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Chapter 1

Introduction

Lecturer: Dr Matthew Dauvis.

Room: 6-403 (Physics Annexe, ARC Centre of Excellence fomuma-Atom Optics)
Phone: (334) 69824

email: mdavis@physics.ug.edu.au

Office hours: Friday 8-10am, or by appointment.

Useful texts

e Rasband: Chaotic dynamics of nonlinear systems. Q172.5.343.890.

¢ Percival and Richards: Introduction to dynamics. QA6148 B982.

e Baker and Gollub: Chaotic dynamics: an introduction. QA&®2 B35 1996.

e Gleick: Chaos: making a new science. Q172.5.C45 G54 1998.

e Abramowitz and Stegun, editors: Handbook of mathematizattions: with formulas, graphs,
and mathematical tables. QA47.L.8 1975

The lecture notes will be complete: However you can only mepryour understanding by reading
more. We will begin this section of the course with a brief neder of a few essential conncepts
from the first part of the course taught by Dr Karen Dancer.

1.1 Basics

A mechanical system is known aenservativef
meh:O. (1.1)
Frictional or dissipative systems do not satisfy Eq. (1.1).

Using vector analysis it can be shown that Eq. (1.1) impleg there exists a potential function



such that
F=-VV(r). (1.2)
for someV (r). We will assume that conservative systems hawe-independergotentials.
A holonomic constrainis a constraint written in terms of an equality e.g.
Ir| = a, a > 0. (1.3)

A non-holonomic constraint is written as an inequality érg)> a.

1.2 Lagrangian mechanics
For a mechanical system of particles withk holonomic constraints, there are a totaBof — &
degrees of freedom.

The system can be represented3dy — k generalised coordinates, ¢», . . . , g3n_x, Such that

r = r(q1,92,---,93N—k 1)

For aconservativesystem withV" = V' (¢, ¢o, - . ., g3n—& ), the Lagrangian is defined as
L=T-V, (1.4)
and the dynamics of the system can be found from the Euleradpag equations
d (0L oL
il — — 1.
i (aq) og; ~ " (1.9)

[If V is a function ofg; then an extra term is required.]

1.3 Hamiltonian mechanics

The Hamiltonian formulation of mechanics does not add any pleysics. However it provides a
method that is more powerful and versatile than the Lagemgpproach. It is particular useful
for extending the theory into other fields such as statistirachanics and quantum mechanics:
fundamental areas of physics that are covered in detaiday&ar at UQ.

Lagrange’s equations form a systemmof 3N — k second-ordedifferential equations requiring
2n initial conditions to obtain a unique solution. The Hammitan formulation is based upon
Hamilton’s equations

. 0H . O0H
qZ - apiv pz - aq7,7

(1.6)



which form a system ofn first-order differential equations, again requirirag boundary condi-
tions for a unique solution. We define the generalised moument

oL
e 1.7
Pi= 5, (1.7)
and the Hamiltonian for the system is
H(q,p,t) = > dipi — £(q, 1) (1.8)

whereq = (¢1,¢2, .- ., q,) @ndp = (p1, po, .. ., pn). Note thatg andp areindependenvariables.
For simple mechanical systems you will have shown that
H=T+YV, (1.9)

which says that{ is the total mechanical energy of the system, and this willhgecase for the
majority of systems that we look at. It is also worth notingttthe Hamiltonian of a conservative
system has no explicit time dependence He= H(q, p).



Chapter 2

Phase space

The “space” of thed, p) coordinates specifying a dynamical system is referredsttha “phase
space”, and is a very important concept in physics. The ceta@pecification of all phase space
co-ordinates is sometimes called a “microstate” and coatall you can possibly know about the
system.

In Hamiltonian mechanics, the dynamics is defined by theugai of points in phase space. For
a system withn degress of freedom, the phase space coordinates are madenugeaeralised
position coordinateg andn generalised momentum coordinajgsand so phase space has a total
of 2n dimensions.

2.1 Flow vector field

Example: Bead on a wire.

