5 Calculus of Variations

Given a function F(y,y',z) where y = y(z) is unspecified, then we consider

z2

I(y) =/ F(y,y',z)dz,
z1

called the functional. If y(z) is subject to some boundary conditions y(z1) = ¥ and

y(z2) = yo, then I(y) has a maximum or minimum value if F' satisfies the Euler-

Lagrange Equation:
6F _d (0F\
oy dx \dy')

Proof: Suppose y satisfies the given boundary conditions and consider small variations
in y:
y = y+0y=y+en(zs)

where € is a small parameter independent of z and 7(z) is an arbitrary function such that
n(z1) = n(zz) = 0. (This is necessary so the boundary conditions are satisfied.) Then
§y = en(z) is the variation in y.

We wish to find y(z) such that I(y+en(z)) takes a maximum or minimum value at € = 0,
for any choice of n(z). A necessary condition for this is that

=0
e=0

2 Iy + (o))

for all n(z) satisfying 7(z;) = n(ze) = 0. Then at € = 0 we must have

0 = Zify+en(z)

e=0

ez
= [T SR,y el do
1

e=0

Consider the substitutions

du

u = y + en(z) = $=?7
dv

v = y +en(z) = PP 7.

But by the chain rule

OF _ OFdy OF
Bu By du By’
OF  9Fdy OF
O 9y dv By

Hence
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%F(u, v, %)

OF du  OF dv
Ou de  Ov de /|
OF(y,y',z) , OF(y,¢',x) ,
oy mE oy’

e=0

Substituting this into our integral, we find
2 (OF  OF
0 = / (——77+——’>d3:.
z1 ay ayln

Now by the product rule

_d_ ?E. —_d_ 8_F +_3£,
dx 8y’77 ~ dz \ 0y B By’n’

o [P () e [ ()
s \0Y dx \ Oy’ s dx \OY
_[® (O0F d (OF p OF ™
-/ (5% (&) x*["a—yf]m;
N—— ——r

0

SO

The last term equals zero because of the boundary conditions for 7.

Hence we have:
£2 OF d (OF
Lo (5% (7)) =0 voto)

As this holds for all (z), we must have

oF _d (9F\ _,
dy dz \oy')

which is the Euler-Lagrange equation.

We can extend the result for systems with F(y1, ..., Yn, ¥}, - - > Yh, %), where y;(z), (1 <
j < n) are n independent functions of z whose values at z; and z; are specified and we
have the functional:

z2
I(yh)yn):/ F(yl)'"1yn7y17"'7y:z7m)d$

z1

The functional will have a minimum or maximum only if:

d (OF oF - .

Examples:
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1) Consider the special case where F' depends only on y, 1/, and is independent of z,
that is, F' = F'(y,%'). Then the Euler-Lagrange equations give:

- [E-2 ()
=V Oy dz \ 0y

_ OF _[d [ 0F\  ,OF
=V Tl \Vay) Y ey

(This trick is due to the product rule on 4 (y’ %))

_ 4F _d [ OF
T dz \Ydy

d OF

5.1 The Brachistochrone Problem

Jacob Bernoulli solved this long-standing problem in 1696 by what turned out to be
an application of the Calculus of Variations. A particle starting at rest moves along a
frictionless wire under it’s own weight from the origin to point P(a,b). What is the path
y = y(z) for which the time taken is least? Y

The system is conserved, so we have conservation of energy: — O(L 7‘*

1 l:
T+V:§mvz—mgy:E. \"‘jt\_‘

Initially ¥ = 0 and v = 0, and hence E = 0. Therefore

%mv2 = mgy = v% =2y
But
dz\? dy 2
=y(%) + (%)
Now
dz\? [dy\*
(&) + (%)
dt dt
- (dy 2 dz
= 1 hat-2 Bihied
* (dz) dt
dx
= 2 _
/14y 7
Therefore

\/2—9_5—\/1+y’2d—m = & _V1ty"
B dt dr 29y
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Thus the time taken is given by

a 1 12
t= / +Y dz,
0 2gy

Qa
t:/ F(y,y)dz,  where  F(y,y) =
0

or
1+ y/2
29y
We can find y so that ¢ is a minimum if F'(y, y') satisfies the specialised Euler-Lagrange
equation from the above example, '

oF
F— ’yla—y, =C.
Hence
. 14 y/2 B y/2 B 1
V 20y Vegy(T+y?) 2y +y?)
Therefore
y(1+y%) =2¢, const.
S0
12 — gg _ 1
Yy
On physical grounds, y' > 0, so that
y/ — 2c— y.
Yy

We solve by substituting y = 2¢ sin? @, so that dy = 4csin 6 cos #df to give

[ 2¢sin? )
dr = SeoosZg 4¢sin @ cos 0dl

= 4csin®0df = 2¢(1 — cos 26)df
2¢(6 — % sin 26)

i

x

provided z = 0 at § = 0. Thus
z =c(20 —sin26), y=2csin® = c(1 — cos 26).

