
Chapter 5

Chaos in the driven pendulum

Having studied the appearance of chaos in the logistic map, we now move on to look at how chaos
arises in Hamiltonian systems.

So far the Hamiltonian systems that we have considered have had one degree of freedom and
have also been conservative: the energy has been a constant of the motion. Together these two
facts mean that the systems have beenintegrable. Basically, this means that there are as many
conserved quantities as there are degrees of freedom. Integrable systems do not display chaotic
behaviour.

So in order to study chaos in a Hamiltonian system, we either need to move to a system with
two degrees of freedom, or introduce time-dependence into the Hamiltonian for a system with one
degree of freedom. The second route is somewhat simpler: we can introduce a time-dependent
potential that means energy is no longer conserved.

The particular example we will consider is thevertically driven pendulum. By controlling that
amplitude of the driving we can influence the chaotic behaviour, leaving all other parameters fixed.

5.1 Hamiltonian for the driven pendulum

We consider a pendum with a pivot that is driven vertically bya functionγ(t). The coordinates of
the system are

x = a sin φ, y = −a cos φ − γ(t), (5.1)

wherea is the length of the pendulum. Thus the kinetic energy is

T =
m

2
(ẋ2 + ẏ2) =

m

2
(a2φ̇2

− 2aγ̇φ̇ sin φ), (5.2)

and the potential energy is

V = mgy = −mga cos φ − mgγ, (5.3)
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and is a function of time. Thus the Lagrangian is

L = T − V =
m

2
a2φ̇2

− maγ̇φ̇ sin φ + mga cos φ + h(t), (5.4)

whereh(t) = mγ̇2 + mgγ is a function of time only, and hence is ignorable. (It is easyto show
that it does not contribute to the equations of motion.)

The momentum conjugate toφ for this Lagrangian is

p =
∂L

∂φ̇
= m(a2φ̇ − aγ̇ sin φ), (5.5)

which leads to the Hamiltonian

H(φ, p, t) =
(p + maγ̇ sin φ)2

2ma2
− mga cos φ. (5.6)

However, a more convenient Hamiltonian can be obtained by making use of the property that two
Lagrangians related by

L̄(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t) (5.7)

describe the same motion. If we add

− ma
d

dt
(γ̇ cos φ) = −maγ̈ cos φ + maγ̇φ̇ sin φ (5.8)

to Eq. (5.4) we get a new Lagrangian

L = T − V =
m

2
a2φ̇2 + ma(g − γ̈) cos φ, (5.9)

which shows that vertical acceleration has the same effect as a time-varying gravitational field.
The conjugate momentum is now the angular momentum

ℓ =
∂L̄

∂φ̇
= ma2φ̇ = Jφ̇, (5.10)

whereJ = ma2 is the moment of inertia of the pendulum. The Hamiltonian is

H̄(φ, ℓ, t) =
ℓ2

2J
− Jω2

0

(

1 −
γ̈

g

)

cos φ, (5.11)

whereω2
0 = g/a.

5.2 Equations of motion

Hamilton’s equations for the system are

φ̇ =
∂H̄

∂ℓ
=

ℓ

J
, ℓ̇ = −

∂H̄

∂φ
= −Jω2

0 sin φ

(

1 −
γ̈

g

)

, (5.12)
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which can be combined to give a single second-order differential equation

φ̈ = −ω2

0 sin φ

(

1 −
γ̈

g

)

. (5.13)

We now assume a periodic driving function

γt = γ0 cos(ωDt) ⇒ γ̈ = −γ0ω
2

D
cos(ωDt), (5.14)

whereωD is the driving frequency andγ0 is the amplitude of the driving. By introducing the
dimensionless parameters

κ =
(

ω0

ωD

)2

, ǫ = ω2

D

γ0

g
=

γ0ω
2
0

gκ
, τ = ωDt, (5.15)

the equation of motion for the driven pendulum becomes

φ̈ = −κ sin φ(1 − ǫ cos τ). (5.16)

We now look at methods to study systems such as this.

5.3 Poincar̀e sections

The phase potraits for non-autonomous Hamiltonian systemssuch as described by Eq. (5.16) can
get extremely messy, as the trajectories are no longer curves with constant energy. This is demon-
strated in Fig. 5.1 Instead, it can be very useful to plot points in phase space that represent the
system at a discrete moment in time. We replace the continuous curve with points that represent
(ϕ, ℓ) as specific moments in time separated by∆τ

The trajectory on the left in Fig. 5.1 had a periodT = 2π/ω(H). If we choose∆τ = T/4 then
only four points will appear. Likewise, if we choose∆τ = T/16 then only sixteen points will
appear. This is illustrated in Fig. 5.2

In general, if∆τ = m

n
T , wherem,n are positive integers, then there will be at mostn possible

distinct points in phase space. However: If∆τ = αT , whereα is any irrational number, then in
the limit thatτ → ∞ an infinite number of points will build up giving a solid line.