The trajectory of the bead is a curve(in p) space parameterised by time. It can be drawn out by
following a point travelling with a certain “velocity”. Its not a true velocity as its components are
time derivatives of generalised position and momentumdioates.

If we consider a system with one degree of freedom, the giai

and making use of Hamilton’s equations
OH O0OH
==, —]. 2.2

For a general system witlhdegrees of freedom

V(qa p) = (QIaq.Q,-“:q.n): (23)
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Figure 2.1: Vector flow field for the SHO withh = w = 1.

(2.4)

(o om on o)
Oq1” 0qx” " 0q, Opr’ Ops’ T Opn )

(2.5)
So Hamilton’s equations are enough to defirig, p).

For every point of phase space there is a velocity vector —therowords there exists a velocity
field v(q, p), usually referred to as the “flow vector field”.

In principle the flow vector field enables the dynamics of th&tsm completely.

Example: Simple Harmonic Oscillator (SHO) in 1D
2 2

p mw’
H=— . 2.6
o T 54 (2.6)
Hamilton’s equations give
. OH p ) OH
(=—F—=—, p=-——F"=—mwyg (2.7)
dp m dq
so the vector flow field is
v = (p, —mw2q> . (2.8)
m

If we setm = w = 1 then we can represent this graphically= (p, —q) as in Fig. 2.1.

Note that we have been assuming that the flow vector fiefdnot a function of time. This is true
whenH is time independent. But if, for example we have

2

= + qcoswt (2.9)
2m



Figure 2.2: Lines of constant H for the SHO

then
v = (p/m, — coswt), (2.10)

which is atime-varyingflow vector field.

2.2 Phase portraits

Most of our focus will be on systems with time independent lit@mians, for which there is the
useful result that the velocity vectoysare always tangential to lines of constaht(energy). For
the SHO example witlh = w = 1 then the Hamiltonian is
1

H= 3"+, (2.11)
which describes a circle of radiug2H as in Fig. 2.2 To prove that is tangential to the lines of
constantH, you need to make use of the well known result from vectorutakthat the gradient
of a scalar functiory is perpendicular to lines of constafit Then we find that

v-VH =0 (2.12)

sov is perpendicular t&/ H. But V H is also perpendicular to lines of constdiit sov must be
tangentialto lines of constant!.

Lines of constantt{ are extremely important for time independent Hamiltoniasshey define
trajectories(or paths) through phase space for the system. To demangtiatwe first shown that



if H has no explicit time dependenceH /0t = 0) then it has no implicit time dependent either
(dH/dt = 0).

If 0H /0t = 0 then

d OH . OH

—H(q,p) = a—qq+8—pp,

oron o o
dq Op  Op dq’
— 0. (2.13)

where we have used Hamilton’s equations in the second lineus Tve must have thal =
constant, and that a particle will move along a line of comsia.

In systens with one degree of freedom, and hence a 2D phase, $jpees of constant/ are call
phase portraits They are simply paths in phase space.

Our analysis here has essentially been a proof that enemrgniserved in a system with a time
dependent Hamitonian. (Note that it was assumed#hafas not a function op or q.)

Phase portraits are an excellent means of visualising thardics of a mechanical system.

2.3 Fixed points
For many systems there may be special points in phase spare Wie velocity vectoy is zero.
These are known dixed pointsand provide a starting point for the analysis of dynamigatems.

If v.=(0,0) theng = 0andp = 0 and henc& H = (0H/0q,0H/Jp) = (0,0). When the system
resides at a fixed point it is imechanical equilibrium

Fixed points only occur fop = 0 in simple mechanical systems where we have: p*/2m and
the potential” = V'(¢) only.

2.4 Examples

Unless otherwise specified, we consider Hamiltonians ofdhe

H(g,p) = 5~ +V(q). (2.14)



Figure 2.3: Phase portrait for a linear potenfial= m = 1) andH = —1,0, 1,2. Note that all
trajectories in a phase portrait must have an arrow indigattie direction.

