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Theory of a mode-locked atom laser with toroidal geometry

Peter D. Drummond,Antonios Eleftheriolf, Kerson Huand,and Karen V. Kheruntsyan

IDepartment of Physics, University of Queensland, Brisbane, Qld 4072, Australia
2Department of Physics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 16 August 2000; revised manuscript received 9 January 2001; published 13 April 2001

We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton
in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with
angular momentum per particle equalftf2. It emerges naturally when the condensate is stirred at the soliton
velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom
laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the

soliton.
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[. INTRODUCTION onstrate mode locking via numerical simulations.
The discovery of Bose-Einstein condensati®EC) in || NONLINEAR SCHRO DINGER EQUATION ON A RING

ultracold alkali-metal vaporgl] in a magnetic trap, at tem- ) ) ) ] ]

peratures of 10° K or lower, has raised the possibility of a  Consider a condensate contained in a ring of raRiuset
coherent atom laser. Recent experimef@aland theoretical the cross-sectional rad|u§ bg, and let the cross-sectional

[3] developments show that this is indeed practical. Mos@rea be denoted b&=mr5. We chooseR>r,, so that the
atom lasers to date, however, produce output pulses that af@nsverse excitations are far more energetic than those along
not obviously phase coherent. It would be desirable to have € ring. For the low excitation modes, therefore, we may
mode-locked laser, in which the pulses are in phase witfiegard the condensate as a one-dimensional system, and de-
each other, for this will enable a wide range of interferencenote by ¢ the angle around the ring. The condensate wave
experiments and phase-sensitive measurements. In additidtnction ' (6,t) satisfies the NLSE

mode-locked lasers can have an enhanced intensity stability,

relative to their nonmode-locked cousins. A possible tech- ., ¥ h? v V(O 47-rh2a|ql|2q,
nigue for mode locking was demonstrated by Anderson and ! t 2mR 962 (0) m '
Kasevich[4], using accelerated motion in an atom-wave (2.2

Bragg grating formed with an optical standing wave. How-

ever, this method was limited to very low densities in orderwherem is the atomic massa the swave scattering length,

to avoid atom-atom interactions. andV is an external potential due to trap nonuniformity. The
Another way to make a mode-locked atom laser is to cretotal number of atom#l enters through the normalization

ate a periodic field circulating around a ring-shaped conden-

sate, and out couple it with a synchronized period. To do

this, we must choose a periodic field that can be easily cre-

ated and that has sufficient stability to enable a steady-state

out-coupling process. In this regard, we suggest a dark soliyhjch is a constant of the motionfis independent of time.

ton in a condensate of atoms with repulsive interactions. Thigontinuity requires the boundary condition

is a kink configuration, which stands apart from a continuum

of possible excitations, owing to two distinctive features: W(0+m,t)=V(6—m,1). (2.3

It has a characteristic propagating veloaity(b) the angular

momentum per particle, normal to the plane of the ring, is The NLSE on a line is well known in nonlinear optics,

fl12. Soliton techniques, which are often used in opticalwhere it describes the envelope of an electromagnetic wave

mode-locked lasers, have the intrinsic advantage that thegropagating along an optical fibgs]. Let us recount what is

are not limited to low densities, since the soliton formationgenerally known in the one-dimensional case. For attractive

itself is a nonlinear process. interactions witha<0, the nonlinear term in the equation
The dark soliton can be created by stirring the condensatpresents an attractive potential proportiona#g? . In three

at the characteristic velocity; but it has to be cleaned up spatial dimensions in free space this would lead to “self-

because the stirring also creates other excitations such &scusing”—the development of spots of infinite intensity in

phonons. The cleansing can be achieved by applying a strdinite time[6]. In one dimension, however, the kinetic energy

boscopic loss mechanism, which also serves as out coupleounterbalances the attraction leading to the formation of a

for the atom laser. The soliton persists because of topologicaitable bright soliton. The situation is the same when we join

stability associated with the half-integer angular momentumthe ends of the line to form a ring.

