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Multidimensional quantum solitons with nondegenerate parametric interactions:
Photonic and Bose-Einstein condensate environments

K. V. Kheruntsyan and P. D. Drummond
Department of Physics, University of Queensland, St. Lucia, QLD 4067, Australia

~Received 3 August 1999; published 17 May 2000!

We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings.
This can be applied to treat photonicx (2) and x (3) interactions, and interactions in atomic Bose-Einstein
condensates or quantum Fermi gases, describing coherent molecule formation together withs-wave scattering.
The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a
momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions—even
though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with
a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding
energies thanx (3) quantum solitons, and the resulting effects could potentially be experimentally tested in
highly nonlinear optical parametric media or interacting matter-wave systems.N-particle quantum solitons and
the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-
Einstein condensates~BEC’s! are given, where we predict the possibility of forming coupled BEC solitons in
three space dimensions, and analyze ‘‘superchemistry’’ dynamics.

PACS number~s!: 42.65.Tg, 03.65.Ge, 03.75.Fi, 11.10.St
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I. INTRODUCTION

Quantum solitons@1# or bound states of interacting field
are generalizations of nonlinear solitonic solutions of clas
cal wave theory to include quantum fields. Exactly solva
cases include many-body bound states of bosons intera
via a d-function potential in one space dimension. Th
model ~often called the nonlinear Schro¨dinger model! was
solved by Lieb, Liniger, McGuire, and Yang@2#. Recently it
was predicted that this solvable model could lead to exp
mentally observable quantum effects including quant
squeezing in optical fiber solitons@3,4#. This prediction has
now been verified experimentally@5#.

Other examples of exactly soluble models are gener
restricted either to one space dimension, or to physically
accessible systems like the quantum Davey-Stewar
model @6#. An exception is Laughlin’s highly innovative
theory of a two-dimensional electron gas in an external m
netic field@7#, which was able to explain the fractional qua
tum Hall effect @8#. Similar techniques have recently bee
proposed for treating interacting Bose gases in higher dim
sions, in the limit of very weak couplings, leading to a
elementary theory of a quantum vortex@9#. Experimental
success in Bose-Einstein condensation of atomic ga
@10# makes it possible that quantum soliton behavior co
become observable in ultralow-temperature nonlinear a
optics, as well as with photons.

In a recent paper@11#, we showed that it is possible t
obtain an exact solution in one, two,and three space dimen
sions, in a nonlinear quantum field theory that includes
most fundamental property that distinguishes quantum
chanics from quantum field theory—that is, the ability
create and destroy particles. The simplest cubic interac
involving two boson fields—the parametric interaction of t
form Ĉ1

2Ĉ2
†—was analyzed for bound states in higher

mensions, resulting in soluble cases with unusual and un
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pected properties. This degenerate parametric theory—
similarities to the Friedberg-Lee@12# model of high-TC
superconductivity—has bound states in one space dimen
@13,14#, but is unstable~like the nonlinear Schro¨dinger
model with an attractived-function potential! in higher di-
mensions. Unlike the nonlinear Schro¨dinger model, the in-
stability does not occur at the classical level. Indeed, cla
cal parametric solitons in higher dimensions are b
theoretically predicted@15–17# and observed to exist@18#.
With the inclusion of an additional~repulsive! quartic inter-
action term in the Hamiltonian, a rigorous lower bound to t
energy was proved to exist, and we demonstrated the e
tence of exact two-particle bound states in higher dimensi
@11,19#. These new types of quantum solitons have a fin
binding energy, but the corresponding two-particle wa
function has a zero radius; the pointlike structure of the
bound states can be termed a ‘‘quantum singularity.’’ With
momentum cutoff imposed on the couplings, the bou
states develop a finite radius.

In the present paper, we extend these earlier result
include the nondegenerate case of parametric interaction@20#
of three distinct fields with either Bose or Fermi statisti
~rather than two bosonic fields!. The results demonstrate th
existence of exact two-particle nondegenerate eigenstate
higher dimensions, having a pointlike structure in spa
with a finite energy when there is no momentum cuto
However, typical physical systems that can be experim
tally identified as having the requisite three-wave boso
interactions usually have momentum cutoffs. These cuto
of course, provide a spatial extent to the bound states.
therefore provide solutions that include cutoff effects as w
Estimates of typical binding energies and soliton charac
istic radii are given for photonic interactions in highly no
linear optical materials. They appear to be of more realis
magnitudes for possible experiments, as compared to ea
known quantum solitons based on cubic nonlinearities~see,
e.g.,@2,21#, and@11,14# for comparison!.
©2000 The American Physical Society16-1
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In addition, we discuss the application of the basic mo
to coherently coupled atomic/molecular Bose-Einstein c
densates~BEC’s!. This provides the possibility of extendin
our earlier results@22# on ‘‘superchemistry’’ in degenerat
parametric interactions to a larger variety of interacti
quantum gases, i.e., to three-species~two atomic and one
molecular! BEC systems. We present here a mean-fi
theory analysis which predicts, at large particle numbe
transition to a classical soliton domain, where stable thr
dimensional BEC solitons can form in certain parame
ranges.

II. MODEL

We start by considering the following quantum effecti
Hamiltonian:

Ĥ5Ĥ01Ĥ int , ~1!

where

Ĥ05\E dDxS (
i 51

3
\

2mi
u“Ĉ i~x!u21DvĈ3

†~x!Ĉ3~x!D ,

~2!

and Ĥ int5Ĥ int
(x)1Ĥ int

(k) , with

Ĥ int
(x)5\E E E dDxdDydDzxD~x,y,z!

3@Ĉ1~x!Ĉ2~y!Ĉ3
†~z!1H.c.#, ~3!

Ĥ int
(k)5

\

2 (
i , j 51

3 E E E E dDxdDydDx8dDy8kD
( i j )~x,y,x8,y8!

3Ĉ i
†~x!Ĉ j

†~y!Ĉ i~x8!Ĉ j~y8!. ~4!

HereĈ1 , Ĉ2, andĈ3 are three Bose fields with commuta
tion relations @Ĉ i(x),Ĉ j

†(x8)#5d i j d(x2x8). In addition,
m1 , m2, andm3 are the corresponding effective masses a
Dv is the phase mismatch or the bare formation energy
the field Ĉ3. Nonlinear interactions are included via th
parametric interaction potentialxD describing a particle
number nonconserving process, in which a pair ofĈ1 and
Ĉ2 quanta is destroyed and aĈ3 quantum is created, while
kD

( i j ) is the particle number conserving potential describ
quartic self- and cross-interactions between the fields
D (D51,2,3) space dimensions.

In the case of optical interactions the couplings are du
quadratic and cubic polarizabilities of the nonlinear mediu
giving rise to the parametric process of frequency convers
~sum-frequency generation!, together with self- and cross
phase modulation processes. The above effective Ha
tonian can also be applied to describe nonlinear interact
of matter-wave fields, such as in coupled atomic (Ĉ1 andĈ2

fields! and molecular (Ĉ3 field! Bose condensates. In th
case, the parametric couplingxD would refer to the rate of
coherent process of atomic dimerization, where pairs of
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oms~of massesm1 andm2) convert into diatomic molecules
~of massm35m11m2), while the quartic couplingskD

( i j )

would refer to the strength of intra- and interspecies tw
body collisions.

In the case of degenerate couplings (Ĉ15Ĉ2), the coher-
ent process of dimerization in atomic/molecular BEC int
actions and the possibility of formation of coupled atom
molecular solitons has been studied in@19,22,23#. Pure
quartic interactions in two-species Bose condensates h
been analyzed in@24#, while the interplay between parame
ric and ~attractive! quartic interactions in optical soliton
propagation, at the classical level, has been studied in@25#.

An important feature encountered in the treatment of
present nondegenerate parametric interaction is that,
though we have specified Bose statistics for all three in
acting fieldsĈ i , some of the results obtained here will als
be valid if fermionic fields are involved and the correspon
ing commutators are replaced by anticommutators. An
ample of such systems is the case whereĈ1 and Ĉ2 are
fermionic, as in the ‘‘s-channel’’ model of high-TC super-
conductivity by Friedberg and Lee@12#. Similarly, the case
whereĈ2 and Ĉ3 are fermionic, as in the Lee–Van Hov
model of nuclear interactions@26#, is also treatable.

To simplify the theory we consider in Sec. III the approx
mation in which we assume short range interactions a
taking into account translational invariance consideratio
replace the interaction potentials byd function pseudopoten
tials. In this case, the interacting part of the Hamiltonian

Ĥ int5\E dDxS xD@Ĉ1~x!Ĉ2~x!Ĉ3
†~x!

1Ĉ1
†~x!Ĉ2

†~x!Ĉ3~x!#

1 (
i , j 51

3
1
2 kD

( i j )Ĉ i
†~x!Ĉ j

†~x!Ĉ i~x!Ĉ j~x!D . ~5!

This is a very idealized model. We note that such mod
in quantum field theory are usually treated in the context
renormalized perturbation theory, with the understand
that the coupling constants are a function of an implicit m
mentum cutoff. However, we shall demonstrate a rather
expected and remarkable result, which is that the above
alized Hamiltonian has an exact ground state with a fin
binding energy—even without a cutoff or renormalizatio
procedure. We emphasize that providedkD

( i j ).0 there are no
energy divergences or collapsing behavior in this idealiz
cubic-quartic model, unlike the case of a Bose gas w
purely quartic attractived-function interactions. On the othe
hand, for a Bose gas with purely quartic repulsived-function
interactions the exact eigenvalues in more than one dim
sion are the same as those for free particles, i.e.,
d-function pseudopotential produces no scattering and
ground state energy is the same as for a noninteracting B
gas @27#. Instead, the idealized model we consider gives
nontrivial bound state that has a finite binding energy,
involves a pointlike~zero-radius! structure in more than one
space dimension. While physical models typically do hav
6-2
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MULTIDIMENSIONAL QUANTUM SOLITONS WITH . . . PHYSICAL REVIEW A 61 063816
momentum cutoff, the exactly soluble model without cuto
is indicative of behavior with a cutoff, and provides som
useful insight.

A more sophisticated pseudopotential approach would
to employ the regularized method used by Huang, Yang,
Lee @28#. However, for simplicity we choose to start with
simple Diracd-function interaction which has the advanta
of giving a Hermitian Hamiltonian. More careful treatme
of the d-function interaction would be to incorporate a m
mentum cutoff imposed on the nonlinear couplings. This
further treated in Sec. IV, where we obtain a regulariz
bound state with a finite spatial extent in one, two, and th
dimensions.

III. CUTOFF INDEPENDENT RESULTS

To construct the general candidate for the eigenstat
the Hamiltonian given by Eqs.~1!, ~2!, and~5!, we note that
the parametric interaction transforms pairs ofĈ1 and Ĉ2

quanta into singleĈ3 quanta, and vice versa. That is, th
Hamiltonian does not conserve the corresponding part
numbers. However, it does conserve a generalized par
number, or Manley-Rowe invariant, equal to

N̂5N̂11N̂212N̂35E dDx ~ uĈ1u21uĈ2u212uĈ3u2!.

~6!

In addition, the Hamiltonian is translationally invarian
and thus conserves the total momentum given by

P̂5\K̂52
i\

2 E dDx(
i 51

3

@Ĉ i
†~“Ĉ i !2~“Ĉ i

†!Ĉ i #. ~7!

We therefore search for statesuwK
(N)& that are eigenstate

of Ĥ, N̂, andK̂ , with energy eigenvaluesEK
(N).

A. Two-particle eigenvalue equation

We consider first the two-particle (N52) eigenstate
which must have the form of a superposition state:

uwK
(2)&5S E dDxP~x!Ĉ3

†~x!

