Chapter 5

Chaos in the driven pendulum

Having studied the appearance of chaos in the logistic mamow move on to look at how chaos
arises in Hamiltonian systems.

So far the Hamiltonian systems that we have considered hasleohe degree of freedom and
have also been conservative: the energy has been a conktaetmotion. Together these two
facts mean that the systems have bedegrable Basically, this means that there are as many
conserved quantities as there are degrees of freedom.rablegsystems do not display chaotic
behaviour.

So in order to study chaos in a Hamiltonian system, we eitleedrto move to a system with
two degrees of freedom, or introduce time-dependence @ éiamiltonian for a system with one
degree of freedom. The second route is somewhat simpler:awentroduce a time-dependent
potential that means energy is no longer conserved.

The particular example we will consider is thertically driven pendulum By controlling that
amplitude of the driving we can influence the chaotic behayieaving all other parameters fixed.

5.1 Hamiltonian for the driven pendulum

We consider a pendum with a pivot that is driven verticallyabiyinction~(¢). The coordinates of
the system are

x = asin ¢, y = —acosop— (), (5.1)
whereq is the length of the pendulum. Thus the kinetic energy is
T = %(172 +?) = %(a%}? — 24 sin ), (5.2)
and the potential energy is
V = mgy = —mgacosp —mg, (5.3)
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and is a function of time. Thus the Lagrangian is
L=T-V = %cﬁdf — ma’y¢sin ¢ + mga cos ¢ + h(t), (5.4)

whereh(t) = m4? + mgy is a function of time only, and hence is ignorable. (It is efssghow
that it does not contribute to the equations of motion.)

The momentum conjugate tofor this Lagrangian is

p = gg = m(a’d — aysing), (5.5)
which leads to the Hamiltonian
. 5
H(¢,p,t) = (p + maysing) — mga cos ¢. (5.6)
2ma?

However, a more convenient Hamiltonian can be obtained yimgause of the property that two
Lagrangians related by

Ll0.0.1) = £0.0.0) + 5 F(a.1) 57)

describe the same motion. If we add
- majt@ cosp) = —mad cos  + mapsin ¢ (5.8)

to Eq. (5.4) we get a new Lagrangian
L=T-V = %G%Q + ma(g — %) cos ¢, (5.9)

which shows that vertical acceleration has the same effeet @me-varying gravitational field.
The conjugate momentum is now the angular momentum

oL

(= == = ma’d = Jo, 5.10
93 ¢ ¢ (5.10)
whereJ = ma? is the moment of inertia of the pendulum. The Hamiltonian is
H(qﬁét)—ﬁ—JQ 7 b (5.11)
6l =57 wy p COS , .

wherew? = g/a.

5.2 Equations of motion

Hamilton’s equations for the system are
. oH ¢ ,  9H

b=27 =7 e:—%:—mgsiw(l—&), (5.12)
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which can be combined to give a single second-order diftexbequation

¢ = —w? sin ¢ (1 — ;) . (5.13)
We now assume a periodic driving function
vt = 7o cos(wpt) = ¥ = —yow?, cos(wpt), (5.14)

wherewp, is the driving frequency and, is the amplitude of the driving. By introducing the
dimensionless parameters

2 2
K = <w0> , e:w%ﬂ = M, T = wpt, (5.15)
Wp g gr

the equation of motion for the driven pendulum becomes
¢ = —rsing(l —ecosT). (5.16)

We now look at methods to study systems such as this.

5.3 Poincae sections

The phase potraits for non-autonomous Hamiltonian systerols as described by Eq. (5.16) can
get extremely messy, as the trajectories are no longer suvite constant energy. This is demon-
strated in Fig. 5.1 Instead, it can be very useful to plot {soin phase space that represent the
system at a discrete moment in time. We replace the contsiaorve with points that represent
(p, £) as specific moments in time separatedty

The trajectory on the left in Fig. 5.1 had a period= 27 /w(H). If we chooseAr = T'/4 then
only four points will appear. Likewise, if we choogker = 7'/16 then only sixteen points will
appear. This is illustrated in Fig. 5.2

In general, ifA7 = T, wherem, n are positive integers, then there will be at magpossible
distinct points in phase space. HoweverAlf = oT', wherea is any irrational number, then in
the limit thatT — oo an infinite number of points will build up giving a solid line.