In the following, we first describe the soliton as a solution of  For repulsive interactions with>0, we can make a dark

the nonlinear Schidinger equatioNLSE), and then dem- soliton in a linear condensate by requiriNlg to approach

ARF dg|¥|?=N, (2.2
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+1 at opposite ends of the line. By continuity, the configu- [1l. UNIFORM SOLUTIONS
ration must have a kink, i.e., a zero of the wave function. The

slope at the kink determines its propagation veloaity in the case of repulsive interactiont0) and zero external
which will be finite and nonzero. Gray solitons also exist, in . P . i
otential, we must clearly hav®y the normalization condi-

which the wave function has a minimum, but never vanishesﬁon)
These have been analyzed theoreticflly; and created ex-

We first examine uniform solutions. For a uniform state,

perimentally[8,9]. They propagate with a speed proportional =1, (3.1
to the wave intensity at the minimum, and hence come to rest
in the dark-soliton limit. The lowest-energy solution is just the uniform condensate,

These belong to a different class from the kink soliton wewhich evolves in time according to
are considering on a ring, where periodicity demands that the
ends match. Therefore, the phase of the wave function must Po(0,7)=e" @07, (3.2
change byn7 upon one complete revolution, whends an
odd integer. This makes the angular momentum per particlehere the dimensionless frequency is givendyy= «. The
normal to the ringn#/2, for the same mathematical reason corresponding dimensionless energyjs= a/2.
that an electron has spin 1/2. The lowest-energy dark soliton Next, consider solutions whose phase changes linearly

hasn=1. around the circumference of the torus. We can call these the
It is convenient to use dimensionless variables to reducgniform vortex states. They correspond to the entire conden-
the NLSE to the form sate having an angular momentunygiving rise to the con-
densate wave function
A (2.9 Yi(0,7)=e irm il (33
JaT 062 ' : 1o, ' .
h wherel must be an integer, in order to satisfy the boundary
where condition. The equation of motion gives
y="TV2mARIN, w=a+l2. (3.4)
7=(hl2mRO)t, The dimensionless energy and dimensionless momentum
V= (2mRIEDV, (2.9 per particle of the uniform vortex state are
—ANREA e=al2+1?,
“= ' _ 3.5
In our work, we consider a ring-shaped condensate With j=t(=123...).
=0.

These are the simplest vortices, since they describe a cir-

The boundary condition is culation around the circumference of the ring. They have no

Y0+ 7, 7)= (60— m,7), (2.6)  Phase singularity, since the center of the ring is not acces-
sible to the BEC. The circulation is quantized; for these so-
and the normalization condition is lutions to occur, each particle must have an integer angular

momentum, so the whole system has an angular momentum

2.7 of NI# in physical units. Another way to think about this is
that each particle is in the same quantum state, with integer
angular momentum quantum number.

f_:d OY* =21

The dimensionless energy per partiel@nd angular mo-

mentum per particl¢ normal to the ring are given by A. Phonons
1 (= IV Y . a o, We can obtain the phonon spectrum of small fluctuations
e=5—| db)—o —s + VTt S (Y7, around either the ground state or the uniform vortex, as fol-
i lows. Perturb the vortex state by writing
T *
j:%f de( w2 ‘9&‘/’0 ) 2.9 W(8,7)= (8,1 1+ 5y 6,7)] (3.6

and obtain the linearized equation
We shall first discuss the uniform vortex solutions, and
then derive the soliton solutions. We analyze the mathemati- 9 92
cal properties of the solitons, and then discuss their use in an [ 07—7_5¢= — — Oyt al Sy+ 6y ]
atom laser, which necessitates adding gain and loss terms in d6
the equation of motion. The feasibility of a mode-locked
2;?:2 laser will be demonstrated through numerical simula- il %5%%'2_')51#. 3.7
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This can be solved by putting 92f
. . f"=:2=af|f|2—,8f, (4.6)
Sy=Ue M+ Vv*e', a0
(3.9 . .
N=dSwr—no. where we have introduced a new paramgterquivalent to a

dimensionless chemical potential defined as
We then obtain the phonon dispersion law, which is similar

to that of Bogoliubo\[10] B=w+12 (4.7)
Sw=n(2l+ N+ 2a) (3.9 The dimensionless classical field energy is given by

wheren is an integer, in order to satisfy the periodic bound- e= iJW de| |f'|2+12|f|2+ ﬁ|f|4

ary condition. Note that unlike an infinite uniform BEC the 2w ) -5 2

phonon spectrum is discrete. In other words, there is no con-

tinuum (_)f_phonons at Iow_frequency. This is a generic prop- — g1 ifﬂ dolf| 4.9

erty of finite trap geometries. Am) %

Here the second expression was obtained by using the
properties of the equation of motion and the normalization
The one-dimensional NLSE is known to be classicallycondition, together with the usual result that
integrable and to have periodic soliton solutions that corre-
spond to localized disturbances traveling around the circum-
ference of the torus. For configurations that move around the
ring, we denote the angle in the comoving frame by