1E E dDx dDyQ~x,y!Ĉ1
†~x!Ĉ2

†~y! D u0&, ~8!

where P and Q are one- and two-particle wave function
respectively.

We note that the quartic terms in the interaction Ham
tonian ~5! other than the cross-interaction term between
Ĉ1 and Ĉ2 fields have no effect on the two-particle eige
state. For this reason, we will use a simplified notation

kD[~kD
(12)1kD

(21)!/25kD
(12) ~9!

for the cross-coupling between the fieldsĈ1 andĈ2.
06381
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Operating onuwK
(2)&, Eq. ~8!, with the Hamiltonian~1!,

~2!, and ~5! gives that the two-particle eigenvalue proble
ĤuwK

(2)&5EK
(2)uwK

(2)& is equivalent to the following set o
equations:

\2

2m3
¹2P~x!1~EK

(2)2\Dv!P~x!5\xDQ~x,x!, ~10!

S \2

2m1
¹x

21
\2

2m2
¹y

2DQ~x,y!1EK
(2)Q~x,y!

5\FxDPS m1x1m2y

m11m2
D1kDQ~x,y!Gd~x2y!, ~11!

whereEK
(2) is the corresponding energy eigenvalue.

To solve these equations we introduce the relative
center-of-mass coordinates according tor5x2y and R
5(m1x1m2y)/(m11m2). With these coordinates we have

\2

2m1
¹x

21
\2

2m2
¹y

25
\2

2M
¹R

2 1
\2

2m
¹ r

2 , ~12!

where we have introduced a reduced mass

m5
m1m2

m11m2
, ~13!

and definedM[m11m2. Assuming translational invarianc
we can seek forP(x) in the form of P(x)5P0 exp(iK•x),
whereK is the total momentum. As a consequence,Q(x,x)
will be proportional toP(x), and therefore we may look fo
the general expression forQ(x,y) in a separable form:
Q(x,y)5g(r )P(R). Substituting this into Eqs.~10! and~11!,
and dividing the energy into center-of-mass and relat
componentsEK

(2)5Ec1Er , we then solve the equation fo
P(R), yielding at P(R)5P0 exp(iK "R), with K25uK u2
52MEc /\2, and as a result

EK
(2)5\2K2/~2m3!1\Dv1\xDg~0!. ~14!

The remaining equation for theg(r ) function is rewritten
as

¹2g~r !2r 0
22g~r !5

2m

\
@xD1kDg~0!#d~r !, ~15!

where we have defined a length scaler 0, according to

r 0
2252

2mEr

\2
5

mK2

M
2

2mEK
(2)

\2
. ~16!

Together with Eq.~14!, this implies that the energy eigen
value is given by

EK
(2)5

\2K2

2M
2

\2

2mr 0
2

, ~17!

wherer 0 is to be found by solving the following eigenvalu
equation:
6-3
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r 0
225

2m

\
@D2xDg~0!#. ~18!

Herer 0 must be real and positive for a localized bound st
or quantum soliton solution. The quantity

Eb
(2)[

\2

2mr 0
2

5\D2\xDg~0! ~19!

can be interpreted as the binding energy of the two-part
quantum soliton with the momentumK , and we have defined

D[
\

2 S K2

M
2

K2

m3
D2Dv. ~20!

Equations~17! and~18! are equivalent to formulating th
eigenvalue problem directly in terms of Eq.~14!, whereg(0)
is to be found by solving the following equation:

¹2g~r !2
2m

\
@D2xDg~0!#g~r !5

2m

\
@xD1kDg~0!#d~r !.

~21!

Thus, the two-particle~or diboson! eigenstate candidat
~8! that is a simultaneous eigenstate of the momentum
erator takes the following form:

uwK
(2)&5F E dDxeiK•xĈ3

†~x!1E E dDr dDReiK•Rg~r !

3Ĉ1
†S R1

m2r

M D Ĉ2
†S R2

m1r

M D G u0&. ~22!

B. Energy lower bound for two-particle case

The stability of our Hamiltonian in the two-particle sect
can be proved by finding a lower boundEl to the Hamil-
tonian energy,EK

(2)5^wK
(2)uĤuwK

(2)&/^wK
(2)uwK

(2)&, so thatEK
(2)

>El . Applying the Hamiltonian touwK
(2)&, and using the

symmetry property of the two-particle correlation functio
g(x)5g(2x), one can find that

EK
(2)5S 11E dDrg2~r ! D 21S \2

2m E dDr u“g~r !u2

1
\2K2

2M E dDr g2~r !1
\2K2

2m3
1\Dv12\xDg~0!

1\kDg2~0! D . ~23!

Omitting the first nonnegative term in the square brack
we arrive at a lower energy that is rigorously bounded fr
below if kD.0, according to
06381
e
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EK
(2)>

\2K2

2M
1

\kDg2~0!12\xDg~0!2\D

11E dDrg2~r !

>
\2K2

2M
2

\~xD
2 1DkD!

kDF11E dDr g2~r !G , ~24!

whereD is defined in Eq.~20!.
If ( xD)21DkD<0, then the lower boundEl is given by

El5\2K2/(2M )5Ec . This has a simple interpretation a
providing the center-of-mass energy, so thatEK

(2)>Ec ~or
Er5EK

(2)2Ec>0) and no bound states, withEr5EK
(2)2Ec

,0, are possible in this case. If, however,

~xD!21DkD.0, ~25!

which is the case that we focus on in this paper, then we h

EK
(2)>

\2K2

2M
2\D2

\~xD!2

kD

5
\2K2

2m3
1\Dv2

\~xD!2

kD
[El . ~26!

This implies thatEr5EK
(2)2Ec>\Dv2\(xD)2/kD , and

bound states may become available.

C. Exact diboson solutions

Equations~15! and ~18! can easily be analyzed using th
Fourier transform method. In this approach we seek a s
tion to Eq.~15! in the form

g~r !5*dDkG~k!exp~ ik•r !/~2p!D,

wherer 5ur u. Expanding thed function into a Fourier inte-
gral, we then obtain the Fourier transform equivalent to E
~15!:

~k21r 0
22!G~k!52q, ~27!

wherek5uku, and we have defined

q[2m@xD1kDg~0!#/\. ~28!

Solving Eq. ~27! for G(k) and substituting it into the
expression forg(r ) we find

g~r !52
q

~2p!D E dDk
exp~ ik•r !

k211/r 0
2

. ~29!

1. One-dimensional case (DÄ1)

In the one-dimensional case (D51) the integration gives

g~r !52
q

2p E
2`

1`

dk
exp~ ikr !

k211/r 0
2

52
qr0

2
exp~2ur u/r 0!.

~30!
6-4
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Using this result atr 50 and the definition ofq, we solve
for g(0) and find thatg(0)52x1@k11\/(mr 0)#21. Corre-
spondingly, the eigenvalue equation~18! for r 0 is now re-
written as a cubic:

2m2

\2
@~x1!21Dk1#r 0

31
2mD

\
r 0

22
mk1

\
r 02150, ~31!

where r 0 must be real and positive for a localized bou
state.

The analysis of this equation shows that ifk1.0 and
(x1)21Dk1.0—that is, under the same conditions that w
assumed while proving the lower bound, Eq.~26!—then
there always exists one positive solution forr 0. This proves
the existence of a one-dimensional two-particle quant
soliton, with a characteristic radiusr 0 and a binding energy
of Eb

(2)5\2/(2mr 0
2). In the absence of the quartic term (k1

50) and with perfect phase matchingDv50 andm35M
~so thatD50), the equation forr 0 is solved analytically.
This gives the following explicit results for the soliton bind
ing energy and the radius:

Eb
(2)5~\2m/2!1/3~x1!4/3, ~32!

r 05~\2/2x1
2m2!1/3. ~33!

2. Higher-dimensional case (DÄ2,3)

The two- and three-dimensional results are qualitativ
different. In these cases we evaluate the integrals forg(0),
from Eq. ~29!, in polar ~for D52) and spherical~for D
53) coordinates. Using the definition ofq, we then solve for
g(0) and obtain g(0)52xD@kD1\r 0

D22/(2m f D)#21,
where we have defined the dimensionless integral

f D5
1

2pD21 E0

`

dx
xD21

11x2
~D52,3!. ~34!

This integral diverges forD52,3. ~A strict treatment of
this divergence, as a mathematical limit, is given in Sec.
where it is attributed tokm→`, with km being the upper
limit in the integral.! Therefore we find thatg(0) and hence
the energy eigenvalueEK

(2) from Eq. ~14! are given by

g~0!52xD /kD , ~35!

EK
(2)5

\2K2

2m3
1\Dv2

\~xD!2

kD
~D52,3!. ~36!

With the above result forg(0) it also follows thatq50,
and since the integral in Eq.~29! converges forrÞ0, we
obtain that g(r )50 if rÞ0. This means that the exac
bound-state solution in two and three dimensions hav
pointlike ~zero-radius! structure, which is in the relative po
sitions of theĈ1 andĈ2 quanta.

Thus, the results of this section show that our mo
Hamiltonian provides quantum solitons or two-particle~di-
boson! eigenstates in one and more space dimensions.
important difference between the one-dimensional and m
06381
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tidimensional solutions is in their structure and depende
on the additional quartic interaction. In one dimension t
bound state has finite characteristic size and is available e
without a quartic term in the Hamiltonian. In two and thre
dimensions, the bound states involve a pointlike structu
yet the corresponding binding energy is finite, ifkD.0. If,
however,kD50 we obtain an energy collapse:EK

(2)→2`.
Thus, while the additional quartic interaction prevents an
ergy collapse and makes multidimensional quantum solit
possible, these solitons involve a zero-radius relative loc
ization of theĈ1 andĈ2 quanta.

The diboson solutions can be regarded as a type of dr
ing of theĈ3 quanta, which have a lower energy due to t
creation of virtual pairs ofĈ1 andĈ2 quanta. We also note
that in a renormalized theory in whichxD and kD are re-
garded as functions of a momentum cutoffkm , the above
result implies that (xD)2/kD must approach a constant valu
at largekm , in order that the observed binding energy shou
be cutoff independent.

D. Energy lower bound for N-particle case

The zero-radius form of the two-particle bound states
two and three space dimensions simplifies the treatmen
the general case ofN-particle bound states, so that one c
find an exact ground state solution to this quantum man
body system. To show this first we prove a lower bound
the Hamiltonian energy in theN-particle sector. To do so we
neglect the non-negative kinetic energy term$Ĥkin

5*dDx@( i 51
3 (\2/2mi)u“Ĉ i u2#% in the Hamiltonian and con-

sider a reduced HamiltonianĤR5Ĥ2Ĥkin , such thatĤ
>ĤR . Assuming thatkD.0, one can show that

ĤR>\@Dv2~xD!2/kD#E dDx Ĉ3
†Ĉ3

1\E dDxS (
i 51

3
1
2 kD

( i i )Ĉ i
†2Ĉ i

21kD
(13)Ĉ1

†Ĉ1Ĉ3
†Ĉ3

1kD
(23)Ĉ2

†Ĉ2Ĉ3
†Ĉ3D , ~37!

which is simply seen by substituting the expression forĤR
and rewriting this inequality in the form

1

kD
E dDxukDĈ1

†Ĉ2
†1xDĈ3u2>0. ~38!