The Poincag section can be viewed as subjecting the continuous teayest phase space to a
strobeof frequency) = 27 /A7. We have
AT 27 /) w(H)

T 2mnjw(H)  Q (5-17)

If this is irrational: an infinite number of points will appeaOtherwise, there will be a finite
number of points
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Figure 5.1: Phase potrait for a single trajectory of the péumah: undriven (left) and driven (right).
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Figure 5.2: Example of Poincasections: lefi\t = T'/4, right A7 = T'/16.
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Figure 5.3: Poincar section for the same parameters as the trajectory on theafgrig. 5.1,
sampled at the driving frequency, for 350 driving periods. This is a sufficient number of points
to pretty much fill in the entire curve.

Poincae sections are a very useful concept in the analysis of coatpli systems, and we use it
for the driven pendulum It is a graphical representatiorhefrapping of the poiry,,, p,,) at time

7 = nAr to the point(¢,+1, pny1), Where we have,, = ¢(nA7), n = 0,1,2,..., etc. This can
also be written

(Qn+17pn+l) = T(Qnapn) (518)

for an appropriate operatdr, in a similar manner to the 1D maps that we looked at earliewH
ever, in this situation it is very hard or impossible to findased expression fdr.

In Poincaé sections for driven systems we typically sample the systece every driving period
e.Q) = wp.

5.4 Irrational Poincar e sections

We take the parameter§0) = 2/3, k = 0.16, and show what happens as the strength of the
driving € is increased. For these parameters we hayéw(H) = 3.15853287332306 which is
close to being irrational (MATLAB shows that 10420/3299 45853288875417 gets the first
seven decimal places correct). Hence, the Poisaction forms a closed curve for= 0, as is
shown in Fig. 5.4.

Note that the curveeemain closedase increases. However: this suddenly breaks down above a
certaine and the motion becomes chaaotic.
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Figure 5.4: Poincar section for/(0) = 2/3,¢(0) = 0,x = 0.16 and a range of drive strengths
as indicated.
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This is an important concept in dynamics:uifH)/wp is irrational then for a sufficiently small
drive the Poincar section remains a closed curve but is distorted.

KAM theorem (Kolmogorov, Arnold and Moser): “For sufficiently irrational surfaces and suf-
ficiently weak perturbations, the surfaces of constanbactire preserved under the perturbation
and are not destroyed.”

This theorem has broad scope: it does not refer to specifectaies or time scales. It defines a
type of global stability.

5.5 Rational Poincae sections

Here we take the initial parametef)) = 0.58517059, x = 0.16 which have been chosen such
thatwp /w(H) = 3. Hence for the undriven system with= 0 we get three points only, as is shown
in Fig./5.5.

However, as soon as> 0 the points become an island chain. This is certainly not sendes-
tortion. This is an example of a resonance, and is a typi@lfe of such systems. They play
a crucial role in the transition to chaotic dynamics. Withie islands there still exist what are
known as fixed points. However, eventually these break upedlsvirene continues to get larger.

5.6 Transition to chaos

Finally we finish this section by giving an example of a gloPalinc& section changes as we
increase the driving frequency.

Poincag sections were generated by solving Hamilton’s equatiamsenically for 500 driving
periods, with a range of initial conditions with{0) = 0 and/(0) equally spaced from -3 to 3, with
wp = 0.8wg, kK = 1.5625.

The unperturbed Poincasection { = 0) looks very similar to our previous phase portrait for the
pendulum.

As ¢ is increased, chaotic layers first appear near the sepa@sitriThis is typical behaviour for
such systems.

An important feature is that new islands of stability appeahe region of the rational Poincar
surfaces. Ag increases, the area of the chaotic region grows and segoistiands appear.

You will get a chance to investigate this in the computer lab.
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Figure 5.5: Poincar section for/(0) = 0.58517059, ¢(0) = 0,x = 0.16 and a range of drive
strengths as indicated.
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Figure 5.6: Poincar sections fotwp = 0.8wy, k = 1.5625. The islands that appear on the top
and bottom contain period-one fixed points. The chaos lay@eases asis increased, and will
eventually engulf the entire phase space.
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Figure 5.7: Dynamical tunnelling. At a particular point ime most of the atoms have a negative
momentum, however at a later time at the same point in the grariod the atoms have mostly
positive momentum. Classically this behaviour cannot accur

5.7 Quantum dynamical tunneling (for interest only)
The driven potential for the pendulum can be realised foauibld atoms using an intensity mod-
ulated standing wave of light.

It turns out that a classical barrier exists between trajges located on the period-one fixed points
in the Poincag section.

However, quantum mechanically atoms localised on onedstan tunnel through to the opposite
island — this is know a&dynamical tunnelling”.

While this was first predicted in 1981, it was finally observgdUQ researchers with a Bose-
Einstein condensate in collaboration with Nobel prize venBill Phillips in 2001: W. Hensinger
et al, Nature412 52 (2001).

Follow-up experiments and theory still happening at UQ.
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