IV. SOLITONS IN A RING

f 2
4.9

n ﬁ 0”
* £ 4 2 (fRFrN_ |
f*f =alf|*— B|f]| aa(f f") 74 -
We can also add these two expressions for the energy to
9=0—-vr, 4.2 obtain a third expression in which the quartic term does not
appear,
and seek solutions of the form )

B af
19_6.

+12+ ! fﬂ do
2 4 )_,

Herewv is an arbitrary real parameter corresponding to theFrom its equation of motion, the quantify=f,+if, is the
soliton velocity in our dimensionless variables. In general, acomplex coordinate of a Newtonian particle of unit mass
continuous set of velocities is possible. Complex values of moving in a two-dimensional potenti®(f) given by
correspond to gray solitons having noninteger velocities.

(4.10

€=

W(6,7)=F(0)e 0", (4.2

Real values of correspond to dark and bright solitons hav- a B a B

ing integer values of. The definition off as having no time v(f)=- Z(f>2<+f>2’)2+ E(f>2<+f>2/): B Z|f|4+ Elﬂz'

dependence in the moving frame is a strong restriction that (4.11

will allow soliton solutions that are shape-invariant, but ex-

cludes time-varying multiple-soliton solutions. The _conserved “energy” for this equivalent Newtonian mo-
The resulting equations of motion are tion Is

— 1§72
ot an f&Zn E=|f'|2/2+ V(f). (4.12

90 9090 6%

92 (077)2
:—f —_
36° 30 B B
f(o+m)=(—1)2f(6—m),
Assume the form 413
n(0+m,7)=n(0—7,7)+ 27!,

A. Real solutions

4.3
“3 In the case of a real envelope function, which we mostly

d d o
7, —af|f|2. treat here, the boundary condition demands

ar U,g?

7n(0,7)=10-wr, (4.9
where 1=0,+2,+1+3 +2 ... in order to satisfy the
wherew is the angular frequency of the condensate phase dsoundary condition. The angular momentum is
observed in the rotating frame. The first equation of motion

. 1 3
requires j=1=023, ¥ 105,72, (4.14
v=2I. (4.5
. The solution can be obtained exactly via the energy inte-
The equation forf (6) then reads gral
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df . C. Gray solitons and phonons

2[E-V(H)] = | dé. (4.15 The gray solitons reduce to the previously obtained pho-

non solutions in the limit of small amplitude motion for the

For repulsive interactiom>0, there exist bounded mo- '€pulsive case okr>0. In order to see this, consider the
tions between turning points f,. This means that has a  '0W-amplitude solutions of the Newton equations near a

zero and corresponds to a kink or dark soliton. For attractivéninimum in the effective potential. At this minimum point
interactiona<0, the bounded motion occurs betwegrand ~ Wheref=To,
f, with f,>f;>0 and gives a bright soliton. 2_ g4/ o 2

It is also possible to have a stationary solution, which Lo=To(f~afp). (4.20
corresponds to the previous uniform solutions. These mu%xpanding around the minimum &t f, gives an approxi-

havef=1 due to our normallzatlgn condition, WhICh means ate equation for small amplitude motion

that 8= «, and hence thab= a— 1< in the co-moving frame.