Combining now the inequalityĤ>ĤR and Eq. ~37!, and
assuming that all the other quartic couplings are n
negative (kD

( i i ) ,kD
(13) ,kD

(23)>0) we arrive at

Ĥ>\S Dv2
~xD!2

kD
D E dDx Ĉ3

†Ĉ3 , ~39!
6-5
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implying that the energy eigenvalue EK
(N)

5^wK
(N)uĤuwK

(N)&/^wK
(N)uwK

(N)& satisfies the following inequal
ity:

EK
(N)>\S Dv2

~xD!2

kD
D N̄3 , ~40!

whereN̄i[^wK
(N)uN̂i uwK

(N)&/^wK
(N)uwK

(N)&.
Due to the conservation of the generalized particle nu

ber N̂5N̂11N̂212N̂3, we haveN̄3<@N/2#, where@N/2# is
the integer part ofN/2. Therefore, if

Dv2
~xD!2

kD
,0, ~41!

we obtain, from Eq.~40!,

EK
(N)>@N/2#S \Dv2

\~xD!2

kD
D[El

(N) . ~42!

This proves the lower boundEl
(N) to the Hamiltonian energy

which we note is valid in one, two, and three dimensions
In two and three dimensions the above inequality can

further simplified. Since the expression\Dv2\(xD)2/kD
represents@see Eq.~36!# the exact two-particle energy eigen
value with zero momentum,E0

(2) , we can rewrite Eq.~42! as

EK
(N)>El

(N)5@N/2#E0
(2) ~D52,3!. ~43!

E. Exact N-particle ground state „DÄ2,3…

We can now use the lower bound to obtain the ze
momentum energy eigenvalueE0

(N) for any even particle
numberN in more than one space dimensions, and with
the Ĉ3 self-interaction term. In order to understand t
physical meaning of these results, we introduce a finite qu
tization volumeV in this section, to give a finite density. Th
technique to findE0

(N) is extremely simple. We will demon
strate that there is an upper bound to the Hamiltonian gro
state energy, that coincides with the lower bound giv
above, in either the case thatkD

(33)50 ~no Ĉ3 self-
interaction! or the case thatV→` ~infinite volume!. The
result in the infinite volume limit is expected, as it corr
sponds to an infinitely dilute gas of the diboson (uw0

(2)&)
bound states. However, the same result also holds at fi
volume provided there is noĈ3 self-interaction term.

In order to estimate the ground state energyE0
(N) , in two

and three dimensions, we employ a trial wave function t
gives an upper boundẼ0

(N) to the energyE0
(N) . We use an

ansatz that representsN/2 ~where we assumeN is even! in-
dependent two-particle quantum solitons or dibosons w
K50:

uw̃0
(N)&5F E dDxĈ3

†~x!1E E dDr dDR g~r !

3Ĉ1
†S R1

m2r

M D Ĉ2
†S R2

m1r

M D GN/2

u0&. ~44!
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Hereg(r ) is the zero-radius two-particle correlation functio
found earlier, having the property that*dDr g2(r )50 and
g(0)52 xD /kD , in two and three dimensions. Calculatin
the energyẼ0

(N)5^w̃0
(N)uĤuw̃0

(N)&/^w̃0
(N)uw̃0

(N)& with the ansatz
~44! gives ~see Appendix A!

Ẽ0
(N)5

N

2 S \Dv2
\~xD!2

kD
D1

N

2 S N

2
21D\kD

(33)

V
~D52,3!,

~45!

where V5*dDx is the integration volume. The self
interaction terms of the fieldsĈ1 and Ĉ2 (;kD

(11) and
kD

(22)), as well as the cross-interaction terms between

fields Ĉ1,2 and Ĉ3 (;kD
(13) andkD

(23)), do not contribute to

the energyẼ0
(N) . The first term in Eq.~45! is simply the

energy due toN/2 independent noninteracting dibosons, ea
having the energyE0

(2) , Eq. ~36!. The second term in Eq

~45! is the self-interaction energy of theĈ3 field, which
depends explicitly on the interaction volumeV and decreases
asV is increased.

The above result is easier to understand if we calculate
average number of quantaN̄i5^w̃0

(N)uN̂i uw̃0
(N)&/^w̃0

(N)uw̃0
(N)&

in each field, which givesN̄35N/2 andN̄1,250. This implies
that theĈ1 andĈ2 quanta can only be regarded as virtu
the presence of which is manifested by the finite bind
energy of the two-particle bound states. In such a virt
state, theĈ1 and Ĉ2 quanta can only interact via the par
metricxD and the quartic cross-couplingkD within the indi-
vidual dibosons. This is a consequence of the zero-rad
property of the two-particle correlation functiong(r ) em-
ployed in the ansatz~44!.

Using Eq.~36!, we can rewrite Eq.~45! as

Ẽ0
(N)5

N

2
E0

(2)1
N

4 S N

2
21D \kD

(33)

V
~D52,3!. ~46!

Comparing this result with the lower boundEl
(N) @Eq.

~43!# we see that the energyẼ0
(N) coincides withEl

(N) if
kD

(33)50. This implies that, in the absence of the quar

self-interaction of theĈ3 field, our result forẼ0
(N) represents

the exact ground state energy of this quantum many-bo
system:

E0
(N)5

N

2
E0

(2)5
N

2 S \Dv2
\~xD!2

kD
D ~D52,3!, ~47!

and that the ansatz~44! can be regarded as the exa
N-particle eigenstate in this case. TheN-particle ground state
energy diverges askD→0. This is in contrast to the behavio
of the corresponding classical theory, which has rigoro
lower bound to the Hamiltonian energy@15#.

For a nonzerokD
(33) the same result, Eq.~47!, for the

ground state energy would be valid in an infinitely lar
6-6
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volume, corresponding to largely separated and effectiv

noninteracting dressedĈ3 quanta at a vanishing density
More generally, for a finite interaction volume or a fini
density, the above results imply that the ansatz~44! gives an
upper bound to the ground state energy. It is possible tha
true ground state energy is simply equal to the lower bo
El5@N/2#E0

(2) in this case as well, in analogy with the trea
ment of a simple single-component Bose gas with a repul
d-function interaction@27#, which reproduces the results o
the noninteracting theory.

IV. CUTOFF DEPENDENT AND MEAN-FIELD THEORY
RESULTS

The zero-radius behavior of the quantum solitons in t
and three dimensions represents a rather unusual situa
since the classical counterpart of the bosonic theory has w
behaved, stable, multidimensional soliton solutions@15#.
This leads to a paradox of how such a quantum field the
relates to real physical processes. To resolve this para
we note that physical applications usually involve some ty
of momentum cutoff. In systems with dimensionD.1 it is
known that an effective Hamiltonian of the type we consid
here should be renormalized, with a coupling constant tha
cutoff dependent, in order to compare the coupling para
eters with observable values. Since the exact form of
interaction potentials is not well known, we simply employ
finite bound on the relative momentum.

In the case of nonlinear optical parametric interactio
the cutoff originates from the fact that parametric couplin
are usually restricted to a finite range of relative momenta
the interacting fields. To estimate the cutoff in this case,
note that the origins of the theory involve rotating-wave a
paraxial approximations, and the neglect of higher-order
persion @3,29#. Therefore, in higher dimensions we shou
include nonparaxial diffraction if the characteristic radius
solutions becomes less than the field carrier wavelengths
represent this we can introduce a cutoff atkm in the relative
momentak of the fieldsĈ1 andĈ2. Since the paraxial ap
proximation is valid only fork'!2p/l1, wherel1 is as-
sumed to be the longest carrier wavelength, then a mom
tum cutoff of at mostkm;2p/l1 should be imposed on th
nonlinear couplings. In the case of atomic BEC interactio
@30#, the cutoff is usually introduced at the level of inver
s-wave scattering length, and a similar cutoff occurs in ca
where fermionic fields are involved@12,26#.

A. Hamiltonian with momentum cutoff

To implement a cutoff in the interaction part of ou
Hamiltonian we first consider the parametric interaction te
which is of the form of Eq.~3!. Assuming translational in-
variance we note thatxD(x,y,z) can only depend on the
relative coordinates, which we choose according tox2y[r
and z2R[j, where R5(m1x1m2y)/(m11m2) is the
center-of-mass coordinate for theĈ1 andĈ2 fields. That is,
Ĥ int

(x) can be written as
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Ĥ int
(x)5\E E E dDrdDRdDzxD~r ,j!

3F Ĉ1
†S R1

m2r

m11m2
D Ĉ2

†S R2
m1r

m11m2
D

3Ĉ3~R1j!1H.c.G , ~48!

where we use the same notationxD for the translationally
invariant coupling potential.

In Fourier space, where

Ĉ i~x!5*dDkâi~k!exp~ ik•x!/~2p!D/2

and the commutation relations for the operatorsâi(k) and
âi

†(k) are@ âi(k),â j
†(k8)#5d i j d(k2k8), this transforms into

Ĥ int
(x)5~2p!2D/2\E E dDKdDkF x̃D~k,K !â1

†S m1K

m11m2
2kD

3â2
†S m2K

m11m2
1kD â3~K !1H.c.G . ~49!

We next assume that the Fourier componentx̃D(k,K ) de-
pends only onk, and impose a momentum cutoff onx̃D(k),
such that x̃D(k) vanishes if uku.km and is a constant
x̃D(k)5xD , for uku,km .

Similar considerations can be applied to the quartic int
action terms in our Hamiltonian, given by Eq.~4!. Because
of translational invariance,kD

( i j )(x,y,x8,y8) is written as
kD

( i j )(r ,r 8,R2R8), where r5x2y, r 85x82y8, R5(mix
1mjy)/(mi1mj ), and R85(mix81mjy8/mi1mj ). Trans-
forming to Fourier space, we assume that the Fourier co
ponentk̃D

( i j )(k,k8,K ), whereK5k i1k j , does not depend on

K , and impose a momentum cutoff such thatk̃D
( i j )(k,k8)

5kD
( i j ) if uku,uk8u,km , and is zero otherwise. The final form

of the cutoff dependent interaction Hamiltonian can now
written as

Ĥ int5~2p!2D/2\xDE
uku50

km
dDkE dDK F â1

†S m1K

m11m2
1kD

3â2
†S m2K

m11m2
2kD â3 ~K !1H.c.G1~2p!2D

3 (
i , j 51

3
\kD

( i j )

2 E
uku50

km
dDkE

uk8u50

km
dDk8E dDK

3âi
†S miK

mi1mj
1kD â j

†S mjK

mi1mj
2kD

3âi S miK

mi1mj
1k8D â j S mjK

mi1mj
2k8D . ~50!

The noninteracting part of the Hamiltonian, in terms
âi(k), is
6-7
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Ĥ05(
i 51

3
\2

2mi
E dDkk2âi

†~k!âi~k!

1\DvE dDkâ3
†~k!â3~k!. ~51!

In the case of nonlinear optical interactions, the coupl
constantsxD and kD

( i j ) are proportional to the Bloemberge
second- and third-order susceptibilities of the nonlinear m
dium @3,29#, while in the case of atomic/molecular BEC in
teractions the quartic couplingskD

( i j ) are related to thes-wave
scattering amplitudes@30#. For example, in the diagonal cas
and in three space dimensions,k3

( i i ) is given by k3
( i i )

54p\aii /mi , where aii is the s-wave scattering length
within the i th species, while the interspecies couplings
k3

( i j )5k3
( j i )52p\ai j /m i j , where ai j is the corresponding

cross-scattering length andm i j 5mimj /(mi1mj ) is the re-
duced mass@24,30#. The form of the parametric couplin
will depend on the particular mechanism that can be used
atomic dimerization, such as Feshbach resonance or Ra
photoassociation@31,22#. In addition, we note that in case
where fermionic fields are involved, the corresponding qu
tic self-interaction terms must be omitted from the Ham
tonian.

