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1 Course Outline
Dynamics of a single particle
e Vector calculus

Newton’s 2nd law

Work and line integrals, arclength

Conservative systems and conservation of energy

Central forces and conservation of angular momentum
e Planetary motion and kepler’s laws
Dynamics of many particle systems

e Systems with constraints and general coordinates

Conservative systems, stable equilibria

Lagrangian Mechanics and calculus of variations

Hamiltonian mechanics

Poissson brackets and canonical transformations



2 Vector Calculus

2.1 Curves in space

If components of a point (z,y,z) are functions of a variable ¢ (time) then the point
(z(t),y(t), 2(t)) traces out a curve in 3-space. The coordinate equations

z=2(t), y=y@), z=2t) (1)
are called the parametric equations of the curve.
We put a natural orientation on a curve
71 (2,9,2) = (2(1),y(t), 2(2),
and say that point (z(t;),y(t1), 2(t1)) precedes point (z(t), y(t2), z(t2)) if t1 < ta. We put

arrow heads on a curve 7 to mark the positive direction.

Examples 1,2.
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2.2 Vector Functions

A vector R A R
£(t) = fi()i+ fo(t)) + f2(t)k

whose components are functions of one or more variables (in this case time ) is called
a vector function. The basic concepts of the calculus of such functions eg. limits,
differentiation etc. can be introduced in a natural way. For example

Ly =a

means that
lim fz(t) = O, 1= 1, 2,3

t—to

Similarly, we differentiate vector functions component-wise:

df  dfis  dfer  dfsp  pi o i: i1
— =i+ —j+—k= k.
7 dtH_ dt‘]+ o7 fi+ i+ fs

Example: If £(t) = costi+sin tj+ ek, then

limf(t) =1i+k,

t—0

and . X X X
f(t) = —sinti+cost]j+e‘k.

Also note that the usual product rules of differentiation hold for vector functions.

le.

9 (a(0)- 1)} = &) - £) + £(0) - £
% {8(0) x 10} = () x £0) + 8(0) x F(1).

Note: Unless otherwise stated, we assume throughout the course that all functions are
continuous and differentiable.

2.3 Position, Velocity, Acceleration

A particle moving in 3-space traces out a curve (z(t),y(t), 2(t)), called the path of the
particle, as t varies. The corresponding vector function

~
.

r(t) = z(t)i+ y()j + 2(t)k



is called the position vector of the particle. The distance of the particle from the origin
is therefore given by

r(t) = [r(t)| = V/r(t) - x(t) = /32 + y? + 22
Thus

determines the unit vector in the direction of the particle.

The vector

~
.

v(t) = £(t) = 2()i + g(t)] + 2k

is called the velocity vector of the particle; that is,

v(t) = }tiinm r(t+ dz —r(t) _ #(t),

Thus at any instant the velocity vector is tangent to the path of the particle and points
in the direction of motion. It follows that

determines a unit tangent vector to the curve at the point (x(t), y(t),z(t)). We call

u(t) = [v(t)| = V() V() = V32 + P + 2,

the speed of the particle and

1 1
T = Emvz = Em(v V)

the kinetic energy (K.E.) of the particle, where m is the particle’s mass.

The vector
p=mv

is called the (linear) momentum of the particle. The acceleration vector of the particle
is given by o
a=v(t) =F(t) = £i+ §j + k.

According to Newton’s 2nd law, if F(¢) is the force exerted on the particle then
mi = F(t)
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which is called the equation of motion.

Note: In terms of momentum, we more accurately have
p = F(1).

This is important only when mass m of the particle depends on time. In particular, if
there is no force exerted on the particle, that is F = 0, then

p=0.

This is known as conservation of linear momentum.

Example 3.

2.4 Arclength

Let 7 : (z,y,2) = (z(t),y(t), 2(t)) be a curve in 3-space and let r(t) = z(t)i+y(t)j+2()k
be the corresponding position vector. Then recall that the arclength of the curve v
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between ¢ = a and ¢t = b is given by

b b
L:/ |f|dt:/ v(t)dt.

This determines the distance travelled by a particle along path v between times ¢t = a
and t = b.

Example 4.

2.5 Work and Line Integrals

Recall from classical physics that the work W done by a constant force F in moving a
particle along a straight line from point A to point B is

W = (component of force in direction of motion) x (distance)

= F-(rg—ryu).

In general F is a function of ¢ and the path of the particle is no longer a straight line but
is given by a curve
v (2, y,2) = (2(t),y(2),2(8)), t€[ab]
Then the work done by F over path v is equal to the line integral of F(t) over v,
which is given by

W= / F(£) - dr
_ /abF(t)-i*(t)dt.
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Example 5.

Suppose a particle of mass m experiences a force F, so equation of motion is
mi = F.