Transforming back to the laboratory frame gives the result f1= — (F—f WV (f 4.2
that w,=a+12, as obtained previously. (T=ToV(fo), .29

where the second derivative of the potential is
B. Complex solutions

" _ 2
A gray soliton is possible only if is complex. This case Vi (fo)=—6afy+45>0. (4.22

can be treated either by solving the full two-dimensional : . - :
Newtonian motion problem or else by reducing the problen@ res_ultmg S.OIL.”'On forf that _satl_sfles the boun_dary condi-
further on taking into account the rotational symmetry in the 'OES in the limit of small oscillations with amplitud# has
resulting two-dimensional effective potential. This leads tofo_l’ and

an effective “internal” angular momenturh that is also
conservedlike E). To take this into account, we may rede-
fine the phase so that it includes the phase term previously
included inf due to the internal motion. Assume the form

f=1+Acognd)+O(A?). (4.23

The periodicity requirement ohmeans thah is an integer
with

77(?,7):|0§—m+Lf f2(6)de, (4.1 n?=V'(f,)=4B—6af2, (4.24

then the equation fofr can be reduced to a real equation and the phase solution is

f7=af3— Bf+L2/f3 (4.1

7(6,7)=106— w7+L J do (4.29

1+Acogn6)7?
where nowv =2l, and ,6’=w+|§. However, the ternlg is : no)l

no longer necessarily the orbital angular momentum of the . LA .
background condensate, since there is additional angular mo- =(lg+L)6—wr— ——sin(néf). (4.26
mentum carried in the extra phase term. This extra term gen- n
erates a centrifugal barrier term in the equation of motion

proportional toL? that corresponds to the effective potential The periodicity requirement on the phase-termeans

thatl=145+L is an integer, as expected. In this limit we also
o B L2 recover the relationship that the total angular momentum is
V()= — =4+ =24+ —. (4.1 |=I, although this is not generally true for gray solitons. We
4 2 2f2 can also calculate from the conditions on the minimum that
L= = {B— «a, where the properties of the potential minimum
In the casd.#0, the centrifugal barrier means tHatan-  mean thaig=(n2+ 6a)/4. In order to compare this with the

not change sign, so that usual linearized solution, we choose the negative root for
_ _ and note that the additional oscillation frequency due to the
f(o+m)=F(6—m), gray soliton is identical to the linearized solution of the origi-

(4.19 nal equations,

Sw=2nly=2n(l1+B—a)=n(2l+ JnZ+ 2a).

wherel=0,=1,=2,- - - in order to satisfy the boundary con- 4.2
dition. It is no longer necessary fdg to have integer or

half-integer values, since part of the total phase shift now This result demonstrates that a low-amplitude multiple-
comes from the “internal” phase shift. As before, the solu- oscillation gray soliton solution is identical to a Bogoliubov
tion can be obtained via the energy integral. For repulsivgphonon, which has a discrete spectrum in the toroidal envi-
interactiona>0, there exist bounded motions between turn-ronment. If we choose the case tHat0—a nonrotating
ing pointsfq,f,. This means that has no zero and corre- background—then the phonon group velocity in the long-
sponds to a gray soliton. wavelength limit is equal to the critical velocity, since

0+, 7)=n(0—m,7)+27l,
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 déw f dx
V= IImW=\/2a. (428) G(f):f 5 = . (57)
n—0 0 (f5=x3)(f5—x?)
Shorter-wavelength phonons travel at velocities>v..  Then the boundary condition can be stated in the form

These correspond to the low-amplitude limit of multiple-

soliton solutions with more kinks. As the amplitude in- @

creases, these solutions become nonlinear and turn into G(f1)=77\/;- (5.8
single- and multiple-kink solitons, which we treat in greater

detail in the following section.

V. KINK SOLITONS

From now on we consider the repulsive case 0. This
means that the scattering length is positive and the interpat-
ticle interaction is repulsive. The Newtonian motion in the
potential V(f) is bounded only if the energy is less than a

barrier height so thaE<E,, where

2
=V(fo=7, B

corresponds to the top of the barrier, and we have introduced

a constant, defined as

=pla.

The turning points are the roots of

E—V(f)=0,

which yields the possible solutiorfg, f,, with

f2=f2—B,,
fo=f2+B,,
where

B
Bo=— 1—E—O.

The turning points of interest for dark solitons are actually at

f_+f1

The solutionf(g) is then given by the implicit equation

— \F
6=\ ZG(). (5.9

[I'he integral we have fo&(f) can be expressed in terms of
the Jacobi-elliptic function

snfl(x/b)zafX at . (5.10
5.2 0+(a?—1?)(b*—1t?)