2.4.1 Linear potential

V(q) = agq, a> 0. (2.15)

The phase portrait can be found by fixidfyand plottingp as a function of; (or vice versa). In
general we have

p(q) = £V2my\/H — V(q). (2.16)
For the current example we have
2

H
p=+\/2m(H — aq), or qg=— — P (2.17)
a 2ma

Thus the trajectories are parabolas, which makes sensggsaithe potential is like the gravita-
tional potential. The phase portrait is in Fig. 2.3.

Note also that this potential has no fixed points (the proof tsitorial problems).

We now solve Hamilton’s equations for this potential. Wedav

. OH p ) OH
q= = pz—ai:
q

T ap  m
We need boundary conditions to find a specific solution: ledg that at timeg = ¢, we have
q = q(to) andp = p(ty). For this simple situation we can directly integrate theagtpn forp in
Egs. (2.18) to give

—a. (2.18)

t

p(t) = p(to) + | (—a)dt' = p(to) — alt —to). (2.19)

to



Figure 2.4: Phase portrait fora SHo» = w = 1), for H = 0.25to H = 2 in steps of 0.25. Note
that in general the trajectories are ellipses.

We can use Eq. (2.19) to solve for q(t)

o) = atto) + [ ar?®)
= alto) + - [ ¥ lplto) —alt 1),
= o)+ P 1)~ L (2.20)

It is not difficult to show that if the solutions Eqgs. (2.19)da2.19) are substituted back into the
Hamiltonian that the result is time independent.

2.4.2 Quadratic potential (SHO)

The simple harmonic oscillator (or SHO) is an extremely imi@ot model in physics. The Hamil-
tonian is

2 2

p mw® ,

=
om T 2 T

(2.21)

and the phase portrait is shown in Fig. 2.4. We first deterrthiedixed points. Hamilton’s equa-
tions are
OH p , oH 9

q'zi_ ) P=——F=—mnwyg, (222)
dp m



so thatg = 0 whenp = 0 andp = 0 wheng = 0. Hence there is only one fixed point for this
system at the origin(g, p) = (0, 0). This is classified as aglliptic fixed point — a fixed point that
is encircled by a line of constaiii. Elliptic fixed points arestable— any small perturbation away
from equilibrium remains contained in a small region abbetfixed point.

We can now solve for arbitrary trajectories by differerntgtthe equation forj with respect ta:
and substituting in fop. This gives

j=—w’q, (2.23)
which has the general solution
q(t) = Acos(wt +9), (2.24)

where the constantd andj are determined by the boundary conditions.

The momentum is then determined from the equatior; fas
p(t) = mqg(t) = —mwAsin(wt + 9). (2.25)

The motion is obviously oscillatory with peridl = 27 /w which is independent ofl. This may
not seem like a big deal, but for a general potential the pesiomotion usually depends on the
amplitude, and we will spend quite some time later develgppimethod to calculate the period of
motion for confining potentials.

The energyH of the system is determined by the amplitudeBy substituting the solutions into
the Hamiltonian we find (you should check this!)

1
H = §mw2A2. (2.26)

At the elliptic fixed point it is clear thatf = 0.

The phase space trajectories are in general ellipses irepd@ece, withp,,.. = v2mH and
Imaz = 1/ 2H /mw?. The area of the ellipse in phase space we dehated find

[=7x LHQ < omH = 2T (2.27)
mw w
Thus we find that here we have
OH
= 2T— 2.2
w=2mor, (2.28)

which is a specific example of a general result that we wilhaeiater.

2.4.3 Linear Repulsive Force

In this situation we have

F(q) = —aq, a > 0. (2.29)

10



Figure 2.5: Phase portrait for a linearly repulsive fofee=a = 1) for H = 0, +1.

SinceF(q) = —0V/0q we can integrate to find

1
Vig) = —an2. (2.30)
which is an inverted parabola. (Question for you: what althatconstant of integration?). Thus
the Hamiltonian is
2

_ 1,
-2 g (2.31)

To plot the phase portrait, we rearrange Eq. 2.31 to obtain

o2mH = p* — m*~y%¢?, (7 = a) ) (2.32)

m

This is the equation of a hyperbola.

