2.11 Central Forces

A force F(z,y, z) is called central if it has the form:

F=F(r)t = @

where r = 71 +vyj +zk and r = /22 + 92 + 22.

Central forces act either towards or away from the origin (depending on their sign)
with a magnitude dependent only on the distance the object is away from the origin.

Note:

A

Lemma: Let F(r) = —V'(r) for some function V. Then the central force F(r) = F(r)t
is conservative with potential function V/(r).

Proof:
F(r) = -V'(r)t=-V'(r)Vr
/ 37‘ N " 37’ % " & ~
-V (7‘)551 -V (7)55 -V (r)az k
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= —VV(r) (using the chain rule).

Therefore all central forces are conservative. (We assume here that the function F(r)
is always integrable.) Hence a particle moving in a central force F(r) = —V'(r)t has
energy

E = %va + V(r)

which remains constant in time.

2.12 Conservation of angular momentum

If we have a particle with mass m, velocity v and position r, then that particle has an
angular momentum given by:
L =m(r x v).
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This can also be written as linear momentum
L=rxp

where p is the linear momentum of the particle. If a force F is exerted on the particle,
we have from Newton’s second law

L = m@Exv)+m(rxv)
m(v X v) +m(r x v)
rxmv (Asv xv=0)

rxF,
which is called the torque.
For a central force
!
F=-V'(r)i= VT(T)r,
SO
L = rxF
-V'()
- (r xr)
= 0.

Hence L is constant in time, so we have conservation of angular momentum.

Notes:

rL = mr-(rxv)=0

v:L = mv-(rxv)=0

That is, r and v are both orthogonal to L. Thus a central force restricts movement to a
plane, which is perpendicular to the angular momentum L.

2.13 Kepler’s second law

The angular momentum of a particle is related to the rate at which its position vector
sweeps out an area: For df small,

dA

%

%|r(t) X £t + db)|

= Zle(t) x (x(¢ + dt) — x(6)]

(et + dt) — (b))
= Z|r(t) x - | dt

Q

1 .
SIe(t) x ()] dt,
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which becomes exact as dt — 0. Therefore,

dA 1 N
S = Sl x i) = 57

So for a central field of force, where L is constant in time, the rate at which the
position vector sweeps out an area is also constant in time. This result is known as
Kepler’s second law - empirically discovered for planetary motion by Kepler.

Note: This law, together with the planar motion of the planets, led Newton to deduce
that gravity was a central force. Explicitly for a planet of mass m orbiting about the sun
(assumed at origin), the force on the planet is given by

GMm

72

F=- r

where M is the mass of the sun and r is the distance of the planet from the origin. We
shall see later that such a law of force predicts elliptic orbits for the planets. Thus gravity
is a central force with potential

V(r) = ——K, K =GMm.
T

2.14 Central forces and polar coordinates

We assume that the angular momentum vector L points in the z-direction so the particle
moves in the z — y plane. We introduce polar coordinates r, 8 such that

z =rcosfd, y=rsinf
and r = 1/x% + 32 is the distance of the particle from the origin. Hence
r=zi+ yj =rt

where £ = cosf1i + sin Gj is the unit vector in the direction of the particle. Using

dt  didf .
—=——=00
dt  dodt ’

where 6 = % = —sinfi + cosf] is the unit vector int the direction of increasing 6, gives

us -
v =1 = 7%+ r60.

Notes: R X

)f-80=6-k=f k=0

&t _ § A _ 5f
2) Eé_o = dt“—99»
NB=-t => L=20%—_¢
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The angular momentum vector is expressible as

L = m(r x v) =m(rf) x (7 + r48)
= mri(E x £) + mr2d(E x 0)
= mrifk

So angular momentum points in the z-direction as required. The magnitude of the angular

momentum is thus .
L =mr?0

which is constant in time.

Exercise: Problem Sheet 2 Question 7.
Since we are dealing with a central force
F=-V'(r)t
the equation of motion is given (see above exercise) by
~V'(r)E = m(F — r6%)F 4+ m (276 -+ rd)8.

Equating the radial and angular components gives us

!
i g2 =Y (7)
m
for the radial part and ] .
210 +160 =0

for the angular equation. Rewriting this last equation, we obtain
d, 5
—(r*0) =0
which is equivalent to stating that the angular momentum
L =mrf
is constant in time. The motion of the particle is thus governed by the radial equation

m

F—rf? = —
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2.15 Inverse square law and planetary motion

According to Newton’s law of gravitation a planet of mass m orbiting a star of mass M
(at the origin) experiences the central force

GMm
- 'y

F = =~

T

= —VV(T'),

where V(r) = —% is the potiential energy. Thus the energy of the planet is

which remains constant in time.