B. Exact diboson solutions

We can now analyze the eigenvalue proble
ĤuwK

(2)(km)&5EK
(2)(km)uwK

(2)(km)& directly, by considering
the two-particle eigenstate in Fourier space:

uwK
(2)~km!&5F â3

†~K !1~2p!2D/2E
uku50

km
dDk G~k!

3â1
†S m1K

M
1kD â2

†S m2K

M
2kD G u0&, ~52!

so that the cutoff dependent correlation function isg(r ,km)
5* uku50

km dDkG(k)exp(ik•r )/(2p)D.
This implies that, due to the cutoff in the nonlinearitie

we need only investigate eigenstates for whichG(k) satisfies
the equation

~k21r 0
22!G~k!52q, ~53!

if uku,km and vanishes foruku.km . The energy eigenvalue
EK

(2)(km) is given by

EK
(2)~km!5

\2K2

2M
2

\2

2mr 0
2

, ~54!

where the length scaler 0 is to be found by solving the fol-
lowing eigenvalue equation:

r 0
225

2m

\
@D2xDg~0,km!#. ~55!
06381
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Here k5uku, K5uK u, D is given by Eq.~20!, while q is
defined as

q[2m@xD1kDg~0,km!#/\. ~56!

The above equations represent the Fourier transform equ
lent of Eq.~15! and Eq.~18!, except that now they are valid
for uku,km .

In order to evaluate the soliton binding energy and
effective radius, we solve these equations forg(0,km), and
obtain

g~0,km!52xDS kD1
\r 0

D22

2m f D~r 0km!
D 21

. ~57!

Here the dimensionless cutoff structure function is defined

f D~r 0km!5
1

~2p!D E
uxu50

r 0km dDx

11x2
, ~58!

and its explicit form in one, two, and three dimensions (D
51,2,3) is given by

f 1~r 0km!5
1

p
tan21~r 0km!, ~59!

f 2~r 0km!5
1

4p
ln~11r 0

2km
2 !, ~60!

f 3~r 0 ,km!5
1

2p2
@r 0km2tan21~r 0km!#. ~61!

This result clearly shows the difference caused by
dimensionality of the space. In one dimensionf 1(r 0km) ap-
proaches a constant value ifkm→`, while in two and three
dimensionsf D(r 0km) has a logarithmic or linear divergence
respectively. The effect of this divergence depends
whether or not the additional quartic interaction is present
it is present~with kD.0), there are exact solutions withou
cutoff, andg(0,km→`)52xD /kD , so that the energy ei
genvalue EK

(2)(km→`) takes the form of Eq.~36!, and
g(r )50 if ur u.0. In other words, the solutions in two an
three dimensions have a finite energy~unlike the energy di-
vergence in the nonlinear Schro¨dinger model with an attrac
tive d-function potential! but zero radius in the limit ofkm
→`. If, however, kD<0, as in the attractive nonlinea
Schrödinger model, we must impose a finite cutoff on th
couplings to prevent an energy divergence. Simultaneou
a finite cutoff prevents singularities in space.

With a finite cutoff, the eigenvalue problem forEK
(2)(km),

Eq. ~54!, reduces to the solution of the following eigenvalu
equation:

r 0
225

2m

\ FD1~xD!2S kD1
\r 0

D22

2m f D~r 0km!
D 21G , ~62!
6-8
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which is Eq.~55! rewritten in terms of the cutoff structur
function f D(r 0km), using g(0,km) from Eq. ~57!. Here r 0
must be real and positive for a localized bound state.

Analysis of this equation, using the explicit results for t
cutoff structure functions~59!–~61!, shows that under certai
conditions a positive solution forr 0 is available. This condi-
tion in the cases of one and two dimensions can be writte
the form of Eq.~25!, while in the three-dimensional case it
modified to (x3)21D@k31p2\/(mkm)#.0.

In the simplest case ofkD50 ~which can be considere
only if the cutoff and the couplings are independent of ea
other!, D50, and in the limitkm@r 0

21 the eigenvalue equa
tion is simplified, and even solved analytically in one- a
three-dimensional cases. The resulting radiir 0 and binding
energiesEb

(2)5\2/(2mr 0
2) are determined by:

r 0.~\2/2x1
2m2!1/3, Eb

(2).~\2m/2!1/3~x1!4/3 ~D51!;

r 0.~p/2!1/2~\/x2m!@ ln~r 0km!#21/2,

Eb
(2)5\2/~2mr 0

2! ~D52!; ~63!

r 0.~p\/x3m!~2km!21/2,

Eb
(2).~x3!2mkm /p2 ~D53!.

Here, in the two-dimensional case, the diboson radiusr 0 and
the binding energyEb

(2) can easily be found numerically. Th
one-dimensional result~in the limit of km@r 0

21) reproduces
the result of Eqs.~32! and ~33! obtained using the cutof
independent treatment.

C. N-particle results: Independent diboson ansatz

To estimate the ground state energy, in the cutoff dep
dent N-particle problem, we use the following momentum
space ansatz, corresponding toN/2 ~where we assumeN is
even! independent dibosons:

uw̃0
(N)~km!&5S â3

†~0!1~2p!2D/2E
uku50

km
dDkG~k!

3â1
†~k!â2

†~2k! D N/2

u0&. ~64!

Operating with the cutoff dependent Hamiltonian on th
ansatz we find, for an infinite interaction volume, the follo
ing result for the corresponding energy~see Appendix B!:

Ẽ0
(N)~km!5

N

2
E0

(2)~km!, ~65!

where E0
(2)(km) is determined by Eqs.~54! and ~62!. This

result represents an upper bound to the ground state en
and is no longer the exact solution unlesskm→`. It is ex-
pressed in terms of the energyE0

(2)(km) of individual di-
bosons, and depends only on the parametric couplingxD and
the quartic cross-couplingkD . The contribution of the othe
quartic terms, including the self interaction;kD

(33) of theĈ3
06381
in

h

n-

gy,

field, is negligible since we have used a free space expan
of Ĉ i(x) in terms of âi(k). This means that the result fo
Ẽ0

(N)(km) corresponds to an infinite volume or zero partic
density, where the contributions due to the quartic inter
tions other than thekD coupling ~which affects the binding
within individual dibosons! vanish.

The lower bound in this cutoff dependentN-particle prob-
lem can also be estimated following previous methods. Si
the previous cutoff independent result was obtained by
noring kinetic energy terms, the lower bound is unchang
from the previous section, Eq.~43!. Consequently, for the
true cutoff dependent ground state energyE0

(N)(km) we have
now the result that

El
(N)5

N

2
E0

(2)<E0
(N)~km!<Ẽ0

(N)~km!5
N

2
E0

(2)~km!,

~66!

whereEl
(N)ÞẼ0

(N)(km), unlesskm→`.
Thus, with a finite cutoff the ansatz corresponding toN/2

independent dibosons no longer gives the energy coincid
with the lower bound, and only provides an upper bound
the ground state energy. In other words, it is no longer
exact eigenstate and therefore does not necessarily resu
the lowest possible energy.

D. N-particle results: Coherent variational ansatz

The second type of ansatz that we employ here is
coherent or mean-field theory~MFT! ansatz:

uw̃c
(N)&5expS E d3x(

i 51

3

c i~x!Ĉ i
†~x!D u0&. ~67!

The coherent ansatz is equivalent to a mean-field theory
scription of the system, where the operators are replaced
their mean values and a factorization is assumed. It is
approximate~semiclassical! eigenstate that describes thre
coupled fields at largeN, under broken symmetry conditions
Compared with the previous case of theN/2 independent
diboson ansatz, the coherent ansatz can provide a lowe
ergy at largeN and for certain parameter values. To sho
this, we use a variational approach and choose trial functi
c i(x) in the form of Gaussians, assuming in addition th
c1(x)5c2(x):

c1~x!5c2~x!5g1 exp@2uxu2/~2w1
2!#,

~68!
c3~x!52g3 exp@2uxu2/~2w3

2!#.

Here gi and wi are regarded as free variational paramete
the negative sign forc3(x) is to ensure that the couplin
energy is negative forxD.0, and the normalization implies
that the Gaussian parameters must satisfy 2p3/2@g1

2w1
3

1g3
2w3

3#5N. We will assume that the coherent ansatz
slowly varying such that the Gaussian width scales are m
larger thankm

21 , allowing the momentum cutoff to be ne
glected. Substituting these trial functions into the Ham
6-9
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tonian~1!, ~2!, and~5!, we find that the corresponding varia
tional energyẼc

(N) , in two and three space dimensions,
given by

Ẽc
(N)5S p

2 D D/2S 2(D22)/2D\2

2m
g1

2w1
D22

1
2(D22)/2D\2

2m3
g3

2w3
D2212D/2\Dvg3

2w3
D

2
2D11\xDg1

2g3w1
Dw3

D

~w1
212w3

2!D/2
1\S kD1

kD
(11)

2
1

kD
(22)

2 Dg1
4w1

D

1
\kD

(33)

2
g3

4w3
D

1
2D/2\~kD

(13)1kD
(23)!g1

2g3
2w1

Dw3
D

2~w1
21w3

2!D/2 D ~D52,3!. ~69!

The result of minimization ofẼc
(N) , under the constrain

of 2p3/2@g1
2w1

31g3
2w3

3#5N, is considerably simplified in the
region where the parametric coupling is dominant andN is
not too large, so that one can neglect the terms due toDv
and the quartic couplingskD

( i j ) . In this region, and form3

5m11m2 and m15m2 ~so that m354m), we obtain the
MFT minimum energy of

Ẽc
(N)52ADN(62D)/(42D)S \2

2m D S 2mxD

\ D 4/(42D)

~D52,3!,

~70!

where AD is a dimensionless constant given byA2.
7.4231023 in two dimensions, and byA3.1.231025 in
three dimensions. The energyẼc

(N) scales asN2 in two di-
mensions, and asN3 in the three-dimensional case. Compa
ing this with the linear dependence onN of the energy esti-
mate Ẽ0

(N)(km) from the independent diboson ansatz, E
~65!, we conclude that there exists a crossover or a crit
boson numberNcr beyond which~i.e., for N.Ncr) the co-
herent variational ansatz becomes more favorable, asẼc

(N)

,Ẽ0
(N)(km). The value ofNcr is easily found using the abov

simple result forẼc
(N) which neglects the role of the quart

couplings so that all parameter dependences are explicit.
nonzero quartic couplings, the dependence of the minim
energyẼc

(N) is no longer given by such a simple expressio
The minimization does not reveal explicit scaling propert
similar to those in Eq.~70! and it must be carried out fo
different values ofN independently. This is further analyze
in Sec. VI as applied to parameter values characteristic
BEC interactions.

To conclude our discussion of the results in the case
pure parametric interactions, we note that for the symme
case under consideration, i.e., forc1(x)5c2(x), the system
can be formally reduced to the model of degenerate para
ric interaction which is known to support higher-dimension
classical solitons@15–17#. Thus, together with providing a
minimum energy to the classical Hamiltonian, the above
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herent variational ansatz gives optimum Gaussian parame
which correspond to the approximate analytical form of cl
sical solitons in this pure parametric case, in two and th
space dimensions. The optimum length scales correspon
to soliton widths~for Dv50, m15m2, andm35m11m2)
are nearly identical for the three fields and are given byw1
5w2.1.23102N21(2mx3 /\)22 andw3.0.88w1, in three
space dimensions. The corresponding values of the field
plitudes are determined by

g15g2.1.731024N2~2mx3 /\!3

andg3.1.1g1. These, in turn, give the following relation fo
the average number of particles@N̄i5*d3xuc i(x,t)u# present
in the fields c1,2 and c3 : N̄1,2/N̄3.1.21. In two dimen-
sions, the parametric soliton optimum widths and amplitud
are given by

w15w2.6.98N21/2~2mx2 /\!21,

w3.0.86w1 ,

g15g2.4.0631022N~2mx2 /\!,

andg3.1.05g1, yielding N̄1,2/N̄3.1.24. Clearly the soliton
width must be much larger thankm

21 for our use of the cutoff
independent Hamiltonian to be justified.