Hamilton’s equations for the system are

. OH p . 0H
G — 2 2.33
=5 ~m P 9~ (2.33)
Setting these to zero to finc the fixed points we find that them@nly one and it is at the origin
(¢,p) = (0,0). This is a different type of fixed point compared to the one aenfd for the SHO
— it is known as ahyperbolicfixed point. Hyperbolic fixed points anenstable as any small
perturbation from equilibrium will grow.

Any curve in phase space that meets a hyperbolic fixed poiknasvn as aseparatrix as they
“separate” different types of motion. The determinationseperatrices is an important part of
determining global dynamics.

11



Solutions for this system can be found by the same method dse&HO. We find
q =4 (2.34)
which has the general solution
q(t) = A" + Ase ™, (2.35)

with the constantsl; and A, determined by the boundary conditions. Correspondinglyntioe
mentum is

p(t) = my(Ae™ + Ase™ ). (2.36)
A tutorial problem asked you to show that
H= —2(1141142. (237)

Note that the motion is unbounded in generaj@s andp(t) — +oco.

2.4.4 Cubic potentials

— —Amgq°, A > 0. (2.38)

Hamilton’s equations are
. _OH p ) OH

g=——="—, p=—— = —mw?q + Amq>, (2.39)
dp m dq
Fixed points
g = p/m=0 = p =0, (2.40)
p = mq(Ag—w?) =0 = q=0,w%/A. (2.41)

So there are two fixed pointg, p) = (0,0), (w?/A4,0).

To determine if they are elliptic or hyperbolic it is suffiieto analyse their local region in phase
space.

Fixed point (0, 0)

In the vicinity of ¢ = 0 we havelq| < 1, and so to a good approximation

2 2
p mw= o
H=

om T 2 4

This is the Hamiltonian for the SHO: and we have found alrethdy the fixed point for this type
of potential is a elliptic fixed point that is stable.

(2.42)

12



Fixed point (w?/A, 0)

The analysis for this point is a little more complicated, avelwill write ¢, = w?/A for short. We
consider a Taylor series @f¢) about the poing = ¢;.

Remember: a Taylor series of a functig() about the point: = a is

r—a 2
F@) & fla) + (- a) ) + L ) 4 (2.43)
So we have
p(q) = p(q1) + (¢ — ql)gz T (q_;-“)gqf ot (2.44)

As we are carrying out the expansion about a fixed point, teetirm is zero. Keeping the first
non-zero term, we find that

plg) = (¢ — Q1)(_mw2 + 2Amaqy). (2.45)
Substituting ing; = w?/A we have
Plq) = mw?(q — q), (2.46)

and combining this with the the equation fpwe finc that in the vicinity of; = ¢; we have the
equation of motion

i =w(q— ), (2.47)
with the general solution
q(t) = q1 + a1e”t + Ase™". (2.48)

So in general(t) increases exponentially with time and hence the solutiomsiastable. As this
corresponds to the situation with the linear repulsive otthis means$w? /A, 0) is a hyperbolic
fixed point.

This result could also have been found by linearising the Hanian about the poing = ¢,
and finding that in this region the system corresponded t&{mailtonian for the linear repulsive
force.

The phase portrait for the system is shown in Fig. 2.6 Theggnatreach fixed point can be found
by substitution into the Hamiltonian. We find

For (¢,p) = (0,0) : H =0, (2.49)

2,4 6 6
2 ' L mwtw 1 W’ mw
For (¢,p) = (w°/A,0): H=—-"5-34m5 = =5 (2.50)

Since all paths in phase space for this system have fixeds/alug, this means the separatrices
are defined by the equation

mw® p? 1

1
GAZ o + §mw2q2 — gAmq?’. (2.51)

13
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Figure 2.6: Phase portrait for a cubic potential with=w = A = 1.