Then the work done by the force F in moving particle along its path -y from time 0 until
time ¢ is given by the line integral

¢
W = /F Fdt :/ F(t)-v(t)dt,
y 0
or W
E_:F.Vzmr-r=§m—cﬁ(r‘r).
Therefore,
dw . 1
_— = T T = - 2 = E
= where 2mv K
Hence

W= /det:T(b) —T(a).

i.e. The work done = increase in K.E.

2.6 Conservative systems and conservation of energy

We say that motion is conservative if there exists a function V = V(z,v, 2), called the
potential energy (P.E.) such that

F-v=——.
VST
This potential energy V is uniquely determined up to a constant. Now we have from
above

T
F.v—e—
V=
SO
Lriv)y=0
dt -



or
T +V = E (const).

We call F the energy of the particle.

Examples 6,7.







2.7 Launching of artificial satellites

In certain cases of physical interest the approximation for gravitational force F' = —mg
breaks down and we need to use the full Newtonian expression. Consider then launching
a rocket ship from the earth’s surface. In this case we have from

mga?
(a+ z)?

where a is the Earth’s radius and z is the height of the rocket above the earth.

Hence
Fo=_9% ;&
T (a2 dt’
where
Ve mga?
" (a+3)

Therefore the system is still conservative but now with P.E. V, and the energy is

2
E:lmvz— mea ,
2 (a+ )

which is constant in time.

Note: Using Taylor series

~ —mga(l — :Z—) = mgzr — mga

valid for £ << 1, which reduces to the Galilean expression (up to a constant).

If E < 0, the rocket is trapped in earth’s gravitational field. Indeed v = 0 when

mga?

E:_(a:+a)'

Hence when a
z = —E(mga + E)

the rocket ship falls back to earth.
Exercise: Problem Sheet 2 Question 4

The rocket ship will escape earth’s gravitational field when E = 0, corresponding to

1, mga?
2 (z +a)
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or

| 2ga?
V= m (2)

In this case v never vanishes and rocket ship continues to rise indefinitely. Eqn.(2) gives
the velocity needed to escape the earth’s gravitational field at height z above earth’s
surface. ‘

At the earth’s surface (z = 0) this escape velocity is

o= 37— 1|26 ‘)

a

which is called the escape velocity. This last expression in fact gives the escape velocity
from any spherical body of radius a and mass M.

2.8 Black Holes

When v, = ¢ (speed of light) the body is called a black hole. Squaring equation (3)

yields the black hole equation

2 _ 2GM

or

which is known as the Schwarzchild radius. Here R gives the radius to which a spherical
body of mass M must be shrunk in order to become a black hole. This agrees with the
expression from general relativity.

Note: Laplace predicted the existence of such objects as far back as the 18th century.

2.9 Gradient Function

If we have a function g : R® — R? (g(x,y,2)), we call the vector function
Vg="i+--j+5k
T z

the gradient of g. We also call

the del operator.
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Example For g(z,y, z) = 2% + yz* we have

Vg = 221 +z23 +2yzlA<.

Note: Vg is normal to the surface g(z,y, z) = c at every point. Indeed let

71 (2,9,2) = ((t), y(t), 2(t)
be any curve in the surface. Then

_Ogdz  Ogady 69@_@_

“owdi oyt Tordt

r-Vg

Therefore since 1 is tangent to the surface, Vg is orthogonal to the surface at the given
point. The plane orthogonal to Vg at a point P(z,y,z) on the surface g(z,y,2) = c is
called the tangent plane to the surface at P.

2.10 Conservative Forces

A force F is called conservative if there exists a function g(z,y, z) such that
F =Vy.

We usually say more specifically, F = —VV, where V(z,y,2) is called the potential
function, as before.

Note: Suppose a particle of mass m moves under the influence of a conservative force
F = —VV. Then the motion is conservative with P.E. V.

Proof:
F.v = -VV.v
= -VV.r
_ Loy, oV, oV,
N ox dy 0z

Vs oV oV
Oor dt Oy dt 0z dt
dv

S dt

so motion is conservative with P.E. V.
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We can generalise this by using the Jacobi Matrix. The Jacobi Matrix of a vector
function f = fi(z1, 22, ... Tn) 1 + fo(21, T2, . . . Tn) J + f3(21, T2, . . . Tp) k is the n X n matrix
with elements:

[ f]z‘j-—gx—j— T
oo " dor

In this course we are usually working in 3 dimensions, in which case n = 3 and z;, z, and
x3 correspond to z,y and z.

Lemma: A force F is conservative iff Jp is symmetric.

Proof: Suppose F = —VV is conservative.
0F; o2V
[JF ]ij - 3:13]' N _0$ja$7;
_ oV
- 8%,,633]
= [Jrls-

So Jr is symmetric and conversely if Jp is symmetric the F is conservative.

Example 8.
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