V. PHYSICAL APPLICATIONS:
PHOTONIC INTERACTIONS

An important application of the results of our paramet
field theory is in optics, where it describes the nonline
optical process of frequency conversion or sum-freque
generation. Here the parametric couplingxD is due to the
second-order nonlinearity of a nonlinear medium, while t
kD

( i j ) terms are due to self- and cross-phase modulat
Straightforward application of the previous results is, ho
ever, prevented by the fact that the noninteracting Ham
tonianĤ0 for the propagating light fields is in general diffe
ent from Eq.~2!. It is defined in a moving reference fram
and is asymmetric with respect to the longitudinal~direction
of propagation! and transverse directions@15,29#:

Ĥ05E dDxF(
i 51

3 S \2

2mi i
u¹ iĈ i u21

\2

2mi'
u¹'Ĉ i u2D

1\DvĈ3
†Ĉ3G . ~71!

Here Ĉ1,2 and Ĉ3 represent three optical fields with carrie
wave numbers k1,2, k35k11k2 and frequencies v i
5v(ki) ( i 51,2,3), whileDv5v32(v11v2) is the phase
mismatch. The longitudinal coordinate (xi) is defined in a
moving frame,xi5xL2vt, wherexL is the laboratory frame
coordinate andv5]v i /]k is the group velocity, which is
assumed equal at all three carrier frequencies. In addit
m

i i
5\/v i9 are effective longitudinal masses due to the gro
6-10
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velocity dispersion, wherev i95]2v i /]k2 is the dispersion
coefficient in thei th frequency band. The transverse mas
mi'5\v i /v2 are caused by diffraction, and the correspon
ing term inĤ0 is only relevant in two and three dimension
The coupling constantsxD andkD

( i j ) in the interaction Hamil-
tonian are proportional to the Bloembergen second-
third-order nonlinear susceptibilities (xB

(2) and xB
(3) @32#! of

the nonlinear medium, respectively@3,14,29#:

xD.
xB

(2)

n3 S \v1v2v3

2«0
D 1/2 1

d(32D)/2
, kD.

3\xB
(3)v1v2

4«0n4d32D
,

~72!

wheren is the refractive index, which we assume is nea
the same at all three frequencies, andd is the effective modal
~waveguide! diameter.

Our treatment here is similar to a previous theory of d
generate optical parametric interaction@11#, except that the
present nondegenerate theory has an additional degre
freedom due to the fact that the low-frequency fields (Ĉ1

andĈ2) are different. In practical terms, this gives the po
sibility of employing either type I or type II phase matchin
i.e., the fields can be different either in frequencies or
polarization, or else in both.

A. Analytic results

The asymmetric form of the noninteracting Hamiltoni
does not qualitatively change the results of the previous
tions. The results are, however, modified quantitatively
two and three dimensions. Omitting the details of the de
vation we give only the final expressions for the two-parti
eigenvalue problem and the simplest diphoton solutions.

First we mention that in one dimension the results of
earlier sections are unchanged, with the understanding
the effective massesmi are interpreted as dispersive one
mi[mi i . In two and three dimensions, the two-particle
diphoton energy is determined by

EK
(2)~km!5

\2

2 S K i
2

M i
1

K'
2

M'
D 2

\2

2m ir 0
2

, ~73!

wherer 0 is to be found by solving the following eigenvalu
equation:

r 0
225

2m i

\ FD1~xD!2S kD1
\r 0

D22

2m i f D~r 0km ,m r !
D 21G .

~74!

Here the diphoton momentumK is decomposed into longi
tudinal and transverse components so thatK2[uK u25K i

2

1K'
2 . In addition, we have introduced the longitudinal a

transverse reduced massesm i5m1im2i /(m1i1m2i) and
m'5m1'm2' /(m1'1m2'), and have definedM i[m1i
1m2i , M'[m1'1m2' , and m r[m' /m i . The cutoff
structure functionf D(r 0km ,m r) is defined as
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f D~r 0km ,m r !5
1

~2p!D E
uxu50

r 0km dDx

11xi
21x'

2 /m r

~D52,3!,

~75!

and the effective detuningD is now given by

D[
\

2 S K i
2

M i
1

K'
2

M'
D 2

\

2 S K i
2

m3i
1

K'
2

m3'
D 2Dv. ~76!

In the limit of km→`, which corresponds to the simpli
fied cutoff independent treatment, one can again arrive at
same conclusions as in Sec. III on the pointlike structure
the multidimensional two-particle bound states. The cut
dependent results are modified due to the dependence o
cutoff structure function~75! on the relationm r5m' /m i .
The integrations inf D(r 0km ,m r) cannot be carried out a
easily as in the symmetric case of Sec. IV corresponding
m r51. Instead, for arbitrary values ofm r , the integrals and
the resulting binding energies can be evaluated numerica
If, however,Am r!1 andr 0km@1 one can obtain the follow-
ing approximate results:

f 2~r 0km ,m r !.
Am r

2p
ln~2r 0km!, ~77!

f 3~r 0km ,m r !.
m r r 0km

2p2
~12 lnAm r !. ~78!

With these functions and forkD.0, the condition~25! of
having a positive solution forr 0 in the eigenvalue equation
~74! remains unchanged in two dimensions, while in thr
dimensions it is transformed into

~x3!21D$k31p2\/@m im rkm~12 lnAm r !#%.0, ~79!

with D given by Eq.~76! in both cases.

B. Diphoton binding energies for pure parametric case

In the case ofkD50 and D50 Eqs. ~73!,~74! and
~77!,~78!, together with the earlier one-dimensional res
~where we replacem by m i), lead to the following simple
expressions for the diphoton soliton radiir 0 and the binding
energiesEb

(2)5\2/(2m ir 0
2):

r 0.~\2/2x1
2m i

2!1/3, Eb
(2) .~\2m i/2!1/3~x1!4/3 ~D51!;

r 0.~p/2!1/2~\/x2m i!m r
21/4@ ln~2r 0km!#21/2,

Eb
(2) 5\2/~2m ir 0

2! ~D52!; ~80!

r 0.~p\/x3m i!~2m rkm!21/2~12 lnAm r !
21/2,

Eb
(2) .~x3!2m im rkm~12 lnAm r !/p

2 ~D53!.

To illustrate how large a binding energy might be o
tained we consider parameter values characteristic of hig
nonlinear parametric materials, such as GaAs asymme
quantum well structures@33#. We note, however, that thes
6-11
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types of materials often have practical limitations involvi
restricted wavelengths, lack of phase matching, or high
sorption. For example, high values ofxB

(2) ~up to
;931027 m/V) observed in the GaAs case were on
around the fundamental~subharmonic! wavelength of about
l1;9.2 mm, and the absorption was high. Other candida
such as organic materials@34# have the advantage of opera
ing at shorter wavelength (l1;1.3 mm), but the values of
xB

(2) are smaller (xB
(2);10210 m/V). Other factors and re

quirements that may have practical importance are simila
those discussed in Ref.@11# for the case of degenerate par
metric interaction.

For the present nondegenerate parametric interaction
summarize the estimates of the diphoton radii and bind
energies by considering reference parameter values simil
those of GaAs. These are chosen as follows:xB

(2)5

931027 m/V, l159.2 mm, and n53.3. In addition, we
assume thatv1.v2.v3/2 (l1.l2.2l3), resulting in
m'51.3310236 kg, and we choose the dispersion coef
cientsv19.v29 such thatm r5 m' /m i50.01. The waveguide
diameterd required to evaluate the value of the coupli
constantxD5x3d(D23)/2 (D51,2) in one and two dimen
sions is chosen asd55l1. Finally, for the cutoff dependen
two- and three-dimensional cases, we choose the cutoff a
inverse of the longest wavelengthkm52p/l1, while in the
one-dimensional case the cutoff dependences can be
glected as long asr 0km@1.

With these parameter values, the resulting radiir 0 and
binding energiesEb

(2) of the parametric diphotons are give
in the following table

CouplingxD r 0 ~mm! Eb
(2) ~eV!

D51 5.43106 (m1/2/s) 22 5.3310
27

D52 3.73104 (m/s) 43 1.4310
27

D53 2.53102 (m3/2/s) 47 1.231027

~81!

indicating that we expect the higher-dimensional quant
solitons to be less strongly bound and of larger radius t
their one-dimensional counterparts.

Thus we have shown that nondegenerate parametric in
actions can provide diphoton bound states in one, two,
three space dimensions. The diphoton has the form o
quantum superposition of two states one of which contain
photon of the sum-frequency fieldĈ3, while the other in-
volves a pair of photons of the lower-frequency fieldsĈ1

andĈ2. The diphoton can be viewed as a photonic analog
a two-quark state model of mesons, and be termed, as in
case of degenerate parametric interaction@14#, an ‘‘optical
meson.’’ The relatively large binding energy, as compared
quantum solitons based onx (3) nonlinearities@21#, combined
with low-temperature experimental techniques, could mak
feasible to observe this simple quantum soliton in exp
ment.
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VI. BEC INTERACTIONS

Another example of a physical system that can be trea
by the Hamiltonian~1!,~2!, and ~5! or ~50! is a coupled
atomic/molecular BEC. Here the parametric coupling rep
sents the coherent process of formation of dimer molecu
(Ĉ3 field! from pairs of atoms (Ĉ1 andĈ2 fields! either of
distinct atomic species, or in distinct quantum states. In
case of degenerate parametric interaction this has been
sidered in Refs.@19,22,23,35,36#. Here we extend the basi
results to the case of nondegenerate parametric interac
i.e., to three coupled Bose condensates, thus extending
variety of ultracold molecular gases that could be created
BEC interactions.

In this directly applicable case of BEC interactions,m1,2
andm35m11m25M are the atomic and molecular masse
the coupling constantxD is related to the molecular forma
tion rate, whilekD

( i j ) are the effective intra- and interspecie
couplings due tos-wave scattering amplitudesai j @24,30#. In
addition,\Dv is the bare formation energy of the molecul
species. Physical mechanisms that can realize cohe
atomic dimerization and produce ultracold molecules inclu
Feshbach resonance and Raman photoassociation@31,35#.
Feshbach resonances have already been observed@37#, while
experiments of this type with Raman photoassociation
under way@39# in the case of single-species~degenerate!
atomic BEC, the theory of which is given elsewhere@22#.

The simplest nontrivial objects in such coupled ato
ic/molecular BEC systems that can be described by
theory, are two-particle~diboson! quantum solitons in three
dimensions (D53), i.e. ‘‘dressed’’ molecules, each o
which exists in a superposition with a pair of atoms. With
characteristicx3 value estimate of aboutx3.1026 m3/2/s
@35,39,22#, the atomic massesm15m2.10225 kg, and as-
suming that thes-wave scattering lengtha12.5 nm, so that
m5m1/2.0.5310225 kg and k352p\a12/m.
6.6310217 m3/s, Eq.~36! results in a quantum soliton bind
ing energy of Eb

(2)52E0
(2)5\(x3)2/k3.10211 eV, for

Dv50. This is the result of the idealized quantum theo
without a momentum cutoff~i.e., km→`), which strictly
speaking cannot be applied in a self-consistent way to B
interactions with a nonzero value ofk3.