Setting ¢ = 20 gives
z=c(p—sing), y=c(l—cosg)

which are the parametric equations of a cycloid.
Note: The origin at (z,y) = (0,0) corresponds to ¢ = 0. We may determine c¢ from the
requirement that (z,y) = (a,b) at the other end point.
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6 Principle of Least Action - Hamilton’s principle

In investigating dynamics, we often strive to look for basic concepts, things which are at
the heart of our theory and encompass it all. When you are first presented dynamics,
we often consider energy to be a fundamental concept. However, there turns out to be a
more fundamental concept than energy: action. The action of a system is related to how
the system follows a particular trajectory.

Consider a conservative system with generalised coordinates g¢i,...,¢n and Lagrangian
L(g,d;,t) = T(g, 4y t) — V(gi, ). According to Hamilton’s principle, the observed motion
of the system from time ¢; to to is given by that trajectory which minimises the action
integral:

t2
A= / L(qi,qi,t)dt.
51

Since the generalised coordinates g; are independent, the Euler-Lagrange equations state
that a necessary condition for a minimum is

i ?—L- —QE—O =1 n
dt \ 0g; og; oo

which are Lagrange’s equations of motion derived previously.

Example: Projectile Motion.

Consider a particle launched from the origin with a particular velocity and angle. From
this angle and velocity, we can work out our horizontal and vertical initial velocities. Now
the question is, what path does it travel? By the Principle of Least Action, we have the
functional:

t2
t1

Assume there are no forces other than gravity acting on the particle (e.g. no air resistance).
Then our Lagrangian is given by: ‘

1 1 ’
L=T—V=§md:2+§my2—l—mgy.

Now the Principle of Least Action states that the system will evolve according to
the trajectory that minimises the action functional A. Therefore the Euler-Lagrange
equations must hold for both generalised coordinates. So

afomy_ o _ g
dt \ 0% ox

.
%(mx)—o =0
z = 0.
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This is what we expect as there are no horizontal forces. Now let’s look at the Euler-
Lagrange equations for y:

4 (L) oL _

dt \ 8y oy

d .
Ei(my)—l-m? =0
y = —g.

This is also consistent with our system (and experience). So what about our trajectory?
It’s easy to see (by integrating twice), that we get:

T = Ugt,

= yo —I— ’Uyt —_ ‘gf
2
These two parametric equations will trace out a parabola, as per our experience with

basic mechanics.

6.1 Generalised momenta and conservation

In the case of n free particles with cartesian coordinates (z;,y;, %), 1 <4< n,
1 . . .
L=T-= Z Emz(ccf + U7+ 2.
i

We have g—gf’i = m;&; = z—component of the momentum p; of particle ¢. (Similarly for
the y, z components).

In general for a system with constraints and generalised coordinates ¢;,% = 1,...,m,
we define the generalised momentum associated with g; by

L

==, t=1,...,m.
p'L 8q'z )

However p; does not usually have dimensions of linear momentum.
If L depends on ¢; but not on ¢; then

9L _g5 4 3_’3)—0
6(]1_ dt 8q1 -

dp;
— = (0 = p; = const.
dt h
Several of the generalised momenta p; may be conserved in a problem. The relevant g

are called cyclic or ignorable coordinates.

which means
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®©
2
_\2___—:7._ £ ) —~ = 2
18) A particle of mass m slides down the smooth face of a wedge of mass M which
itself is free to slide on a smooth horizontal plane. Suppose the angle of inclination of the
wedge is B and at ¢t = 0 the wedge is at rest and the mass is at rest a distance b along
the face of the wedge. Determine the time taken for the mass to reach the bottom of the

wedge.

Solution Introduce coordinates 7, as shown so that at ¢ = 0 we may assume n =b, { =
0, n =& = 0. Let v be the velocity of the mass so that

v=(+ncosf)i +7sin 8j.
Then i 1
T= EMSZ + 5m(7’72 + &2+ 2€ncos ), V =mgnsinf
and { )
L= §M52 + §m(7'72 + €2 + 2€ncos ) — mgnsin B.

