PHYS2100: Dynamics, Chaos and Special Relativity

July 27, 2006

1 Course Outline

Dynamics of a single particle

- Vector calculus
- Newton's 2nd law
- Work and line integrals, arclength
- Conservative systems and conservation of energy
- Central forces and conservation of angular momentum
- Planetary motion and kepler's laws

Dynamics of many particle systems

- Systems with constraints and general coordinates
- Conservative systems, stable equilibria
- Lagrangian Mechanics and calculus of variations
- Hamiltonian mechanics
- Poissson brackets and canonical transformations

2 Vector Calculus

2.1 Curves in space

If components of a point (x, y, z) are functions of a variable t (time) then the point (x(t), y(t), z(t)) traces out a curve in 3-space. The coordinate equations

$$x = x(t), \quad y = y(t), \quad z = z(t) \tag{1}$$

are called the parametric equations of the curve.

We put a natural orientation on a curve

$$\gamma: (x, y, z) = (x(t), y(t), z(t)),$$

and say that point $(x(t_1), y(t_1), z(t_1))$ precedes point $(x(t_2), y(t_2), z(t_2))$ if $t_1 < t_2$. We put arrow heads on a curve γ to mark the positive direction.

Examples 1,2.

2.2 Vector Functions

A vector

$$\mathbf{f}(t) = f_1(t)\hat{\mathbf{i}} + f_2(t)\hat{\mathbf{j}} + f_3(t)\hat{\mathbf{k}}$$

whose components are functions of one or more variables (in this case time t) is called a **vector function**. The basic concepts of the calculus of such functions eg. limits, differentiation etc. can be introduced in a natural way. For example

$$\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{a}$$

means that

$$\lim_{t \to t_0} f_i(t) = a_i, \quad i = 1, 2, 3.$$

Similarly, we differentiate vector functions component-wise:

$$\frac{d\mathbf{f}}{dt} = \frac{df_1}{dt}\hat{\mathbf{i}} + \frac{df_2}{dt}\hat{\mathbf{j}} + \frac{df_3}{dt}\hat{\mathbf{k}} = \dot{f}_1\hat{\mathbf{i}} + \dot{f}_2\hat{\mathbf{j}} + \dot{f}_3\hat{\mathbf{k}}.$$

Example: If $\mathbf{f}(t) = \cos t \,\hat{\mathbf{i}} + \sin t \,\hat{\mathbf{j}} + e^t \,\hat{\mathbf{k}}$, then

$$\lim_{t\to 0}\mathbf{f}(t)=\hat{\mathbf{i}}+\hat{\mathbf{k}},$$

and

$$\dot{\mathbf{f}}(t) = -\sin t\,\hat{\mathbf{i}} + \cos t\,\hat{\mathbf{j}} + e^t\,\hat{\mathbf{k}}.$$

Also note that the usual product rules of differentiation hold for vector functions.

i.e.

$$\frac{d}{dt}\{\mathbf{g}(t)\cdot\mathbf{f}(t)\} = \dot{\mathbf{g}}(t)\cdot\mathbf{f}(t) + \mathbf{g}(t)\cdot\dot{\mathbf{f}}(t)$$

$$\frac{d}{dt}\{\mathbf{g}(t)\times\mathbf{f}(t)\} = \dot{\mathbf{g}}(t)\times\mathbf{f}(t) + \mathbf{g}(t)\times\dot{\mathbf{f}}(t).$$

Note: Unless otherwise stated, we assume throughout the course that all functions are continuous and differentiable.

2.3 Position, Velocity, Acceleration

A particle moving in 3-space traces out a curve (x(t), y(t), z(t)), called the **path** of the particle, as t varies. The corresponding vector function

$$\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} + z(t)\hat{\mathbf{k}}$$

is called the **position vector** of the particle. The distance of the particle from the origin is therefore given by

$$r(t) = |\mathbf{r}(t)| = \sqrt{\mathbf{r}(t) \cdot \mathbf{r}(t)} = \sqrt{x^2 + y^2 + z^2}.$$

Thus

$$\hat{\mathbf{r}}(t) = \frac{\mathbf{r}(t)}{r(t)}$$

determines the unit vector in the direction of the particle.