If we include the effect of momentum cutoffs and assu
that the scattering lengtha12 provides a natural cutoff atkm
.2p/a12, then km.4p2\/(k3m). In this case the energy
E0

(2)(km) is found from Eqs.~54! and ~62! where the cutoff
structure functionf 3(r 0km) is given by Eq.~61!, with km
.4p2\/(k3m). For Dv50 and assumingkmr 0@1, this
gives

E0
(2)~km!.24\~x3!2/~5k3!. ~82!

The resulting binding energyEb
(2)(km)52E0

(2)(km) and the
corresponding radiusr 05\(2mEb

(2))21/2, for the parameter
values as above andkm.2p/a1251.26 nm21, are
Eb

(2)(km)50.8310211 eV andr 050.3 mm. Thus, the bind-
ing energy with momentum cutoff is very close to the ide
ized result from Eq.~36!, and its magnitude is comparable
achievable temperatures in current BEC experiments.
6-12
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To give the simplest treatment of coupled ato
ic/molecular BEC systems, we neglect any loss proces
such as three-body inelastic collisions. This may not be e
to realize in practice and will depend on the particu
mechanism for atom-molecule coupling. For example, in
case of a Feshbach resonance that couples pairs of atom
quasibound excited molecular state, losses due to inela
atom-molecule collisions can occur at a significant rate@38#.
This is clearly a disadvantage that reduces the conden
lifetime. The Raman photoassociation mechanism is, in
sense, more promising@22#. Here the free-bound Rama
transitions are induced by two laser fields that couple pair
atoms to a bound molecular state through excited interm
ate states. This has the advantage that one can tune the
pling to a deeply bound molecular state, in which case
rate of inelastic collisions can be significantly reduced@39#.
The losses due to collisions with the molecules in the in
mediate~virtual! excited states and those due to spontane
emission can also be reduced by operating in an
resonance regime with respect to the excited levels.

A. Quantum gas to ‘‘liquid’’ transition

Of more importance than the simplest two-particle bou
states areN-particle eigenstates and the ground state ene
of this quantum many-body system, in three space dim
sions. While this is a difficult problem, some important co
clusions can be made by comparing the results obtained
~i! the ansatz of Sec. III E and IV C, corresponding toN/2
independent dibosons, and~ii ! the coherent ansatz employe
in Sec. IV D.

As discussed in Sec. III and IV, a remarkable result t
emerges with the treatment of the first type of ansatz is t
in the limit km→` and for k3

(33)50, it turns into anexact
eigenstate and provides the exact ground state energy g
by Eq. ~47!. The ground state energy has no lower bound
k3→0. This is in contrast to the mean-field behavior cor
sponding to the classical Hamiltonian energy, which
known to have a rigorous lower bound and to support c
sical solitons@15#. For the case of nonzerok3, this idealized
result serves as a lower bound to the true ground state en
with a finite momentum cutoff. For a finite cutoffkm
.2p/a1254p2\/(k3m), the ansatz corresponding toN/2
independent dibosons is no longer the exact eigenstate,
therefore does not necessarily result in the lowest poss
energy. The corresponding estimate of the energy in th
dimensions is obtained from Eqs.~65! and ~82!, for Dv
→0 andkmr 0@1:

Ẽ0
(N)~km52p/a12!.22N\~x3!2/~5k3!. ~83!

This corresponds to a low-density regime of a quantum
of N/2 independent dibosons or ‘‘dressed’’ molecules.

We next address the question of whether the coheren
MFT variational ansatz can give a minimum energyẼc

(N) ,

from Eq. ~69!, that is lower thanẼ0
(N)(km). This would cor-

respond to a liquidlike regime of coupled Bose condensa
where formation of stable localized wave forms or matt
wave solitons is more energetically favorable than ‘‘evap
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ration’’ into a low-density gas of dibosons or ‘‘dressed
molecules. To answer this question in the general case
arbitrary values of the relevant parameters is a difficult pr
lem. Additional complications emerge from the need to a
lyze stability properties of the actual soliton dynamics, w
both parametric and repulsive quartic couplings. It is cle
that strong quartic repulsion terms destabilize soliton pro
gation. If, however, these couplings are not too strong co
pared to the parametric coupling, then the parametric in
action can still act as a ‘‘glue’’ and compensate t
interparticle repulsion, so that stable soliton propagation m
occur.

To proceed with our analysis we note thats-wave scatter-
ing amplitudes for atom-molecule and molecule-molec
collisional processes are currently not well known. For t
reason and for simplicity we neglect the corresponding c
plings (k3

(33)5k3
(13)5k3

(23)50) compared to the atom-atom
couplingsk3 , k3

(11) , and k3
(22) . In addition, we note that

employing the symmetric Gaussian ansatzc1(x)5c2(x) can
only be justified ifk3

(11)5k3
(22) . We restrict our analysis to

the cases where~i! the atomic self-interactions due tok3
(11)

andk3
(22) are negligible compared to the cross-interactionk3,

so that we can setk3
(11)5k3

(22)50; ~ii ! the atomic self- and
cross-couplings are all equal to each other, i.e.,k3

(11)5k3
(22)

52k3.
The result of minimization of the variational energyẼc

(N) ,
Eq. ~69!, in case~i! is given in Fig. 1~curvec, where we plot
the estimates for the ground state energy per particleE0

(N)/N
versusN. The horizontal line~l! represents the lower boun
to the energy given by the idealized solutionEl

(N)/N5
2\(x3)2/(2k3), Eq.~47!, while the lineu is an upper bound
Ẽ0

(N)(km)/N obtained with the cutoff dependent ansatz cor
sponding to a low-density regime of a quantum gas ofN/2
independent dibosons, Eq.~83!. The coherent or MFT ansat
gives a lower energy than the diboson ansatz forN.Ncr
.3.53105, so that transition to a liquidlike regime of loca

FIG. 1. Estimates for the ground state energy per part
E0

(N)/N as a function of N for x351026 m3/2/s, m15m2

510225 kg ~so that m5m1/250.5310225 kg and m352m1

54m52310225 kg), and Dv50. The upper~u! and lower ~l!
bounds are fork356.6310217 m3/s obtained witha1255 nm,
and the cutoff for~u! is km52p/a12.1.26 nm21. Curvec corre-
sponds to the coherent variational ansatz and represents the

mum energyẼc
(N) for the case ofk3

(11)5k3
(22)50, together with

k3
(33)5k3

(13)5k3
(23)50.
6-13
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K. V. KHERUNTSYAN AND P. D. DRUMMOND PHYSICAL REVIEW A 61 063816
ized BEC solitons is more favorable in this domain. T
relative number of particles in the atomic and molecular s
tons N̄1,2/N̄3, obtained from the optimum values of th
Gaussian parameters, decreases asN increases, implying tha
the coupled condensates stabilize against the interatomi
pulsions by converting a larger fraction of atoms into m
ecules. For example, for the total number of particlesN

5106, this fraction is given byN̄1,2/N̄3.0.08.
In case~ii !, we find thatẼc

(N) stays above the value o

Ẽ0
(N)(km) for all N and no crossover occurs, implying that th

regime of a low-density quantum gas of independent
bosons is always lower in energy than the coupled sol
regime.

Thus, at low particle density, the formation of individu
‘‘dressed’’ molecules~dibosons! is favored, as atoms coupl
to molecules in aparticlelikeway. These dressed states ha
interesting properties, reminiscent of Cooper pairs, but c
not be described by the classical parametric soliton eq
tions. At large density~but not too large so thats-wave scat-
tering is dominant! and for parameter values characteristic
the case~i!, the coherent coupling of three entire condensa
is dominant. With large enough parametric coupling, a
provided other recombination processes are negligible, th
are coherent nonlinearwavelike interactions between th
atomic and the molecular Bose condensates~just as in non-
linear optics!, which make it possible to form stable thre
dimensional BEC solitons. For larges-wave scattering, cas
~ii ! illustrates a classically stable soliton that is unsta
against ‘‘evaporation’’ to a quantum gas of dibosons.

As mentioned earlier, loss processes can be detriment
the above properties of coupled condensates. In prac
terms, the time scale for inelastic losses must be much lon
than the coupled condensate formation time scale. We h
not given any experimental technique for generating
coupled condensate in its ground state. However, a pos
method is to employ evaporative cooling while the ato
molecule coupling is switched on.

B. Coherent BEC soliton dynamics

In performing experiments on coupled atom/molecu
BECs, the first signature of the nonlinear interactions we
interested in is likely to be in the dynamical behavior of t
coupled condensates. This also allows us to check the st
ity, at the mean-field level, of the coherent soliton ansatz.
therefore consider (3D11) spatiotemporal dynamics of th
coupled condensates, obtained by direct numerical sim
tion of the MFT equations for the field amplitudesc i(t,x).
These are modified Gross-Pitaevskii equations of the for

i
]c j

]t
52

\

2m1
¹2c j1x3c3c32 j* 1k3uc32 j u2c j

1k3
( j j )uc j u2c j1k3

( j 3)uc3u2c j ~ j 51,2!,

i
]c3

]t
52

\

2m3
¹2c31Dvc31x3c1c21k3

(33)uc3u2c3

1~k3
(13)uc1u21k3

(23)uc2u2!c3 , ~84!
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where we recall thatk3[(k3
(12)1k3

(21))/25k3
(12) .

We consider for simplicity the symmetric case ofc1(x)
5c2(x), with k3

(11)5k3
(22) and k3

(33)5k3
(13)5k3

(23)50. In
these cases Eqs.~84! reduce to

i
]c1

]t
52

\

4m
¹2c11x3c3c1* 1k̄uc1u2c1 ,

i
]c3

]t
52

\

2m3
¹2c31Dvc31x3c1

2 , ~85!

where we have definedk̄[k31(k3
(11)1k3

(22) )/2.
The coupled atomic/molecular soliton dynamics can

studied by direct numerical simulation of the above eq
tions, starting with initial Gaussian atomic and molecu
mean fields. The results of simulations are given in Figs
and 3, where we plot the density profilesuc1,2u2 anduc3u2 as
depending on timet and the radial coordinater 5uxu. This
demonstrates stable propagation of coupled atomic and
lecular solitons, for two values ofk̄ corresponding, respec
tively, to previously considered cases:~i! k3

(11)5k3
(22)50, so

that k̄5k3, and~ii ! k3
(11)5k3

(22)52k3, so thatk̄53k3. The
graphs represent a phase matched (Dv50) parametric inter-

FIG. 2. Mean-field densitiesn1,25uf1,2(x,t)u2 and n3

5uf3(x,t)u2, representing simultaneous atomic~a! and molecular
~b! solitary waves, as depending on timet and the radial coordinate

r 5uxu for k̄56.6310217 m3/s (k356.6310217 m3/s, k3
(11)

5k3
(22)50), k3

(33)5k3
(13)5k3

(23)50, m15m2510225 kg, x3

51026 m3/2/s, andN5106. The initial optimum Gaussian param
eters are g15g2.8.631010 m23/2, g3.4.831010 m23/2, w1

5w2.0.97 mm, andw3.0.71 mm.
6-14



lu
p-

ll
Fi
a

ss
tio
w

b
er
ho
ol
t

d
in
d
.

th
to
ng
a

in-
is-

on-
alog

ate
sh-
on-
c-
tum
e
en-
den
mo-
b-

d a
ar

ns.
al
of
in

nd
erate
rap
e

l
the

the
wo-
e to

e
ou-
rve
cu-
hese
ted
by
mic
the
e is

al
m-

rates
-
ons

MULTIDIMENSIONAL QUANTUM SOLITONS WITH . . . PHYSICAL REVIEW A 61 063816
action, with the initial optimum Gaussian parameters eva
ated forN5106. Clearly the Gaussian profile is only an a
proximate version of the true soliton envelope~which can be
calculated numerically, as in@16#!; hence we observe sma
in-phase oscillations. We note that although the case of
2 has higher energy than the low-density regime of a qu
tum gas of independent ‘‘dressed’’ molecules, neverthele
appears from the mean-field theory that soliton propaga
can be possible as a metastable regime, presumably
quantum evaporation.

