3 Many particle systems: Constraints and gener-
alised coordinates |

If we have a system of n particles, 3n coordinates or variables are needed to specify
their positions. If there are m algebraic constraint equations relating the coordinates, in
principle we can eliminate m variables leaving a system depending on 3n—m generalised
coordinates ¢;(1 < < 3n—m). Such a system is said to have 3n—m degrees of freedom.

Examples:

1) Simple Pendulum. Here we have 2 coordinates z,y and one constraint equation

z% + y? = [, Therefore there is only one generalised coordinate required - in this case 6.
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2) Double Pendulum. Here we have 4 coordinates 1,7y, 2o, Yo and two constraint
equations
sty =0, (@2-n)+@m-1n)=1

Hence we can transform to two new generalised coordinates 6y, 5.
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We can solve the system solely in terms of 65, 6,.

Notes: For a conservative system with m degrees of freedom and generalised coordinates
¢ (1 <1< m) (including the single and double pendulums), the K.E. and P.E. can be
written as

T= T(Qh Qiat)’ V= V(Q’i,t)

respectively. That is, V' is not velocity dependent (the Lorentz force will not be considered
here).
3.1 Generalised Forces

Consider a system of n particles with m degrees of freedom and generalised coordinates
¢ (1 <4< m). The rate at which work is done is

24



dt = ZF SV = ZF T

i=1
where F; is the vector force exerted on the ith particle, and r;, v; = r;, are the position
and velocity vectors of the ith particle. Suppose r; = r;(g;,t). Then

. = ari . 8r1~
r, = ; <553—q3> + —37

Hence the rate at which work is done is now given by:

ﬂzﬂ = inrz

dt dt
m n
) or;
= ZQij+ZFi gy
j=1 =1
where
- 61‘1'
Q=Y Fi ot
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which we call a generalised force.

3.2 Conservative Systems

A system is called conservative if there exists a function V' = V/(g;,t) called the P.E.
such that:

and

Then

So T'+V = E, where T is our usual kinetic energy (T = 1 2mv?).

Note that we usually say that the potential V' = V/(g;) has no explicit dependence

on time and so %‘f = 0. Throughout, unless otherwise stated, we make this assumptlon

Also in most applications (eg. time-independent constraints)

al'i .

ri:ri(q17QZ7"'7Q'm> = 8t :0;

although this is not always the case.
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3.3 Equilibrium in conservative systems

For a conservative system, the generalised forces are

ov
Q=5
95
3 If all the generalised forces in a system are zero, then the system is said to be in equi-

librium.

If we displace a conservative system from equilibrium by an arbitrarily small amount, say
| (6q1,...,0gm), then the change of work is zero.
Proof:

SW =06T = =6V
= — Z 0-dg; (because our gen. forces are zero)

That is, there is no work done in a virtual displacement from equilibrium.

The equilibrium is said to be stable (respectively unstable) if we have a local min-
imum (respectively maximum) at equilibrium. It is a minimum (respectively maximum)
if the matrix .

0Q; 9V oV _0Q;

8¢;  0qi0q;  0q;0q: 9g;
is positive (respectively negative) definite for all j. That is all the eigenvalues are positive
(respectively negative).

Example 9. m% = —kz, Q = F = —kz, therefore x = 0 is an equilibrium position. So
dF

/ '.1-7 —@ = —— =k > 0 = stable equilibrium.
g ox dx
K [ia

Example 10. Simple pendulum. Wehaver = [f, = siﬁnﬁi —cos 6’3. Alsp v=r1=100.
Now 6 is our generalised coordinate, and we know %5 =60 =cosfi +sinfj. Now

F=-Tr- mgj
where the first term represents the tension force and the second term is gravity. Then
3
dr o
- F.—— =[F.
% Q F i IF.-6
. _ .
0 L = —mglsinf
! = _ V = —mglcosf
' d0 ) g R
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so the force is conservative with P.E. V. Therefore @ = 0 at § = 0, 7 giving the equilibrium
positions. To check stability,
@V
d6?

>0, 6 =0 stable,

=mglcosf = { <0, 6= unstable.

Example 11. Double pendulum.
The system is conservative with potential

V = —myglycosf; —mag(lycosby + 1y cosby)
= —(my + my)gly cos by — magls cosbs.

Therefore,
ov

= —a—-e—l- = (ml + mZ)gll sin 91,

—G1

and oV
—Qz = 5—92 = mgglg sin02.

Hence the system is in equilibrium when 6; = 0,7 and 05 = 0, 7. Now

v PV -
3_9% = (my -+ ma)gli cos b1, 8—8% = mygls cos b;.
Also
*V__ &V
060,00, 00,00,
S0

0%V _{ (my + mg)gli cos b, 0
80189J 01=02=0 - 0 nglz COS 02

When 6; = 6, = 0 this matrix is positive definite, so we have a stable equilibrium.
When 6; = 0; = 7 this matrix is negative definite, so we have an unstable equilibrium.

Note: When 6; = 0 and 0, = 7 the equilibrium is neither stable nor unstable, and
similarly for 6, = 7 and 6, = 0. '
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