a reproducible, coherent wa
form. This allows one possible route towards manufactur
a mode locked, pulsed-atom laser. The advantage of m
locking in lasers is that the all atom lasers to date have
volved a pulsed output field. In a mode-locked laser the
quence of output pulses are in phase with each other. T
allows a wide range of interference experiments and pha
sensitive measurements. In addition, mode-locked lasers
have an enhanced intensity stability compared to nonmo
locked lasers.
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