Note that the P.E. of the wedge is a constant so may be dropped. Therefore £ is ignorable
with generalised momentum

pe = %:(m+M)f+mv’7cosﬁ=const.
Since ) = ¢ = 0 at ¢ = 0 we find that const. = 0. Then
: mcosf .

The generalised momentum corresponding to 7 is

oL . :
pn = %zm’f}—]-mgCOS,B

m(M + msin® §)n
m+ M

Therefore using Lagrange’s equation we get

m(M +msin®§)ij _ dp, _ 0L

ey v A A
SO (M +m)sin* B
.. g + m)sin
=— = t.
7 msin? B+ M cons

Given at t =0, 7 =0, n=>b we find

e g(M + m)t*sin
= 2(msin® B + M)
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Therefore mass reaches the bottom of the wedge (7 = 0) when

‘= 2b(M + msin® B)
"\ g(M+m)sing

Note: Since ¢ =0, n = b at t = 0, equation (6) gives us

__ mcos
T m+M

(6—m)

which determines a straight line in (£,7) space.

7 Hamiltonian Mechanics

Consider a conservative system of n partlcles with generalised coordinates gy, . ..

corresponding generalised momenta

oL

Pi= %3¢ j=1...m, L=L(gd?)-

Then from Lagrange’s equations
= 0L & oL

dL = I dq,+za dg + —dt

oL oL
= 2dt<8 >d +Z czq, 570t
= Zpidqi+2pidéz‘+
=1 =1

Let us set m
H=>) pig—L,
i=1

called the Hamiltonian of the system. Then

L =\ 0L oL
dH = szdqz-l-zqzdpz -2 o~ 3 o — Gt

- 6(]1' ot
= - ;A g; ;. i——dt
;p g +iz=1:q pi— =

, @m and

Thus changes in H depend only on changes in p;, ¢;, t which suggests that H is a function

t:
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The equation for dH then implies
0H : 0H dH 0L OH

These are known as Hamilton’s equations, the last one arising from

__z dqz 0 0L 0L
= g T e T e

Note: The 2m first order Hamilton equations above replace the m second order Lagrange
equations!

7.1  Physical significance of H

In the case I and thus H has no explicit dependence on ¢, we have from Hamilton’s

equations
dH O0H oL

a6t ot
so H = constant.

Assume r; is only a function of the generalised coordinates g;, so

Brj
W —_— 0.
Then
= Or;
r; = Z qj
Py
and

Assuming V = V{(g;, t), then

0L
pi = EE
or

94;

_ ka . Oty
04

St g
= kLlk*
% 0y
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Now

or

Hence

— T (T-V)
T+V
E

which is constant since the system is conservative. Thus H denotes the total energy of
the system when the r; have no explicit time dependence.

Note It is possible to have r; = r;i(g;,t) but H = H(pi,¢;). In that case H is still
conserved, but does not denote the total energy (see tutorial sheet). \

Example 19. Simple pendulum.

T = %ml292, V = —mglcosf
Next 1
L=T-V =-mi?§?+mglcosf
2 ~
So 5L
= — = leé

Do 50

and

H=0py — L =mi?*— %m1292 — mglcosf = -;—mlzéz —mglcosf =T + V.

In terms of generalised momentum,




Hamilton’s equations are

: 0H Do . dH .
= —_— = — = —— = — l
0 e 2k D 7 mglsin
or )
‘ml2€ = —mglsin .

In this example neither H nor 71[. have explicit time dependence, so H =T + V (con-
stant).

e position
T
Pl
99w
Example 20. Bead on a wire rotating with angular velocity w. ~
>
o
1 .
V =mgacosd, T = —2—ma,2[02 + w?sin’ 6]
and L =T — V = ima?[6* + w?sin® 6] — mga cosf. Now py = Z&& = ma2f and
H = 6pg—1L
L1 .
= ma’f* — Ema2 [0% 4 w? sin® 0] + mga cosf
1 :
= imcb2 [0 — w?sin® 0] + mgacos
pg 1
= 2m9a2 - §mazo2 sin® 6 + mga cos 6. (8)
Then Hamilton’s equations become
f = Q{‘I_ _ Dbe
~ Opy  ma?’
0H
Py = ~55 = ma’w? sin 6 cos § + mga sin 6
= ma?sinflw? cosf + g/a)
or
§ = sin f(w? cos f + g/a). (9)

Note: In this example %—f = 0 so H is constant. However the position depends explicitly
on time, so H # T + V. In fact,

H— (T+V)=—-ma*w’sin® 4
which is not constant, so energy is not conserved. This is as we expect, as work is being

done on the system to drive it with constant angular velocity w.
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