The Poincar̀e section can be viewed as subjecting the continuous trajectory in phase space to a
strobeof frequencyΩ = 2π/∆τ . We have

∆τ

T
=

2π/Ω

2π/ω(H)
=

ω(H)

Ω
. (5.17)

If this is irrational: an infinite number of points will appear. Otherwise, there will be a finite
number of points
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Figure 5.1: Phase potrait for a single trajectory of the pendulum: undriven (left) and driven (right).
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Figure 5.2: Example of Poincarè sections: left∆τ = T/4, right ∆τ = T/16.
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Figure 5.3: Poincarè section for the same parameters as the trajectory on the right of Fig. 5.1,
sampled at the driving frequencyωD for 350 driving periods. This is a sufficient number of points
to pretty much fill in the entire curve.

Poincar̀e sections are a very useful concept in the analysis of complicated systems, and we use it
for the driven pendulum It is a graphical representation of the mapping of the point(qn, pn) at time
τ = n∆τ to the point(qn+1, pn+1), where we haveqn = q(n∆τ), n = 0, 1, 2, . . ., etc. This can
also be written

(qn+1, pn+1) = T (qn, pn) (5.18)

for an appropriate operatorT , in a similar manner to the 1D maps that we looked at earlier. How-
ever, in this situation it is very hard or impossible to find a closed expression forT .

In Poincar̀e sections for driven systems we typically sample the systemonce every driving period
i.e. Ω = ωD.

5.4 Irrational Poincar è sections

We take the parametersℓ(0) = 2/3, κ = 0.16, and show what happens as the strength of the
driving ǫ is increased. For these parameters we haveωD/ω(H) = 3.15853287332306 which is
close to being irrational (MATLAB shows that 10420/3299 = 3.15853288875417 gets the first
seven decimal places correct). Hence, the Poincarè section forms a closed curve forǫ = 0, as is
shown in Fig. 5.4.

Note that the curvesremain closedasǫ increases. However: this suddenly breaks down above a
certainǫ and the motion becomes chaotic.
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Figure 5.4: Poincarè section forℓ(0) = 2/3, φ(0) = 0, κ = 0.16 and a range of drive strengthsǫ
as indicated.
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This is an important concept in dynamics: ifω(H)/ωD is irrational then for a sufficiently small
drive the Poincar̀e section remains a closed curve but is distorted.

KAM theorem (Kolmogorov, Arnold and Moser): “For sufficiently irrational surfaces and suf-
ficiently weak perturbations, the surfaces of constant action are preserved under the perturbation
and are not destroyed.”

This theorem has broad scope: it does not refer to specific trajectories or time scales. It defines a
type of global stability.

5.5 Rational Poincar̀e sections

Here we take the initial parametersℓ(0) = 0.58517059, κ = 0.16 which have been chosen such
thatωD/ω(H) = 3. Hence for the undriven system withǫ = 0 we get three points only, as is shown
in Fig. 5.5.

However, as soon asǫ > 0 the points become an island chain. This is certainly not a mere dis-
tortion. This is an example of a resonance, and is a typical feature of such systems. They play
a crucial role in the transition to chaotic dynamics. Withinthe islands there still exist what are
known as fixed points. However, eventually these break up as well whenǫ continues to get larger.

5.6 Transition to chaos

Finally we finish this section by giving an example of a globalPoincàe section changes as we
increase the driving frequency.

Poincar̀e sections were generated by solving Hamilton’s equations numerically for 500 driving
periods, with a range of initial conditions withφ(0) = 0 andℓ(0) equally spaced from -3 to 3, with
ωD = 0.8ω0, κ = 1.5625.

The unperturbed Poincarè section (ǫ = 0) looks very similar to our previous phase portrait for the
pendulum.

As ǫ is increased, chaotic layers first appear near the separatrices. This is typical behaviour for
such systems.

An important feature is that new islands of stability appearin the region of the rational Poincarè
surfaces. Asǫ increases, the area of the chaotic region grows and secondary islands appear.

You will get a chance to investigate this in the computer lab.
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Figure 5.5: Poincarè section forℓ(0) = 0.58517059, φ(0) = 0, κ = 0.16 and a range of drive
strengthsǫ as indicated.
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Figure 5.6: Poincarè sections forωD = 0.8ω0, κ = 1.5625. The islands that appear on the top
and bottom contain period-one fixed points. The chaos layer increases asǫ is increased, and will
eventually engulf the entire phase space.
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Figure 5.7: Dynamical tunnelling. At a particular point in time most of the atoms have a negative
momentum, however at a later time at the same point in the drive period the atoms have mostly
positive momentum. Classically this behaviour cannot occur.

5.7 Quantum dynamical tunneling (for interest only)

The driven potential for the pendulum can be realised for ultra-cold atoms using an intensity mod-
ulated standing wave of light.

It turns out that a classical barrier exists between trajectories located on the period-one fixed points
in the Poincar̀e section.

However, quantum mechanically atoms localised on one island can tunnel through to the opposite
island — this is know as“dynamical tunnelling”.

While this was first predicted in 1981, it was finally observed by UQ researchers with a Bose-
Einstein condensate in collaboration with Nobel prize winner Bill Phillips in 2001: W. Hensinger
et al., Nature412, 52 (2001).

Follow-up experiments and theory still happening at UQ.
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