245 Summary

Through the previous four examples we have introduced thbads typically used in the analysis
of a conservative Hamiltonian system with one degree ofdive®e For this course a complete
analysis can be summarised as follows:

1. Construct the HamiltoniaH (¢, p) where

oL
H=T+V, p=—.
dq
2. Write down Hamilton’s equations for the system
,__om o
p - aq 9 q - ap 9

3. Find all of the fixed point$q, p) such that ¢, p) = (0,0).

4. Determine the stability of the dynamics in the vicinitytbé fixed point. If the coordinate
q(t) does not, in general, become large with increasing time itherstable, otherwise it is
unstable. For systems we consider stable points are elfigéd points, and unstable points
are hyperbolic fixed points.

5. For hyperbolic fixed points determine the equations oéaratrices.
6. Plot the phase portrait.

7. Solve Hamilton’s equations.

14



8. If you manage to complete all these steps, you deserverddreejob well done.

Aside: In the study of dynamical systems other types of fixed poingspassible, in particular
stable or unstable “nodes”, “stars” and “spirals”. Howewbese do not occur for conservative
Hamiltonian systems.

2.5 Periodic motion

There are two types of periodic motion that can occur in Hamian dynamics. —ibration and
rotation.

2.5.1 Libration

Libration is closed motion, where the system retraces gpssperiodically so thag andp are
periodic functions of time with the same frequency. The nélibeation” comes from astronomy.
A pendulum in a clock is a classical example, and the trajedaare closed loops in a phase
portrait.

2.5.2 Rotation

Herep is some periodic function af with a periodgy, butq is not a periodic function of time. The
most familiar example is rotation of a rigid body, wigras the angle of rotation ang = 2.

2.5.3 Free particle rotating in a plane

Imagine a particle of mass attached to one end of a rigid, massless rod of leagtmat is able

to pivot about the other end that is fixed. The configuraticacsmf the system can be represented
by the anglep that it makes to the vertical axis as shown in Fig. 2.7. This $smple system that
can display rotational dynamics, for which we already know

Moment of inertia: ~ J = ma?, (2.52)

Angular momentum: ¢ = |{| = J¢, (2.53)
. 1.

Lagrangian: L=T = §J¢2. (2.54)

For the generalised coordinatethe generalised momentumas /d¢ = .J$, which is simply the
angular momentum as given above. Thus we have
g?
H=_—. 2.55
57 (2.55)
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Figure 2.7: Configuration for a free particle rotating in an@a The configuration is the same for
a pendulum, with the addition of the gravitational foreg@ acting downwards.

Hamilton’s equations
oH

(= 96 = 0 = ¢ is conserved. (2.56)
! oH /
o = oW T (2.57)

which is consistent with what we wrote down above. /As constant, Eq. (2.57) can be solved to
give

8(0) = 6lt0) + (¢~ to). (259)

2.5.4 Pendulum

The configuration for the pendulum is again as in Fig. 2.7 viath the graviational force acting
on the mass in the downwards direction. The gravitationtdmital is in this case given by

V(¢) = —mga cos ¢, (2.59)
Thus the Lagrangian is
1 .
L= §J¢2 -+ mga cos ¢ (2.60)
The conjugate momentum is the same as in the previous secttheo the Hamiltonian is
2
H(p,0) = QEJ — mga cos ¢. (2.61)
Hamilton’s equations
. H
(= _aﬁgb = —mga sin ¢, (2.62)
- oH ¢
- 2.63
¢ 5 =7 (2.63)
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The fixed points are wher@, / = (0,0), and so we have

o=0 when (=0, (2.64)
(=0 when ¢ =0,+nr, +27, ..., (2.65)

however of course is periodic and so there are only two physically distinctdiymints(¢, () =
(0,0) and(m,0). These correspond to the pendulum hanging down and hanging u

Intuitively you might guess thaD, 0) is a stable fixed point and théat, 0) is unstable. To show
this mathematically we need only consider motion in theniigiof the fixed point.