Now introduce the Runge’ vector

R=f+o(Lxv) =i+ 2k xv)
Claim: R = 0, so R remains constant in time.
Proof: i I
. T ~
R= % -+ ?( k x V)
Using the equation of motion X
mv = _’r‘_jf',
we obtain
. L . .
. L . 1 . ~
= -~ f0=——(mr*—-10)8=0
66 — — (mr®0 — L)

In particular, the length |R| of R is constant. Now

L? . oL, .«
RP?’=R - R=1+—7|k xv]*+ =1 (k xv).

K? K
But (k x v) = k x (7 +r68) = 70 — rft so
L? : 2L
2 =2 2p2y _ 2H
R|* = 1+K2('r + r6%) Kr9
_ 1+L2v2_ 212
N K2  Kmr
oI 1, K
= M apm oY)
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from which we can recognize E. Therefore

9L2E\ ?
R| = <1+mK2) —e>0

which is called the eccentricity of the orbit.

Below we assume that L # 0 (the case L = 0 is trivial - see tutorial sheet).

2.16 Planetary orbits

To understand the motion of a planet better, we assume R points along the z-axis.

Then using k x v = 76 — r6%, show that r(1 — ecos®) = %

Solution:
we find
ercosf = |R|rcosf
= R'r
= 4Lk xv) -
N K
= 4 20— rfE)]
N K
L, 2
r— E’)‘ @=r— EE
Hence
L? 1
r

~ Km(1—ecosf)’
which is the equation of a conic section with eccentricity e and sun at one focus. We have
the following possibilities:

1. 0 <e<1-ellipse (E < 0) - the case e = 0 corresponds to a circle (special case of
an ellipse),

2. e =1 - parabola (E = 0),
3. e > 1 - hyperbola (E > 0).

Notes:

1) The above also applies to asteroids, comets, etc, orbiting the sun, as well as to satellites
(natural or artificial) orbiting the planets.

2) Planets are trapped in sun’s gravitational field and so have the energy E' < 0 corre-
sponding to elliptical orbits. For comets it is possible for £ > 0 corresponding to parabolic
or hyperbolic orbits - these are non-periodic comets.
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2.17 Elliptical orbits (0 <e < 1)

From the polar equation for r given above, we write

S

T 1—ecosh’ mK’

It follows that the maximum value of r occurs at 8 = O:

Tmax=T0=1_e7

which is referred to as the aphelion distance from the sun (at the origin).

The minimum value of r occurs at 6 =

Tmin:T1=1+e’

which is called the perihelion distance. The length of the semi-major axis is thus

1
a==(rg+m) =

2 1—e?’

Notes:
Dro=a(l+e), m=qa(l—ce)
2) Centre of ellipse is at (ea,0).

2.18 Cartesian Form

To see that the above orbits are indeed ellipses we note from r(1 — ecos@) = [ that
r=[f+ercosf =+ ex. Thus

2+ 12 =12 = (B +ex)? = B% + 20z + €%2°
or (1 —e?)2? — 2efz + y? = (3. Rewriting:

2 2efz y2 i g2

T i e T iCe  1-e
2 2 2 2.2
BNy B Fe
1—e? 1—e? (1—e?)  (1—e?)?
52
- (1—e2)?
or
(z — ea)® v
a? (1 — e?)a?



which is the equation of an ellipse centered on (ea,0) with semi-major axis a and semi-
minor axis b = v/1 — e2a. This explains Kepler’s first law that the orbits of planets are
ellipses with the sun at one focus.

Notes: ;
D1-¢e®= _%T(% = ~26TE, therefore a = 7 _ﬁeg = —%. Then the energy of the planet is
given by
o K
T2

2) The length of the semi-minor axis is thus

S

—2I2F L? L
b = ]. — e2 = \/ et — .
V e“a mK2 a mKa,a ,_.__mKa/

2.19 Kepler’s third law:

The period T of a revolution of orbit is proportional to as.

Proof:
mab = area of ellipse

T

- / 94
o dt
/T L LT

= L dt===
0 2m 2m

1
Then T = 2m7eb — 2mma _L 5 o5 that

L L VmK
m 3 2 3
T =21/ —=a? = a?
V K vVGM

as desired.

Notes:

1) All of the above applies to asteroids, captured comets etc. orbiting the sun as well as
to satellites orbiting planets. '

2) Planets move around the sun in elliptical orbits of small eccentricity - well approximated
1

by circles. Eg. egarin = 31'0'7 EVenus = Tflfg,', ENeptune — To5°
3) By contrast periodic comets such as Halley, Enche, etc. have highly elongated elliptical
orbits - well approximated by parabolas (particularly near perihelion) eg. egncrers =~ .85.
4) Non-periodic comets have energy F > 0 and move in parabolic or hyperbolic orbits

passing the sun once never to return.
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