8 Stability

Often a system will have a steady-state solution where one or more variables remain
constant. Assume a system has a steady-state solution ¢; = z. Then we can learn about
the behaviour of the system by solving the equations of motion for ¢; = z + dx where dx
is a small perturbation.

In order to understand the nature of the solutions we usually make a first-order Taylor
approzimation. i.e.

f(z+6z) ~ f(z) + f'(z)dz
This is valid provided dz is sufficiently small. Note that this is equivalent to stating

oy L2890 110

for small §z.

Example 21. Spherical Pendulum. _
V =mga(l —cosf), T = 3m|(ah)®+ (asinf¢)?] and thus

L=T-V= %m(azé2 + a?sin? §¢?) — mga(l — cos h).

In this case L = L(6,0, ¢) is independent of ¢ which is thus a Cychc coordmate The
corresponding generalised momentum is

oL

ps = — = ma®sin? ¢ = constant.
8¢ ) | 4
Also, |
Py = OL o 'e
a6 ~ &
and satisfies g 5L I
p0 _ 9 . 2 .
o =20 = ma” sin 6 cos 8¢° — mga sin b,
or
0-sm9cos€¢2—asm0 m

which is the equation of motion.

A solution to the equations of motion is given by circular motion at a fixed angle of
inclination # = o (constant) provided that ¢ is constant and

9
a cos

0 = ma’sinacos ag? — mgasina = ¢* =
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Thus the mass moves uniformly in a circle with angular velocity qb = w = 4/ where
—T/2 < a<m/2.

Stability: Consider a small perturbation away from circular motion so that § = a + 66
with 66 small. Then the above equation for p, becomes

ma?sin (o + 60)¢ = const. = ma’wsin® o,
or

_ wsin® a
 sin?(a+ 60)

Substituting this into the second equation of motion, we find

. w?sin® o g
o SR 66) — & sin(a + 66
60 (e 50) cos(a + 66) - sin(o + 66)

But for 66 small we have the first order approximations
sin(a + §0) = sina + cos @déf, cos(a + d0) ~ cos a — sin a6f
and

1 N sin o« — 3 cos adf
sin®(c + 66) sin* o

Hence

w?(sin & — 3 cos ad6) (cos o — sin a6f) — w? cos a(sin o + cos adf)
—w?(sin® a + 4 cos® )60
= —w?(1 + 3cos®@)db.

80

Thus # will oscillate around o with frequency w+/1 + 3 cos? & (simple harmonic mo-
tion), and the circular orbits are stable.

45



Example 22. Two masses m; and my are connected by a (massless) spring of stiffness
k. The system is set rotating about the centre of mass with an angular velocity w and
then released. If the masses are slightly disturbed along the line joining them, show that
the angular frequency of oscillation is

mymme

\/3w2m1m2 + k(m1 + ')’)’LQ)

Solution: Let ry,79 be the distances of masses my, me respectively from the centre of
mass.

As the system is rotating around the centre of mass, we know m,7r = mgrs, i.e. 1o = %7"1-
Then

T = —;-ml (72 4+ r26%) + %mz(rg + r26?)
= 0+ 70 (73 + i)
and .
V= k(r+rm—1)2= 5["’1(“%) —z} ,
50 ' 1 mi.,. . 1 m 2
L=T-V =50+ 1)+ - 5[7~1(1+m—2) —z] .
L has no explicit dependence on 6, so @ is cyclic and py = %;?” =my(1+ %)r%é is constant.

i.e. 20 = ¢ for some constant c. Let the distance of m, from the centre of mass before
the disturbance be d. Then ¢ = d*w, and 0 = %;w'
1
The other equation of motion is

0 = & (oL)_0oL
Todt \ or or
_ my ™y 2 m my
= m1(1+m2)r m1(1—|-m2)7"19 +k(1—l—m2)[r1(1+m2) l]

or
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. k m
A PR my
1= 6°m ml[rl(l—'_mz) []

k m
2 1
= —w'—-—[ml+—)-=1.
ri”w m1[7”1( +m2) )
As the masses are only slightly disturbed, we can set r; = d -+ ér where 07 is small. Then

1 1 1 36r _d—36r
r3 (d+06r)3 & dt dt

using a first order Taylor expansion. Hence the second equation of motion becomes

- k m
ér ~ (d—30r)w X [(d+dr)(1+ 2) ]

k
= - {3w2 +—(1+ ﬂ)} or+c ¢ aconstant
m Mo
2
_ [3w mimg + k(my + mg)] Srid
m1Mmeo

Hence the mass will oscillate with angular frequency

3w2mimg + k(my + ms)
mimse '

Exercise: A particle moves on the inside surface of a cone of half angle o. The axis of
the cone is vertical with the vertex downwards. Determine the condition on the angular
velocity w such that the particle can describe a horizontal circle i above the vertex. Show
that the period of small oscillations about this circular path is

2 h

cosa\ 3g
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