Fixed point (0, 0)

For small¢ we can approximatein ¢ ~ ¢, and so Eq. (2.63) becomes

(= —mgap. (2.66)

Differentiating Eq. (2.63) with respect to time, and sulositng in Eq. (2.66) gives

mga

b= — 2.67
b=——1"0. (2.67)
which has the general solution of the SHO
mga 1/2 ]
o(t) = Acos(wot + 9), wo = (J) =/7, (2.68)
a

and again the constantsand¢ are determined by the boundary conditions. As the solusdhe
same as for the SHO then this must be a stable elliptic fixeatpoi

Fixed point (7, 0)

In the vicinity of ¢ = 7, we have
sin(¢) = sin(r — ¢) ~ 7 — ¢, (2.69)
so Eq. (2.63) becomes
{ = mga(m — ¢). (2.70)

Differentiating Eq. (2.63) with respect to time, and suloitng in Eq. (2.70) gives
- mga
b= "6 ). (2.71)

If we make the change of coordinate= ¢ — 7 then Eq. (2.71) becomes

¥ = wyy, (2.72)

17



Figure 2.8: Phase portrait for the pendulum. The sepaeatiace indicated by the dashed lines.

that has the general solution
Y(t) = Ape*t + Age 0!, (2.73)
Thus we have
P(t) = 7+ At + Aye ot (2.74)

This is the same situation as we had for the repulsive line@et this is a hyperbolic fixed point
and is unstable.

Phase portrait

The phase portrait for the pendulum is shown in Fig. 2.8. Tépagmtrix divides the phase space
into three types of motion

1. Above the upper separatrix the pendulum rotates abopivitg point in an anticlockwise
direction.

2. Below the lower separatrix the pendulum rotates aboyivist point in an clockwise direc-
tion.

3. Between the separatrices the pendulum oscillates t@ibydack and forth.

Note that the pendulum is NOT the simple harmonic oscillatarept for the limiting case where
the amplitude of oscilation is very small and hemgp< 1 (you should check this!)

18



Separatrices

The energy of the system on the separatrices is given byisubgj the coordinates of the hyper-
bolic fixed point(¢, ¢) = (,0) back into the expression for the Hamiltonian Eq. (2.61). W fi
that

H(7m,0) = mga, (2.75)
which would have been expected: this is the gravitationtdmital energy at this point.

Thus, when the energy of the system exceegs the the pendulum rotates and the motion is of
type (1) or (2) described earlier. If the energy is less that: then the motion is of type (3).

The general solution of Hamilton’s equations for the pendutannot be expressed in terms of
simple functions. However, they can be for the special cdskeoseparatrices, where from the
Hamiltonian Eq. (2.61) we have

mga = 2@ — mga cos ¢, (2.76)
= ¢ = =£[2Jmga(1 + cos ¢)]*/2. (2.77)
However, using the double angle formutss 20 = cos? # — sin? § we can have
(14 cos )2 = V2 cos(¢/2), (2.78)
and so
( = +£2(Jmga)"/* cos(¢/2). (2.79)
Substituting Eq. (2.79) into Eq. (2.64) fargives the differential equation
¢ = 42wy cos(¢/2). (2.80)

and made use of the definition of from Eq. (2.68). Equation (2.80) is a seperable differéntia
equation of first order and can be written

COSEZ;’: 73 = 42wyt (2.81)
Integrating both sides with the help of the result from taliteat
/ 9 oftan(e/4 + 2/2)], (2.82)
COS 2
gives
2Inftan(n/4 + ¢/4)] = £2wot + C, (2.83)

where(' is a constant that depends on the boundary conditions. Ifheesey(t = 0) = 0 then
on rearranging Eq. (2.83) we have

B(t) = 4tan"*[exp(dwot)] — 7. (2.84)
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Figure 2.9: The solutions fas(t) and/(t) for the pendulum on the separatrix

Physically this corresponds to travelling from the bottointhe separatrix to the hyperbolic point
We can now find the solution for the momentum. From Eq. (2.68have
0t) = Jo(t). (2.85)

Using the chain rule on Eq. (2.84) and

- -1 _
- tan™" z 2 (2.86)
we find that
QJW()
0t) = +——F—. 2.87
®) cosh(wyt) ( )

Note that ag — oo then/(t) — 0. These solutions are shown in Fig 2.9.

In the next section of the notes we will find the general solubf the pendulum using action-angle
variables.
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