The explicit solution is therefore

f(?)=fzsr(fl\/§§). (5.11)

(5.2
The width of the soliton is of the order of
1 /2
(5.3 A= —\/—. (5.12
fl o
SinceaxN we have, for largeN:

5.4 A6 1N, (5.13
i.e., the soliton becomes narrower as the number of particles
increases.

VI. LIMITING tanh SOLITON

(5.9

While the elliptic-function solution is the correct solution
to the dark soliton problem, it tends to lack intuition. It is
simpler to consider the limiting case of a soliton that is nar-
row compared to the torus circumference, where an approxi-

The boundary condition lequires that, wherincreases mate tanh solution is obtained.
by 27 (from —a to ), f(6#) changes sign if is half- Consider the limiting casE— Eg, in which B;—0 and
integer, and remains the samd ik integer. In the simplest
case,f goes from—f, to f, for half-integerl. For the dark

Bo
soliton (with half-integerl), noting that the integrals are all f1=vfo— Bozfo( 1- ?> )

even inf, we have from Eq(4.12

f _ffl\/w

0
(6.2)

B
1+ — 1.

f2: \/f0+ Bozfo

approximation that

\[jfl SettingBy=0 in the above expressions, we can make the
6
V(T f 2><f2 n 69

This condition gives a relation betwe&and w. The nor- G(f)~ ffzd—xz i\/a
f 2

malization condition then determines
Let us define

fot f
e

B 1 - f
f—otan fo

(6.2

2f,
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This leads to the explicit solution normalization. It is interesting to compare the result for a
low-amplitude isolated gray solitofi.e., b—0) with the re-

F(9)~ \Etam‘( \ﬁy) 6.3 sult for a long-wavelength phonon. If we make the back-
@ 2°) ' ground stationary by setting= —k= —c, then the kink ve-

locity is v=2c. But, in this limit c=\a/2 so thatv=uv,
which is easily verified to be an exact solution of the original— .2, |n other words, an isolated low-amplitude gray soli-
Newtonian effective particle eﬂuation, apart from the disconygp, travels at the same velocity as a long-wavelength pho-
tinuous derivative occurring at= = 7. The boundary con- non.
dition G(f,)=7\/a/2 requires As the amplitude of the kink increases, the velocity re-
duces relative to the background condensate. However, at the

282 same time it is necessary to introduce a finite background
ﬁ = exp(2mVB/2). (6.4 velocity to satisfy the boundary conditions. The final result is
that one obtains a dark soliton moving at the background
The normalization conditioff ™ _d#f?= 2 gives velocity, but with a condensate that must itself be circulating
in order to give a continuous phase.
B T
Zf_ Wdetanh’-( \/ﬂ_/20)=27r. 6.5 B. Conserved quantities

. . We can now estimate values of the conserved quantities
The last two equations determirie and 8, and therefore  ha¢ characterize the dark soliton with periodic boundaries.
give the relation betweeg and . - The energy can be calculated by using the approximation
Con3|d9r now the _IargN limit. Since tanRx<1, we have that f(6)= /Bl tanh(/B/26). This substitution must be
the following inequality, carried out carefully, since the large sizecomeans that any
- small error inf can lead to a large error in the nonlinear term
f d 6 tank?( \/,8_/26)<27T. (6.6) contributing to the energy. For this reason, we turn to the
- third expression for the energy calculated above, (Bd.0),

izati ; hich gives that, to leading order
The normalization require>a, or S>4NR&A. There- which giv Ing

fore, B—o asN—. In this limit the dark soliton becomes B ., a T
infinitely narrow, and we can carry out the normalization e=5+I%+ ﬂf d@sec(\al26). (6.1
integral to obtain T
Next, we must use the approximate expression gor
1= B f” d6 tank( \/ﬁa): E 1— _ valid at largeN, obtained above. This combination gives us
2ma) . @ mBI2 the final result that
(6.7 5
o yoo
This leads to the limiting result that =57 ¥+|2+ O(1). (6.12
B=a| 1+ E\/Z) _ (6.9 The energy and angular momentum for a single tanh soli-
T Va ton and a vortex state are given below for comparison.
For narrow solitons
A. Limiting gray soliton \/8_
. o o
We can also obtain the corresponding gray-soliton result eSoliton— §+ 3—+I2+ 0(1),
through direct substitution into the complex Newton’s equa- m
tions, of an ansatz of form 135 (6.13
o L o -soliton:| == — — ...,
f(6)=ad*[\1—b?+ibtanibco)]. (6.9 : ( 2'2°2° )

This leads to the result that for a limiting gray soliton with ~ For vortices or uniformly rotating condensates with inte-
amplitudea, the quantitiesk and c are determined by the ger angular momentum
following equations:

\/; evortex:% +] 2’
c=a\/ 5,
2 (6.14

2 (61@ jvortex:| (| — 1,2,3; . )
k=cy1—Db~.