This soliton propagation behavior leads to the remarka
property that coupled BEC solitons or localized matt
waves could be generated in three space dimensions wit
an external trapping potential. Similar spatiotemporal s
tons have recently been observed with optical fields, bu
the degenerate case of parametric interaction@40#. The re-
sults of the present nondegenerate theory indicate that a
tional s-wave scatterings~or phase modulation processes,
the optical case! that exist among all three fields would ten
to make solitons less stable than in the degenerate case

C. ‘‘Superchemistry’’ behavior

Another possible experimental approach to generating
coupled condensates is by first cooling an atomic vapor
BEC, and then switching on the atom-molecule coupli
This can lead to the formation of the molecular condens

FIG. 3. Same as in Fig. 2 but for the value ofk̄5

19.8310217 m3/s (k3
(11)/25k3

(22)/25k356.6310217 m3/s). The
initial optimum Gaussian parameters areg15g2.3.13
31010 m23/2, g3.1.9231010 m23/2, w15w2.1.8 mm, andw3

.1.3 mm.
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and a ‘‘superchemistry’’ dynamics, where the condensate
terconversion is dominated by the coherent stimulated em
sion of bosonic atoms or molecules into their respective c
densates. The phenomenon would be the matter-wave an
to optical frequency summation.

We note that similar behavior, in the case of degener
parametric interaction, has recently been studied for a Fe
bach resonance coupling of single atomic and molecular c
densates@41#. Assuming uniform condensate wave fun
tions, the system was analyzed in the context of quan
tunneling emerging from the oscillatory behavior of th
number of atoms and molecules in their respective cond
sates. The oscillatory dynamics was in response to a sud
change of the detuning of the resonance, applied to a ho
geneous atomic/molecular BEC that was initially in equili
rium.

For the case of Raman photoassociation coupling, an
trapped atomic BEC as the initial condition, the nonline
dynamics of the coupled condensates was studied in@22# by
direct simulation of the resulting degenerate MFT equatio
This gave further insights into the rich variety of dynamic
behavior and a theoretical prediction of the possibility
coherent chemistry or ‘‘superchemistry’’ behavior
coupled BEC systems.

Here we extend this study to the case of two atomic a
one molecular condensates, and analyze the nondegen
MFT equations modified by the trap potential terms. The t
terms are of the formVi(x)c i ( i 51,2,3), to be added on th
right-hand sides of Eqs.~84!. We consider a rotationally
symmetric harmonic trap potentialVi(x)5miv i

2uxu2/(2\),
wherev i is the trap oscillation frequency for thei th species,
and restrict our analysis to the symmetric case ofc1(x)
5c2(x), with k3

(11)5 k3
(22)52k3 and k3

(33)5k3
(13)5k3

(23)

50. In addition, we chooseDv51.53104 s21 and the trap
frequenciesv1/2p5v2/2p5v3/2p5100 Hz.

We simulate Eqs.~85! together with the trap potentia
terms in two stages. In the first stage, we assume that
parametric couplingx3 is switched off, and that only atomic
species are present in the trap. The result achieved is
steady state of the Gross-Pitaevskii equations for a t
component atomic Bose condensate, which we choos
correspond to an initial total number of atomic particlesN

5N̄11N̄2;4.83104 at a concentration of n;
531019 m23. This provides the starting condition for th
second stage of simulations, where we switch on the c
pling x3. The results are shown in Fig. 4, where we obse
giant collective oscillations between the atomic and mole
lar condensates, which take place on short time scales. T
oscillations are due to the coherent process of stimula
emission into a condensate of molecular dimers, followed
the reverse process of stimulated emission into the ato
condensates. The integrated number of particles in
atomic and molecular condensates as depending on tim
shown in Fig. 5.

This ‘‘superchemistry’’ is a type of coherent chemic
reaction that can take place in BEC systems at ultralow te
peratures. It is characterized by Bose-enhanced reaction
(ṅ j (3)}njAn3, j 51,2) due to the effect of bosonic stimu
lated emission. This is in a sharp contrast to the predicti
6-15
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K. V. KHERUNTSYAN AND P. D. DRUMMOND PHYSICAL REVIEW A 61 063816
of conventional~Boltzmann! chemical kinetics, where the
chemical reaction rates do not depend on the numbe
product particles and go to zero at low temperatures, acc
ing to the Arrhenius law. We emphasize that this type
coherent density dependent oscillation is a signature of
nonlinear parametric coupling, and would represent a fi
step toward observing the liquid-gas phase transition
cussed earlier.

FIG. 4. ‘‘Superchemistry’’ oscillations: atomic~a! and molecu-
lar ~b! condensate densitiesni5uf i(x,t)u2 as depending on timet
and the radial distancer 5uxu from the trap center. The values o

parameters are k̄519.8310217 m3/s (k3
(11)/25k3

(22)/25k35

6.6310217 m3/s), k3
(33)5k3

(13)5k3
(23)50, m15m2510225 kg,

x351026 m3/2/s, Dv51.53104 s21, and v1/2p5v2/2p
5v3/2p5100 Hz.

FIG. 5. Total number of particles in the atomic~1,2! and mo-

lecular ~3! Bose condensatesN̄i5*d3xuf i(x,t)u2 as a function of
time t.
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VII. SUMMARY

In summary, we have presented quantum soliton
bound-state solutions to a nondegenerate parametric q
tum field theory, in one, two, and three space dimensions
in the degenerate parametric case, the results have qua
pointlike ~zero-radius! structures in the eigenstates in mo
than one space dimension, if there is no momentum cut
This is quite different from the behavior of solitons in th
corresponding classical theory, and the reason for this is
inherently nonclassical structure of the bound state, whic
a quantum superposition state. We note that most prev
analyses of quantum solitons treated cases where the q
tum soliton was at least qualitatively similar to the corr
sponding classical theory. This is not the case here.

With the inclusion of momentum cutoffs on the nonline
couplings, the two-particle bound state has a finite rad
even in the simplest case of a pure parametric interactio
i.e., without the quartic interaction term. We can estimate
the case of nonlinear optical or atomic BEC interactions, t
the nonlinear couplings should have a momentum cutoff
higher than an inverse carrier wavelength or inverse sca
ing length, respectively. These estimates can be improve
more careful treatment of the theory at large relative m
menta. Such an improved treatment would be especially
propriate in the three-dimensional case where we obta
linear divergence withkm→`.

Most significantly, the quantum solitons form in phys
cally testable regimes. Our estimates for characteristic s
ton radii and binding energies, in the case of photonic int
actions in highly nonlinear parametric (x (2)) media, result in
much more realistic values than examples ofx (3) solitons,
with the required experimental environment being nea
available with current technology. In the case of BEC int
actions, we point out the possibility of transition between t
quantum~diboson! soliton regime, where atoms couple
form molecules in a local way, to a classical soliton regim
In the classical domain, the coherent coupling of three en
condensates takes the place of the nonlinear optical pro
of sum-frequency generation. This gives the possibility
simultaneous atom and molecular matter-wave solitons
threespace dimensions, and therefore an intense, stable,
nondiverging atom/molecular laser output. The stabil
properties of these solitons depend on the details of
s-wave scattering lengths between all three species pres
We note that earlier examples of matter-wave BEC type s
tons ~see, e.g.,@42#, and references therein! were only for a
one dimensional geometry. Of even more interest is a typ
coherent BEC-enhanced chemical reaction or ‘‘superchem
try’’ behavior at ultralow temperatures, which follows from
the underlying dynamics of coupled condensate nonlin
equations.

Finally, the bosonic character of the fields is not releva
for the quantum bound-state theory derived here. Exactly
same results would occur if fermionic fields were involve
and we changed the corresponding commutation relation
anticommutators. In this respect, the present theory dif
from the degenerate case@11,23#, where the results were
only applicable to bosonic fields. This suggests that par
6-16
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MULTIDIMENSIONAL QUANTUM SOLITONS WITH . . . PHYSICAL REVIEW A 61 063816
these results~but not the classical soliton theory! could be
extended to possible atomic fermionic superconductors
which coupling between fermionic atoms is enhanced by
coherent production of bosonic molecules. Another poss
application is to models of mesonlike coupling in mixe
fermionic-bosonic systems.
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APPENDIX A

To calculate the energy

Ẽ0
(N)5^w̃0

(N)uĤuw̃0
(N)&/^w̃0

(N)uw̃0
(N)&

with the ansatz~44! we first transform to the coordinatesx
5R1m2r /M and y5R2m1r /M , and use binomial expan
sion, so thatuw̃0

(N)& becomes

uw̃0
(N)&5S E dDxĈ3

†~x!1E E dDx dDy

3g~x2y!Ĉ1
†~x!Ĉ2

†~y! D N/2

u0&

5(
j 50

N/2 S N/2

j D S E dDxĈ3
†~x! D N/22 j S E E dDx dDy

3g~x2y! Ĉ1
†~x!Ĉ2

†~y! D j

u0&.

Here the vacuum stateu0& is defined asu0&5u01&u02&u03&, so
that Ĉ i u0i&50.

Calculating the averages involved inẼ0
(N) uses the com-

mutation relations@Ĉ i(x),Ĉ j
†(x8)#5d i j d(x2x8), and relies

on the zero-radius property of the two-particle correlat
functiong(r ), i.e.g(r )50 for rÞ0 andg(0)52xD /kD , in
two and three dimensions. We demonstrate this on the
ample of ^w̃0

(N)uw̃0
(N)& which is written using the above ex

pansion as

^w̃0
(N)uw̃0

(N)&5 (
j 850

N/2

(
j 50

N/2 S N/2

j 8
D

3S N/2

j D ^03u S E dDx8 Ĉ3~x8! D N/22 j 8

3S E dDxĈ3
†~x! D N/22 j

u03&

3^01,02u S E E dDx8dDy8g~x82y8!

3Ĉ1~x8!Ĉ2~y8! D j 8S E E dDx dDy

3g~x2y! Ĉ1
†~x!Ĉ2

†~y! D j

u01,02&.
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We first simplify the calculation by applying the commu
tation relations and reordering the operators so that all
struction operators stand on the right. Then all terms witj
Þ j 8 in the above double sum will vanish due to extra facto
Ĉ i(x) @or Ĉ i

†(x)# acting on the vacuum stateu0i& from the
right ~or on ^0i u from the left!. The remaining terms with
j 85 j are combined into a single sum according to

(
j 850

N/2

(
j 50

N/2

$ . . . % j 8, j5 (
j 850

N/2

(
j 50

N/2

$ . . . % j 8, jd j 8 j5(
j 50

N/2

$ . . . % j 85 j .

The nonvanishing terms in this sum contain no operators
can be further simplified by integrating with respect tod
functions from the commutators. The result of these integ
tions is that all terms, except the one corresponding tj
50, will contain factors of the form**dDxdDy g2(x2y)
which vanish due to the zero-radius property of theg(r )
function @*dDr g2(r )50# in two and three dimensions (D
52,3). The remaining nonvanishing contribution of the te
with j 50 results in

^w̃0
(N)uw̃0

(N)&

5^03u S E dDx8 Ĉ3~x8! D N/2S E dDxĈ3
†~x! D N/2

u03&

5~N/2!! S E dDxD N/2

5~N/2!!VN/2 ~D52,3!,

whereV[*dDx.
Similar calculations apply to the other averages involv

in ^w̃0
(N)uĤuw̃0

(N)&, so that one can obtain~for D52,3)

^w̃0
(N)uĤuw̃0

(N)&5~N/2!!VN/2
N

2 F \2

2m E dDx u¹g~x!u2

1\Dv12\xDg~0!1\kDg2~0!