The vector

$$\mathbf{v}(t) = \dot{\mathbf{r}}(t) = \dot{x}(t)\hat{\mathbf{i}} + \dot{y}(t)\hat{\mathbf{j}} + \dot{z}(t)\hat{\mathbf{k}}$$

is called the velocity vector of the particle; that is,

$$\mathbf{v}(t) = \lim_{dt \to 0} \frac{\mathbf{r}(t + dt) - \mathbf{r}(t)}{dt} = \dot{\mathbf{r}}(t).$$

Thus at any instant the velocity vector is tangent to the path of the particle and points in the direction of motion. It follows that

$$\hat{\mathbf{v}}(t) = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}$$

determines a unit tangent vector to the curve at the point (x(t), y(t), z(t)). We call

$$v(t) = |\mathbf{v}(t)| = \sqrt{\mathbf{v}(t) \cdot \mathbf{v}(t)} = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2},$$

the speed of the particle and

$$T = \frac{1}{2}mv^2 = \frac{1}{2}m(\mathbf{v} \cdot \mathbf{v})$$

the kinetic energy (K.E.) of the particle, where m is the particle's mass.

The vector

$$\mathbf{p} = m\mathbf{v}$$

is called the (linear) **momentum** of the particle. The **acceleration** vector of the particle is given by

$$\mathbf{a} = \dot{\mathbf{v}}(t) = \ddot{\mathbf{r}}(t) = \ddot{x}\hat{\mathbf{i}} + \ddot{y}\hat{\mathbf{j}} + \ddot{z}\hat{\mathbf{k}}.$$

According to Newton's 2nd law, if F(t) is the force exerted on the particle then

$$m\ddot{\mathbf{r}} = \mathbf{F}(t)$$

which is called the equation of motion.

Note: In terms of momentum, we more accurately have

$$\dot{\mathbf{p}} = \mathbf{F}(t).$$

This is important only when mass m of the particle depends on time. In particular, if there is no force exerted on the particle, that is F = 0, then

$$\dot{\mathbf{p}} = \mathbf{0}$$
.

This is known as conservation of linear momentum.

Example 3.

2.4 Arclength

Let $\gamma:(x,y,z)=(x(t),y(t),z(t))$ be a curve in 3-space and let $\mathbf{r}(t)=x(t)\hat{\mathbf{i}}+y(t)\hat{\mathbf{j}}+z(t)\hat{\mathbf{k}}$ be the corresponding position vector. Then recall that the **arclength** of the curve γ

between t = a and t = b is given by

$$L = \int_a^b |\dot{\mathbf{r}}| dt = \int_a^b v(t) dt.$$

This determines the distance travelled by a particle along path γ between times t=a and t=b.

Example 4.

2.5 Work and Line Integrals

Recall from classical physics that the **work** W done by a constant force F in moving a particle along a *straight line* from point A to point B is

$$W = \text{(component of force in direction of motion)} \times \text{(distance)}$$

= $\mathbf{F} \cdot (\mathbf{r}_B - \mathbf{r}_A)$.

In general F is a function of t and the path of the particle is no longer a straight line but is given by a curve

$$\gamma:(x,y,z)=(x(t),y(t),z(t)),\quad t\in[a,b].$$

Then the work done by F over path γ is equal to the **line integral** of F(t) over γ , which is given by

$$W = \int_{\gamma} \mathbf{F}(t) \cdot d\mathbf{r}$$
$$= \int_{a}^{b} \mathbf{F}(t) \cdot \dot{\mathbf{r}}(t) dt.$$

Example 5.