The soliton spectrum begins af2+ \8a/37+ 3, while
If b=1, this corresponds to the dark-soliton result giventhat for vortex states begins at2 + 1, i.e., the soliton spec-
above. In the limit of largex, we also must taka=1 for  trum starts lower than the vortex spectrum/Ba/3w<%, or
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a<6.2. Of course, this value is only approximate as it is
derived using an approximate form of the soliton. In other
words, the dark-soliton spectrum is expected to have a lower
energy than that for vortex states for weakly repulsive inter-
actions, because the lowest-soliton statejha%/2, whereas
the lowest-vortex state hgs=1. However, there is an addi-
tional energy due to the compression of the condensate
caused by the increase in density in the “bright” region of
the soliton, to allow the low density hole to form at the phase
singularity. This effect is larger than the increased kinetic
energy of the vortex it is large; although not ite is small.
Both effects become vanishingly small relative to the bulk
energy of the condensate in the limit of larie as the sin-
gularity of the soliton core occupies a smaller and smaller
region.

FIG. 1. Density of the condensdt|2 as a function of the angle
around the ring and dimensionless time. Stirring an initially uniform
VII. GAIN-LOSS MECHANISM AND ATOM LASER condensate at the soliton velocity creates a moving hole, which
MODE LOCKING develops into a dark soliton after unwanted excitations are cleansed

We have described a periodic motion in the ring-shape(}i’y the loss mechanism. The soliton survives because of topological

condensate corresponding in the repulsive case to a kink soﬁ-tab”'ty as a kink.
ton. To make use of this configuration in an atom laser we
have to consider a more realistic setting by adding gain and’
loss mechanisms and show that this configuration is robust —a\4

against perturbations. While creating a cw gain mechanism is V(6,7)=V, exr{ - ) } (7.2
still in the process of development, output coupling can be 2

readily realized, for example, through a local Raman-tuneqy, the gain-loss mechanismis a constant gain rate, repre-

transition to a nontrapped state of the atoms. In this situatioQgning stimulated emission from noncondensed atoms that
it would be important to stabilize the relative phase of the,re continuously loaded into the trap. The loss function
two Raman laser beams in order to maintain a stable condefsayes |ocalized periodic hits at the center of the soliton

sate phase in the output atom-laser pulse train.

In experimental situations, the condensate is in equilib- 0\> [n
rium with a thermal cloud of uncondensed atoms. The equi- Y(6,7)= o ex;{ - (0_) - (U—
librium number of condensate atoms, relative to that in the o T

thermal cloud, depends on the temperature and it determinggherer, =mod,.(7) — 7. This simulates a stroboscopic out-

the width of the soliton. A loss of particles from the conden-pyt coupler. The strobe acts for the first time with the center
sate will tend to increase the width, but this will be counteredat =37, allowing time for the hole to form.

by a gain from the thermal cloud. The kink soliton can with-
stand this type of external perturbations, because of a topo-
logical stability, for it cannot be continuously deformed into
a uniform state. Thus, with appropriate gain and loss mecha- The feasibility of the scheme described above can be
nismS, we can create a self-maintained soliton and a Stea@monstrated by numerical Simulations, as we now describe.
stream of coherent output pulses.

First, we create a dark soliton with= 1/2 from a uniform ' ' ' 3.5
static condensate, by momentarily stirring it at the soliton 1.2
velocity v=1. In practice, this can be produced by a blue-
detuned laser beam. In the numerical simulation, we intro-
duce an external repulsive potenti4ld, 7) to create a mov- 08
ing “hole” in the condensate a#= r— 7. The time origin is —}0_6
displaced by, to wait for the hole to fully form. Next, we
have to clean up the configuration by adding gain and loss
mechanisms, for the stirring creates other excitations such as 0.2;
phonons, in addition to the dark soliton. The entire procedure
is contained in the generalized equation of motion

here the stirring potential is given by

0— 7+ 7\ ?