1S N

2
21D\kD

(33)

2V G .
Here the contribution from the kinetic energy pa
*dDx u¹g(x)u252*dDx g(x)¹2g(x) can be shown to van
ish, using Eq.~15! and the property that*dDx g2(x)50
(D52,3). Substituting theng(0)52xD /kD from Eq. ~35!
we finally obtain

Ẽ0
(N)5

N

2 S \Dv2
\~xD!2

kD
D1

N

4 S N

2
21D\kD

(33)

V

~D52,3!,

which is the result given in Eq.~45!.
For the case of odd values ofN the N-particle ansatz

contains an extra factor of*dDxĈ3
†(x) acting on the vacuum

stateu0& from the left, in Eq.~44!, andN/2 is replaced by its
integer part@N/2#. The final result for the energyẼ0

(N) in this
case has the form of the above equation where the s
replacementN/2→@N/2# is applied.
6-17
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APPENDIX B

To calculate the N-particle energy Ẽ0
(N)(km)

5^w̃0
(N)(km)uĤuw̃0

(N)(km)&/^w̃0
(N)(km)uw̃0

(N)(km)& with the
cutoff dependent ansatz~64! and the Hamiltonian given by
Eqs.~1!, ~50!, and~51!, we first use the binomial expansio
so that

uw̃0
(N)~km!&5S â3

†~0!1~2p!2D/2

3E
uku50

km
dDkG~k!â1

†~k!â2
†~2k! D N/2

u0&

5(
j 50

N/2 S N/2

j D @ â3
†~0!#N/22 j S ~2p!2D/2

3E
uku50

km
dDkG~k!â1

†~k!â2
†~2k! D j

u0&,

where we assumeN is even, and the vacuum stateu0&
5u01&u02&u03& is defined such thatâi u0i&50.

We show the main steps involved in the calculation
Ẽ0

(N)(km) on the example of̂w̃0
(N)(km)uw̃0

(N)(km)&. Using the

above expansion,̂ w̃0
(N)(km)uw̃0

(N)(km)& is expressed as
double sum( j 850

N/2
( j 50

N/2 $ . . . % j 8, j , which is reduced to a
single sum( j 50

N/2 $ . . . % j 85 j as the terms withj 8Þ j will van-
ish, after reordering the operators, due to the unequal num
of creation and destruction operators acting on the vacu
The terms that can give nonvanishing contributions are w
ten as

^w̃0
(N)~km!uw̃0

(N)~km!&

5(
j 50

N/2 S N/2

j D 2

^03u@ â3~0!#N/22 j@ â3
†~0!#N/22 j u03&

3^01,02u

3S ~2p!2D/2E
uk8u50

km
dDk8G~k8! â1~k8!â2~2k8! D j

3S ~2p!2D/2E
uku50

km
dDkG~k!â1

†~k!â2
†~2k! D j

u01,02&.

~B1!

Here the calculation of the averages^03u . . . u03& and
^01,02u . . . u01,02& uses the commutation relation

@ âi(k),â j
†(k8)#5d i j d(k2k8) to change the order of creatio

and destruction operators in the operator products, so tha
the destruction operators act on the vacuum from the ri
while the creation operators act on the vacuum from the l
This gives vanishing terms and simultaneously gener
nonvanishing terms due to thed functions from the commu-
tators. For the case of the average^03u . . . u03& the nonvan-
ishing terms give
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^03u@ â3~0!#N/22 j@ â3
†~0!#N/22 j u03&5S N

2
2 j D !d~0!N/22 j ,

~B2!

where d(0) is to be understood asd(0)5*dDx/(2p)
5V/(2p) in the limit of infinitely large volumeV→`.

Similarly, reordering the operators in̂01,02u . . . u01,02&
produces nonvanishing terms involving products ofd func-
tions, so that

^01,02uS ~2p!2D/2E
uk8u50

km
dDk8G~k8!â1~k8!â2~2k8! D j

3S ~2p!2D/2E
uku50

km
dDkG~k! â1

†~k!â2
†~2k! D j

u01,02&

5 )
p51

j S 1

~2p!D E
ukp8u50

km E
ukpu50

km
dDkp8d

DkpG~kp8! G~kp!D
3 (

perm
@d~k(1)2k18!d~k(2)2k28!••• d~k( j )2k j8!#

3 (
perm

@d~k(1)2k18!d~k(2)2k28!•••d~k( j )2k j8!#,

~B3!

where(perm represents summation with respect to permu
tions referring to the set of bracketed indices@(1),(2),
•••,( j )# in the product ofd functions d(k(1)2k18)d(k(2)

2k28) . . . d(k( j )2k j8). There are j ! terms in each of the
sums, such as

d~k12k18!d~k22k28!•••d~k j2k j8!1d~k22k18!

3d~k12k28!•••d~k j2k j8! 1•••.

The product of the two sums will contain diagonal term
i.e., terms in which the permutation arrangement of
bracketed indices@(1),(2), . . . ,(j )# is the same in both set
of d function products, so that these terms have the follow
form:

d2~k12k18!d2~k22k28!•••d2~k j2k j8!

1 d2~k22k18!d2~k12k28!•••d2~k j2k j8! 1•••.

The remaining terms are the off-diagonal terms in which
arrangement of indices is different, as in a term like

d~k12k18!d~k22k28!d~k32k38!•••d~k j2k j8!

3d~k22k18!d~k12k28!d~k32k38!•••d~k j2k j8!.

The diagonal terms can be combined into a single s
over the number of permutations with respect to the se
bracketed indices:

(
perm

@d2~k(1)2k18!d2~k(2)2k28!•••d2~k( j )2k j8!#.
6-18
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The integrations in Eq.~B3! over thed functions involved in
these diagonal terms will result in a factor ofj !d(0) j . The
integrations over thed functions in the off-diagonal term
can produce a factor ofd(0)k only with k, j , and therefore
the contribution of these terms can be neglected as comp
to the contribution of the diagonal terms in the limit ofV
→`. This results in

)
p51

j S 1

~2p!D E
ukp8u50

km E
ukpu50

km
dDkp8d

DkpG~kp8!G~kp!D
3S (

perm
@d2~k(1)2k18!d2~k(2)2k28!•••d2~k( j )2k j8!# D

5 j !d~0! j S 1

~2p!D E
uku50

km
dDkpG2~kp!D j

. ~B4!

Combining Eqs.~B1!–~B4! we obtain

^w̃0
(N)~km!uw̃0

(N)~km!&

5~N/2!!d~0!N/2(
j 50

N/2 S N/2

j D S 1

~2p!D E
uku50

km
dDk G2~k!D j

5~N/2!!d~0!N/2S 11
1

~2p!D E
uku50

km
dDkpG2~kp!D N/2

.

Applying similar procedures to other averages involved

^w̃0
(N)(km)uĤuw̃0

(N)(km)& and keeping only the leading term
;d(0)N/2 we obtain that

Ẽ0
(N)~km!5

^w̃0
(N)~km!uĤuw̃0

(N)~km!&

^w̃0
(N)~km!uw̃0

(N)~km!&

5
N

2
@11F~r 0 ,km!#21S \2

2m
R~r 0 ,km!1\Dv

12\xDg~0,km!1\kDg2~0,km! D ,

where we have defined

F~r 0 ,km![
1

~2p!D E
uku50

km
dDkG2~k!,
by
.

06381
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R~r 0 ,km![
1

~2p!D E
uku50

km
dDkk2G2~k!,

and

g~0,km!5
1

~2p!D E
uku50

km
dDkG~k!.

We next note that for the caseN52 the expression for
Ẽ0

(N)(km) must give the exact two-particle solution for th
energyE0

(2)(km), given by Eqs.~54! and ~62!, i.e.,

Ẽ0
(2)~km!5E0

(2)~km!52\2/~2mr 0
2!,

and therefore

@11F~r 0 ,km!#21S \2

2m
R~r 0 ,km!1\Dv12\xDg~0,km!

1\kDg2~0,km! D52\2/~2mr 0
2!. ~B5!

Thus our final step in proving Eq.~65! consists in showing
that Eq.~B5! is equivalent to the eigenvalue equation~62!.
This equivalence can be shown with the use of the exp
expression forG(k), from Eq. ~53!,

G~k!52
q

k211/r 0
2

,

which allows one to expressR(r 0 ,km) as

R~r 0 ,km!5
q2

r 0
D22

f D~r 0km!2
1

r 0
2

F~r 0 ,km!.

In addition, we use the definition ofq, Eq. ~56!, and express
g(0,km) in terms of f D(r 0km), using Eq.~57!. This makes it
possible to rewrite Eq.~B5! in the form of Eq.~62!, thus
proving thatẼ0

(2)(km)5E0
(2)(km), and therefore

Ẽ0
(N)~km!5

N

2
E0

(2)~km!,

which is the result of Eq.~65!.
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Chem. Phys. Lett.279, 50 ~1997!.

@32# N. Bloembergen,Nonlinear Optics ~Benjamin, New York,
1965!; P. N. Butcher and D. Cotter,The Elements of Nonlinea
Optics ~Cambridge University Press, Cambridge, 1990!.

@33# Z. Chenet al., Appl. Phys. Lett.61, 2401~1992!; H. Xie, W.I.
Wang, J.R. Meyer, and L.R. Ram-Mohan,ibid. 65, 2048
~1994!; M. Seto,et al., ibid. 65, 2969~1994!.

@34# M.S. Wong, F. Pan, M. Bo¨sch, R. Spreiter, C. Bosshard, P
Günter, and V. Gramlich, J. Opt. Soc. Am. B15, 426 ~1998!;
R. Spreiter, Ch. Bosshard, G. Kno¨pfle, P. Gu¨nter, R.R. Tyk-
winski, M. Schreiber, and F. Diederich, J. Phys. Chem. B102,
29 ~1998!.

@35# P. Tommasini, E. Timmermans, M. Hussein, and A. Kerm
cond-mat/9804015.

@36# J. Javanainen and M. Mackie, Phys. Rev. A59, R3186~1999!.
@37# S. Inouye et al., Nature ~London! 392, 151 ~1998!; Ph.

Courteille, R.S. Freeland, and D.J. Heinzen, Phys. Rev. L
81, 69 ~1998!.

@38# J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.
Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett.82, 2422
~1999!.

@39# D. J. Heinzen~private communication!; R.S. Freeland, R.H.
Wynar, D.J. Han, and D.J. Heinzen, Bull. Am. Phys. So
44~1!, 1007~1999!.

@40# X. Liu, L.J. Qian, and F.W. Wise, Phys. Rev. Lett.82, 4631
~1999!.

@41# E. Timmermans, P. Tommasini, R Coˆte, M. Hussein, and A.
Kerman, e-print cond-mat/9805323; A.N. Salguero, M.
Nemes, M.D. Sampaio, and A.F.R. de Toledo Piza, e-p
quant-ph/9809003.

@42# S.A. Morgan, R.J. Ballagh, and K. Burnett, Phys. Rev. A55,
4338 ~1997!; W.P. Reinhard and C.W. Clark, J. Phys. B30,
L785 ~1997!; T.F. Scott, R.J. Ballagh, and K. Burnett,ibid. 31,
L329 ~1998!; O. Zobay, S. Po¨tting, P. Meystre, and E.M.
Wright, Phys. Rev. A59, 643 ~1999!.
6-20