Suppose a particle of mass m experiences a force \mathbf{F} , so equation of motion is

$$m\ddot{\mathbf{r}} = \mathbf{F}.$$

Then the work done by the force ${\bf F}$ in moving particle along its path γ from time 0 until time t is given by the line integral

$$W = \int_{\gamma} \mathbf{F} \cdot \dot{\mathbf{r}} dt = \int_{0}^{t} \mathbf{F}(t') \cdot \mathbf{v}(t') dt',$$

or

$$\frac{dW}{dt} = \mathbf{F} \cdot \mathbf{v} = m\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \frac{1}{2} m \frac{d}{dt} (\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}).$$

Therefore,

$$\frac{dW}{dt} = \dot{T}$$
 where $T = \frac{1}{2}mv^2 = \text{K.E.}$

Hence

$$W = \int_a^b \dot{T} dt = T(b) - T(a).$$

i.e. The work done = increase in K.E.

2.6 Conservative systems and conservation of energy

We say that motion is **conservative** if there exists a function V = V(x, y, z), called the **potential energy** (P.E.) such that

$$\mathbf{F} \cdot \mathbf{v} = -\frac{dV}{dt}.$$

This potential energy V is uniquely determined up to a constant. Now we have from above

$$\mathbf{F} \cdot \mathbf{v} = \frac{dT}{dt},$$

SO

$$\frac{d}{dt}(T+V) = 0$$

or

$$T + V = E$$
 (const).

We call E the **energy** of the particle.

Examples 6,7.

2.7 Launching of artificial satellites

In certain cases of physical interest the approximation for gravitational force F = -mg breaks down and we need to use the full Newtonian expression. Consider then launching a rocket ship from the earth's surface. In this case we have from

$$F = -\frac{mga^2}{(a+x)^2}$$

where a is the Earth's radius and x is the height of the rocket above the earth.

Hence

$$Fv = -\frac{mga^2}{(a+x)^2}\dot{x} = -\frac{dV}{dt},$$

where

$$V = -\frac{mga^2}{(a+x)}.$$

Therefore the system is still conservative but now with P.E. V, and the energy is

$$E = \frac{1}{2}mv^2 - \frac{mga^2}{(a+x)},$$

which is constant in time.

Note: Using Taylor series

$$V(x) = -\frac{mga}{(1 + \frac{x}{a})} \approx -mga(1 - \frac{x}{a}) = mgx - mga$$

valid for $\frac{x}{a} \ll 1$, which reduces to the Galilean expression (up to a constant).

If E < 0, the rocket is trapped in earth's gravitational field. Indeed v = 0 when

$$E = -\frac{mga^2}{(x+a)}.$$

Hence when

$$x = -\frac{a}{E}(mga + E)$$

the rocket ship falls back to earth.

Exercise: Problem Sheet 2 Question 4

The rocket ship will escape earth's gravitational field when E=0, corresponding to

$$\frac{1}{2}mv^2 = \frac{mga^2}{(x+a)}$$

or

$$v = \sqrt{\frac{2ga^2}{(a+x)}}. (2)$$

In this case v never vanishes and rocket ship continues to rise indefinitely. Eqn.(2) gives the velocity needed to escape the earth's gravitational field at height x above earth's surface.

At the earth's surface (x = 0) this escape velocity is

$$v_e = \sqrt{2ga} = \sqrt{\frac{2GM}{a}} \tag{3}$$

which is called the **escape velocity**. This last expression in fact gives the escape velocity from any spherical body of radius a and mass M.

2.8 Black Holes

When $v_e = c$ (speed of light) the body is called a black hole. Squaring equation (3) yields the black hole equation

 $c^2 = \frac{2GM}{R}$

or

$$R = \frac{2GM}{c^2},$$

which is known as the Schwarzchild radius. Here R gives the radius to which a spherical body of mass M must be shrunk in order to become a black hole. This agrees with the expression from general relativity.

Note: Laplace predicted the existence of such objects as far back as the 18th century.