o1

o

2

, (7.3

A. Numerical results

2 FIG. 2. Modulus and phase of the dark soliton as functions of
oY Y ) . . . .
i—=——+aly?y+ V0,7 y+i[g— y(6,7) ], the angle around the ring at a time when it has become fully stabi-
aT 96° lized. The phase jumps by across the dip indicating that the

(7.2 soliton is a kink.
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T
% "z 4 & & 0 1
0 6 T 8 0 FIG. 4. Mode locking—production of a coherent train of

pulses—is indicated by the steady-state oscillation of the total num-
FIG. 3. The dimensionless angular momentjmgoes through  ber of atoms in the condensate.
transients while the condensate is being stirred, but stabilizes to a )
value around 1/2 characteristic of a kink under actions of the gaincently demonstrated experimentalty3].
loss mechanism.
Vill. SUMMARY

We set a=7.363, which corresponds t8=8.69 in Eq. . ) ) .
(6.7). For the stirring potential we us&,=12.3, o, _In summary, the soliton can form as a cwculatmg,_km-
=0.788, ando,= /2. We use a gain rate af=0.01, and klike sqlutlon, wh_lch has the unexpected property that_|t has
set the loss parameters tg=0.9, aﬁzl.l\/ﬁ, and o a frapuonal (ha}lf—lntegej angular momentum per particle.
—1.12]B. T Thls is stable in a r_ota'uonally §ymmetr|c enywpnment and,
Following are the results of numerical calculations, with " fact, numer_lcal smulgﬂons_ indicate that it is alsq rela-
the initial conditionyy=1. Figure 1 shows$y| as a function E;re;?'/nz{t? SIeHVgch\slgagzdi'taﬁ::c;dﬁgﬁgf;ensefrrgoftr:g;a?ﬁ:ﬂon
gf 3aarllr<]dsro.li\t/xﬁ Stﬁreozhga; at‘h?lgcﬁ(jr?rg}eghznga:}ncjﬁ) \;ilorglseé?]tg_rotating ground state, one might expect that in an environ-
. A more detaleciew s Show nFig. 2 which shows( 7| 2 €085 ot consenve sngur momertum. e pos
|| and the phase of a mode-locked soliton as a functiof of |

at a fixed time. The sianature is that the phase iUmpsrb presumably occur via the creation of a gray soliton, which
: 9 P JUMpSThY 41 have a lower angular momentum than the dark, tanh-type
across the soliton. The modulus does not precisely vanis

: ; o . oliton.
due to small_admo;tures of nonsoliton excitations. Figure 3 By using gain and an appropriately synchronized periodic
\?VTW?ZYWS rggzsd;grennﬂotgle;fnggflilegsTﬁ?gg;%@ngg:epgmgelienoutput coupler it may be feasible to stabilize the dark soliton
. o ) fb create an atom laser with a reproducible, coherent wave-
stirred, but settles down to 1/2, characteristic of a kink, undef rm. This allows one possible route towards manufacturing
actions of the gain-!oss meghanism. Figurg 4 shovys the tote{;f méde locked, pulsed-atom laser. The advantage of mode
nhumber of atoms in the ring as a function of time. Thelocking in lasers is that the all atom lasers to date have in-

st_eady-stat_e_ osci!lation_s indicate_z_an output trair_1 of IOU|SG§/oIved a pulsed output field. In a mode-locked laser the se-
with a stabilized intensity. In addition, a calculation of the

. : ave an enhanced intensity stability compared to nonmode-
scope performs the dual task of cleaning up the soliton an y y P

acting as out coupler for the mode-locked laser. In general, cked lasers.
these tasks could be done by separate mechanisms.
Our numerical results are quite sensitive to the exact

strength of the inter-atomic repulsive potential. In actual ex- We would like to acknowledge useful discussions with M.
periments, however, one can adjust the potential either bifolland. A.E. and K.H. were supported in part by DOE Co-
taking advantage of the similar couplings that exist in two-operative Agreement No. DE-FC02-94ER40818. P.D. and
component Bose gas¢&l] or by using tuning techniques K.K. acknowledge the support by the Australian Research
involving Feshbach resonancgt2], which have been re- Council.

are coherent with each other. In this simulation, the stroboPO
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