2.9 Gradient Function

If we have a function $g: \mathbf{R}^3 \mapsto \mathbf{R}^3$ (g(x,y,z)), we call the vector function

$$\nabla g = \frac{\partial g}{\partial x}\,\hat{\mathbf{i}} + \frac{\partial g}{\partial y}\,\hat{\mathbf{j}} + \frac{\partial g}{\partial z}\,\hat{\mathbf{k}}$$

the gradient of g. We also call

$$\nabla = \frac{\partial}{\partial x}\,\hat{\mathbf{i}} + \frac{\partial}{\partial y}\,\hat{\mathbf{j}} + \frac{\partial}{\partial z}\,\hat{\mathbf{k}}$$

the del operator.

Example For $g(x, y, z) = x^2 + yz^2$ we have

$$\nabla g = 2x\,\hat{\mathbf{i}} + z^2\,\hat{\mathbf{j}} + 2yz\,\hat{\mathbf{k}}.$$

Note: ∇g is normal to the surface g(x, y, z) = c at every point. Indeed let

$$\gamma:(x,y,z)=(x(t),y(t),z(t))$$

be any curve in the surface. Then

$$\dot{\mathbf{r}} \cdot \nabla g = \frac{\partial g}{\partial x} \frac{dx}{dt} + \frac{\partial g}{\partial y} \frac{dy}{dt} + \frac{\partial g}{\partial z} \frac{dz}{dt} = \frac{dg}{dt} = 0.$$

Therefore since $\dot{\mathbf{r}}$ is tangent to the surface, ∇g is orthogonal to the surface at the given point. The plane orthogonal to ∇g at a point P(x,y,z) on the surface g(x,y,z)=c is called the **tangent plane** to the surface at P.

2.10 Conservative Forces

A force **F** is called **conservative** if there exists a function g(x, y, z) such that

$$\mathbf{F} = \nabla g$$
.

We usually say more specifically, $\mathbf{F} = -\nabla V$, where V(x, y, z) is called the **potential** function, as before.

Note: Suppose a particle of mass m moves under the influence of a conservative force $\mathbf{F} = -\nabla V$. Then the motion is conservative with P.E. V.

Proof:

$$\begin{aligned} \mathbf{F} \cdot \mathbf{v} &= -\nabla V \cdot \mathbf{v} \\ &= -\nabla V \cdot \dot{\mathbf{r}} \\ &= -\frac{\partial V}{\partial x} \dot{x} - \frac{\partial V}{\partial y} \dot{y} - \frac{\partial V}{\partial z} \dot{z} \\ &= -\frac{\partial V}{\partial x} \frac{dx}{dt} - \frac{\partial V}{\partial y} \frac{dy}{dt} - \frac{\partial V}{\partial z} \frac{dz}{dt} \\ &= -\frac{dV}{dt} \end{aligned}$$

so motion is conservative with P.E. V.

We can generalise this by using the Jacobi Matrix. The **Jacobi Matrix** of a vector function $\mathbf{f} = f_1(x_1, x_2, \dots x_n) \hat{\mathbf{i}} + f_2(x_1, x_2, \dots x_n) \hat{\mathbf{j}} + f_3(x_1, x_2, \dots x_n) \hat{\mathbf{k}}$ is the $n \times n$ matrix with elements:

$$[J_{\mathbf{f}}]_{ij} = \frac{\partial f_i}{\partial x_j} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}.$$

In this course we are usually working in 3 dimensions, in which case n=3 and x_1, x_2 and x_3 correspond to x, y and z.

Lemma: A force **F** is conservative iff $J_{\mathbf{F}}$ is symmetric.

Proof: Suppose $\mathbf{F} = -\nabla V$ is conservative.

$$[J_{\mathbf{F}}]_{ij} = \frac{\partial F_i}{\partial x_j} = -\frac{\partial^2 V}{\partial x_j \partial x_i}$$
$$= -\frac{\partial^2 V}{\partial x_i \partial x_j}$$
$$= [J_{\mathbf{F}}]_{ii}.$$

So $J_{\mathbf{F}}$ is symmetric and conversely if $J_{\mathbf{F}}$ is symmetric the F is conservative.

Example 8.